1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75 #include <trace/hooks/mm.h>
76 #include <trace/hooks/vmscan.h>
77
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
80
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 EXPORT_SYMBOL_GPL(root_mem_cgroup);
83
84 /* Active memory cgroup to use from an interrupt context */
85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87
88 /* Socket memory accounting disabled? */
89 static bool cgroup_memory_nosocket __ro_after_init;
90
91 /* Kernel memory accounting disabled? */
92 static bool cgroup_memory_nokmem __ro_after_init;
93
94 /* BPF memory accounting disabled? */
95 static bool cgroup_memory_nobpf __ro_after_init;
96
97 static struct kmem_cache *memcg_cachep;
98 static struct kmem_cache *memcg_pn_cachep;
99
100 #ifdef CONFIG_CGROUP_WRITEBACK
101 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
102 #endif
103
task_is_dying(void)104 static inline bool task_is_dying(void)
105 {
106 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
107 (current->flags & PF_EXITING);
108 }
109
110 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)111 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
112 {
113 if (!memcg)
114 memcg = root_mem_cgroup;
115 return &memcg->vmpressure;
116 }
117
vmpressure_to_memcg(struct vmpressure * vmpr)118 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
119 {
120 return container_of(vmpr, struct mem_cgroup, vmpressure);
121 }
122
123 /*
124 * trace_android_vh_use_vm_swappiness is called in include/linux/swap.h by
125 * including include/trace/hooks/vmscan.h, which will result to build-err.
126 * So we create func: _trace_android_vh_use_vm_swappiness.
127 */
_trace_android_vh_use_vm_swappiness(bool * use_vm_swappiness)128 void _trace_android_vh_use_vm_swappiness(bool *use_vm_swappiness)
129 {
130 trace_android_vh_use_vm_swappiness(use_vm_swappiness);
131 }
132
133 #define CURRENT_OBJCG_UPDATE_BIT 0
134 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
135
136 static DEFINE_SPINLOCK(objcg_lock);
137
mem_cgroup_kmem_disabled(void)138 bool mem_cgroup_kmem_disabled(void)
139 {
140 return cgroup_memory_nokmem;
141 }
142
143 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
144 unsigned int nr_pages);
145
obj_cgroup_release(struct percpu_ref * ref)146 static void obj_cgroup_release(struct percpu_ref *ref)
147 {
148 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
149 unsigned int nr_bytes;
150 unsigned int nr_pages;
151 unsigned long flags;
152
153 /*
154 * At this point all allocated objects are freed, and
155 * objcg->nr_charged_bytes can't have an arbitrary byte value.
156 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
157 *
158 * The following sequence can lead to it:
159 * 1) CPU0: objcg == stock->cached_objcg
160 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
161 * PAGE_SIZE bytes are charged
162 * 3) CPU1: a process from another memcg is allocating something,
163 * the stock if flushed,
164 * objcg->nr_charged_bytes = PAGE_SIZE - 92
165 * 5) CPU0: we do release this object,
166 * 92 bytes are added to stock->nr_bytes
167 * 6) CPU0: stock is flushed,
168 * 92 bytes are added to objcg->nr_charged_bytes
169 *
170 * In the result, nr_charged_bytes == PAGE_SIZE.
171 * This page will be uncharged in obj_cgroup_release().
172 */
173 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
174 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
175 nr_pages = nr_bytes >> PAGE_SHIFT;
176
177 if (nr_pages)
178 obj_cgroup_uncharge_pages(objcg, nr_pages);
179
180 spin_lock_irqsave(&objcg_lock, flags);
181 list_del(&objcg->list);
182 spin_unlock_irqrestore(&objcg_lock, flags);
183
184 percpu_ref_exit(ref);
185 kfree_rcu(objcg, rcu);
186 }
187
obj_cgroup_alloc(void)188 static struct obj_cgroup *obj_cgroup_alloc(void)
189 {
190 struct obj_cgroup *objcg;
191 int ret;
192
193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
194 if (!objcg)
195 return NULL;
196
197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
198 GFP_KERNEL);
199 if (ret) {
200 kfree(objcg);
201 return NULL;
202 }
203 INIT_LIST_HEAD(&objcg->list);
204 return objcg;
205 }
206
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
208 struct mem_cgroup *parent)
209 {
210 struct obj_cgroup *objcg, *iter;
211
212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
213
214 spin_lock_irq(&objcg_lock);
215
216 /* 1) Ready to reparent active objcg. */
217 list_add(&objcg->list, &memcg->objcg_list);
218 /* 2) Reparent active objcg and already reparented objcgs to parent. */
219 list_for_each_entry(iter, &memcg->objcg_list, list)
220 WRITE_ONCE(iter->memcg, parent);
221 /* 3) Move already reparented objcgs to the parent's list */
222 list_splice(&memcg->objcg_list, &parent->objcg_list);
223
224 spin_unlock_irq(&objcg_lock);
225
226 percpu_ref_kill(&objcg->refcnt);
227 }
228
229 /*
230 * A lot of the calls to the cache allocation functions are expected to be
231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
232 * conditional to this static branch, we'll have to allow modules that does
233 * kmem_cache_alloc and the such to see this symbol as well
234 */
235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
236 EXPORT_SYMBOL(memcg_kmem_online_key);
237
238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
239 EXPORT_SYMBOL(memcg_bpf_enabled_key);
240
241 /**
242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
243 * @folio: folio of interest
244 *
245 * If memcg is bound to the default hierarchy, css of the memcg associated
246 * with @folio is returned. The returned css remains associated with @folio
247 * until it is released.
248 *
249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
250 * is returned.
251 */
mem_cgroup_css_from_folio(struct folio * folio)252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
253 {
254 struct mem_cgroup *memcg = folio_memcg(folio);
255
256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
257 memcg = root_mem_cgroup;
258
259 return &memcg->css;
260 }
261
262 /**
263 * page_cgroup_ino - return inode number of the memcg a page is charged to
264 * @page: the page
265 *
266 * Look up the closest online ancestor of the memory cgroup @page is charged to
267 * and return its inode number or 0 if @page is not charged to any cgroup. It
268 * is safe to call this function without holding a reference to @page.
269 *
270 * Note, this function is inherently racy, because there is nothing to prevent
271 * the cgroup inode from getting torn down and potentially reallocated a moment
272 * after page_cgroup_ino() returns, so it only should be used by callers that
273 * do not care (such as procfs interfaces).
274 */
page_cgroup_ino(struct page * page)275 ino_t page_cgroup_ino(struct page *page)
276 {
277 struct mem_cgroup *memcg;
278 unsigned long ino = 0;
279
280 rcu_read_lock();
281 /* page_folio() is racy here, but the entire function is racy anyway */
282 memcg = folio_memcg_check(page_folio(page));
283
284 while (memcg && !(memcg->css.flags & CSS_ONLINE))
285 memcg = parent_mem_cgroup(memcg);
286 if (memcg)
287 ino = cgroup_ino(memcg->css.cgroup);
288 rcu_read_unlock();
289 return ino;
290 }
291
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 NR_INACTIVE_ANON,
295 NR_ACTIVE_ANON,
296 NR_INACTIVE_FILE,
297 NR_ACTIVE_FILE,
298 NR_UNEVICTABLE,
299 NR_SLAB_RECLAIMABLE_B,
300 NR_SLAB_UNRECLAIMABLE_B,
301 WORKINGSET_REFAULT_ANON,
302 WORKINGSET_REFAULT_FILE,
303 WORKINGSET_ACTIVATE_ANON,
304 WORKINGSET_ACTIVATE_FILE,
305 WORKINGSET_RESTORE_ANON,
306 WORKINGSET_RESTORE_FILE,
307 WORKINGSET_NODERECLAIM,
308 NR_ANON_MAPPED,
309 NR_FILE_MAPPED,
310 NR_FILE_PAGES,
311 NR_FILE_DIRTY,
312 NR_WRITEBACK,
313 NR_SHMEM,
314 NR_SHMEM_THPS,
315 NR_FILE_THPS,
316 NR_ANON_THPS,
317 NR_KERNEL_STACK_KB,
318 NR_PAGETABLE,
319 NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 PGPROMOTE_SUCCESS,
325 #endif
326 PGDEMOTE_KSWAPD,
327 PGDEMOTE_DIRECT,
328 PGDEMOTE_KHUGEPAGED,
329 };
330
331 static const unsigned int memcg_stat_items[] = {
332 MEMCG_SWAP,
333 MEMCG_SOCK,
334 MEMCG_PERCPU_B,
335 MEMCG_VMALLOC,
336 MEMCG_KMEM,
337 MEMCG_ZSWAP_B,
338 MEMCG_ZSWAPPED,
339 };
340
341 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
342 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
343 ARRAY_SIZE(memcg_stat_items))
344 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
345 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
346
init_memcg_stats(void)347 static void init_memcg_stats(void)
348 {
349 u8 i, j = 0;
350
351 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
352
353 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
354
355 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
356 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
357
358 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
359 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
360 }
361
memcg_stats_index(int idx)362 static inline int memcg_stats_index(int idx)
363 {
364 return mem_cgroup_stats_index[idx];
365 }
366
367 struct lruvec_stats_percpu {
368 /* Local (CPU and cgroup) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Delta calculation for lockless upward propagation */
372 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
373 };
374
375 struct lruvec_stats {
376 /* Aggregated (CPU and subtree) state */
377 long state[NR_MEMCG_NODE_STAT_ITEMS];
378
379 /* Non-hierarchical (CPU aggregated) state */
380 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
381
382 /* Pending child counts during tree propagation */
383 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
384 };
385
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)386 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
387 {
388 struct mem_cgroup_per_node *pn;
389 long x;
390 int i;
391
392 if (mem_cgroup_disabled())
393 return node_page_state(lruvec_pgdat(lruvec), idx);
394
395 i = memcg_stats_index(idx);
396 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
397 return 0;
398
399 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
400 x = READ_ONCE(pn->lruvec_stats->state[i]);
401 #ifdef CONFIG_SMP
402 if (x < 0)
403 x = 0;
404 #endif
405 return x;
406 }
407 EXPORT_SYMBOL_GPL(lruvec_page_state);
408
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)409 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
410 enum node_stat_item idx)
411 {
412 struct mem_cgroup_per_node *pn;
413 long x;
414 int i;
415
416 if (mem_cgroup_disabled())
417 return node_page_state(lruvec_pgdat(lruvec), idx);
418
419 i = memcg_stats_index(idx);
420 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
421 return 0;
422
423 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
424 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
425 #ifdef CONFIG_SMP
426 if (x < 0)
427 x = 0;
428 #endif
429 return x;
430 }
431
432 /* Subset of vm_event_item to report for memcg event stats */
433 static const unsigned int memcg_vm_event_stat[] = {
434 #ifdef CONFIG_MEMCG_V1
435 PGPGIN,
436 PGPGOUT,
437 #endif
438 PGSCAN_KSWAPD,
439 PGSCAN_DIRECT,
440 PGSCAN_KHUGEPAGED,
441 PGSTEAL_KSWAPD,
442 PGSTEAL_DIRECT,
443 PGSTEAL_KHUGEPAGED,
444 PGFAULT,
445 PGMAJFAULT,
446 PGREFILL,
447 PGACTIVATE,
448 PGDEACTIVATE,
449 PGLAZYFREE,
450 PGLAZYFREED,
451 #ifdef CONFIG_SWAP
452 SWPIN_ZERO,
453 SWPOUT_ZERO,
454 #endif
455 #ifdef CONFIG_ZSWAP
456 ZSWPIN,
457 ZSWPOUT,
458 ZSWPWB,
459 #endif
460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
461 THP_FAULT_ALLOC,
462 THP_COLLAPSE_ALLOC,
463 THP_SWPOUT,
464 THP_SWPOUT_FALLBACK,
465 #endif
466 #ifdef CONFIG_NUMA_BALANCING
467 NUMA_PAGE_MIGRATE,
468 NUMA_PTE_UPDATES,
469 NUMA_HINT_FAULTS,
470 #endif
471 };
472
473 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
474 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
475
init_memcg_events(void)476 static void init_memcg_events(void)
477 {
478 u8 i;
479
480 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
481
482 memset(mem_cgroup_events_index, U8_MAX,
483 sizeof(mem_cgroup_events_index));
484
485 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
486 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
487 }
488
memcg_events_index(enum vm_event_item idx)489 static inline int memcg_events_index(enum vm_event_item idx)
490 {
491 return mem_cgroup_events_index[idx];
492 }
493
494 struct memcg_vmstats_percpu {
495 /* Stats updates since the last flush */
496 unsigned int stats_updates;
497
498 /* Cached pointers for fast iteration in memcg_rstat_updated() */
499 struct memcg_vmstats_percpu *parent;
500 struct memcg_vmstats *vmstats;
501
502 /* The above should fit a single cacheline for memcg_rstat_updated() */
503
504 /* Local (CPU and cgroup) page state & events */
505 long state[MEMCG_VMSTAT_SIZE];
506 unsigned long events[NR_MEMCG_EVENTS];
507
508 /* Delta calculation for lockless upward propagation */
509 long state_prev[MEMCG_VMSTAT_SIZE];
510 unsigned long events_prev[NR_MEMCG_EVENTS];
511 } ____cacheline_aligned;
512
513 struct memcg_vmstats {
514 /* Aggregated (CPU and subtree) page state & events */
515 long state[MEMCG_VMSTAT_SIZE];
516 unsigned long events[NR_MEMCG_EVENTS];
517
518 /* Non-hierarchical (CPU aggregated) page state & events */
519 long state_local[MEMCG_VMSTAT_SIZE];
520 unsigned long events_local[NR_MEMCG_EVENTS];
521
522 /* Pending child counts during tree propagation */
523 long state_pending[MEMCG_VMSTAT_SIZE];
524 unsigned long events_pending[NR_MEMCG_EVENTS];
525
526 /* Stats updates since the last flush */
527 atomic64_t stats_updates;
528 };
529
530 /*
531 * memcg and lruvec stats flushing
532 *
533 * Many codepaths leading to stats update or read are performance sensitive and
534 * adding stats flushing in such codepaths is not desirable. So, to optimize the
535 * flushing the kernel does:
536 *
537 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
538 * rstat update tree grow unbounded.
539 *
540 * 2) Flush the stats synchronously on reader side only when there are more than
541 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
542 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
543 * only for 2 seconds due to (1).
544 */
545 static void flush_memcg_stats_dwork(struct work_struct *w);
546 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
547 static u64 flush_last_time;
548
549 #define FLUSH_TIME (2UL*HZ)
550
551 /*
552 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
553 * not rely on this as part of an acquired spinlock_t lock. These functions are
554 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
555 * is sufficient.
556 */
memcg_stats_lock(void)557 static void memcg_stats_lock(void)
558 {
559 preempt_disable_nested();
560 VM_WARN_ON_IRQS_ENABLED();
561 }
562
__memcg_stats_lock(void)563 static void __memcg_stats_lock(void)
564 {
565 preempt_disable_nested();
566 }
567
memcg_stats_unlock(void)568 static void memcg_stats_unlock(void)
569 {
570 preempt_enable_nested();
571 }
572
573
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)574 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
575 {
576 return atomic64_read(&vmstats->stats_updates) >
577 MEMCG_CHARGE_BATCH * num_online_cpus();
578 }
579
memcg_rstat_updated(struct mem_cgroup * memcg,int val)580 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
581 {
582 struct memcg_vmstats_percpu *statc;
583 int cpu = smp_processor_id();
584 unsigned int stats_updates;
585
586 if (!val)
587 return;
588
589 cgroup_rstat_updated(memcg->css.cgroup, cpu);
590 statc = this_cpu_ptr(memcg->vmstats_percpu);
591 for (; statc; statc = statc->parent) {
592 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
593 WRITE_ONCE(statc->stats_updates, stats_updates);
594 if (stats_updates < MEMCG_CHARGE_BATCH)
595 continue;
596
597 /*
598 * If @memcg is already flush-able, increasing stats_updates is
599 * redundant. Avoid the overhead of the atomic update.
600 */
601 if (!memcg_vmstats_needs_flush(statc->vmstats))
602 atomic64_add(stats_updates,
603 &statc->vmstats->stats_updates);
604 WRITE_ONCE(statc->stats_updates, 0);
605 }
606 }
607
do_flush_stats(struct mem_cgroup * memcg)608 static void do_flush_stats(struct mem_cgroup *memcg)
609 {
610 if (mem_cgroup_is_root(memcg))
611 WRITE_ONCE(flush_last_time, jiffies_64);
612
613 cgroup_rstat_flush(memcg->css.cgroup);
614 }
615
616 /*
617 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
618 * @memcg: root of the subtree to flush
619 *
620 * Flushing is serialized by the underlying global rstat lock. There is also a
621 * minimum amount of work to be done even if there are no stat updates to flush.
622 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
623 * avoids unnecessary work and contention on the underlying lock.
624 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)625 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
626 {
627 if (mem_cgroup_disabled())
628 return;
629
630 if (!memcg)
631 memcg = root_mem_cgroup;
632
633 if (memcg_vmstats_needs_flush(memcg->vmstats))
634 do_flush_stats(memcg);
635 }
636
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)637 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638 {
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642 }
643
flush_memcg_stats_dwork(struct work_struct * w)644 static void flush_memcg_stats_dwork(struct work_struct *w)
645 {
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 do_flush_stats(root_mem_cgroup);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652 }
653
memcg_page_state(struct mem_cgroup * memcg,int idx)654 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655 {
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663 #ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666 #endif
667 return x;
668 }
669 EXPORT_SYMBOL_GPL(memcg_page_state);
670
671 /* For type visibility of memcg_page_state indices */
672 const enum node_stat_item ANDROID_GKI_node_stat_item;
673 EXPORT_SYMBOL_GPL(ANDROID_GKI_node_stat_item);
674 const enum memcg_stat_item ANDROID_GKI_memcg_stat_item;
675 EXPORT_SYMBOL_GPL(ANDROID_GKI_memcg_stat_item);
676
677 static int memcg_page_state_unit(int item);
678
679 /*
680 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
681 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
682 */
memcg_state_val_in_pages(int idx,int val)683 static int memcg_state_val_in_pages(int idx, int val)
684 {
685 int unit = memcg_page_state_unit(idx);
686
687 if (!val || unit == PAGE_SIZE)
688 return val;
689 else
690 return max(val * unit / PAGE_SIZE, 1UL);
691 }
692
693 /**
694 * __mod_memcg_state - update cgroup memory statistics
695 * @memcg: the memory cgroup
696 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
697 * @val: delta to add to the counter, can be negative
698 */
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)699 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
700 int val)
701 {
702 int i = memcg_stats_index(idx);
703
704 if (mem_cgroup_disabled())
705 return;
706
707 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
708 return;
709
710 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
711 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
712 }
713
714 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)715 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
716 {
717 long x;
718 int i = memcg_stats_index(idx);
719
720 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
721 return 0;
722
723 x = READ_ONCE(memcg->vmstats->state_local[i]);
724 #ifdef CONFIG_SMP
725 if (x < 0)
726 x = 0;
727 #endif
728 return x;
729 }
730
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)731 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
732 enum node_stat_item idx,
733 int val)
734 {
735 struct mem_cgroup_per_node *pn;
736 struct mem_cgroup *memcg;
737 int i = memcg_stats_index(idx);
738
739 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
740 return;
741
742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743 memcg = pn->memcg;
744
745 /*
746 * The caller from rmap relies on disabled preemption because they never
747 * update their counter from in-interrupt context. For these two
748 * counters we check that the update is never performed from an
749 * interrupt context while other caller need to have disabled interrupt.
750 */
751 __memcg_stats_lock();
752 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
753 switch (idx) {
754 case NR_ANON_MAPPED:
755 case NR_FILE_MAPPED:
756 case NR_ANON_THPS:
757 WARN_ON_ONCE(!in_task());
758 break;
759 default:
760 VM_WARN_ON_IRQS_ENABLED();
761 }
762 }
763
764 /* Update memcg */
765 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
766
767 /* Update lruvec */
768 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
769
770 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
771 memcg_stats_unlock();
772 }
773
774 /**
775 * __mod_lruvec_state - update lruvec memory statistics
776 * @lruvec: the lruvec
777 * @idx: the stat item
778 * @val: delta to add to the counter, can be negative
779 *
780 * The lruvec is the intersection of the NUMA node and a cgroup. This
781 * function updates the all three counters that are affected by a
782 * change of state at this level: per-node, per-cgroup, per-lruvec.
783 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)784 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
785 int val)
786 {
787 /* Update node */
788 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
789
790 /* Update memcg and lruvec */
791 if (!mem_cgroup_disabled())
792 __mod_memcg_lruvec_state(lruvec, idx, val);
793 }
794 EXPORT_SYMBOL_GPL(__mod_lruvec_state);
795
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)796 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
797 int val)
798 {
799 struct mem_cgroup *memcg;
800 pg_data_t *pgdat = folio_pgdat(folio);
801 struct lruvec *lruvec;
802
803 rcu_read_lock();
804 memcg = folio_memcg(folio);
805 /* Untracked pages have no memcg, no lruvec. Update only the node */
806 if (!memcg) {
807 rcu_read_unlock();
808 __mod_node_page_state(pgdat, idx, val);
809 return;
810 }
811
812 lruvec = mem_cgroup_lruvec(memcg, pgdat);
813 __mod_lruvec_state(lruvec, idx, val);
814 rcu_read_unlock();
815 }
816 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
817
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)818 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
819 {
820 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
821 struct mem_cgroup *memcg;
822 struct lruvec *lruvec;
823
824 rcu_read_lock();
825 memcg = mem_cgroup_from_slab_obj(p);
826
827 /*
828 * Untracked pages have no memcg, no lruvec. Update only the
829 * node. If we reparent the slab objects to the root memcg,
830 * when we free the slab object, we need to update the per-memcg
831 * vmstats to keep it correct for the root memcg.
832 */
833 if (!memcg) {
834 __mod_node_page_state(pgdat, idx, val);
835 } else {
836 lruvec = mem_cgroup_lruvec(memcg, pgdat);
837 __mod_lruvec_state(lruvec, idx, val);
838 }
839 rcu_read_unlock();
840 }
841
842 /**
843 * __count_memcg_events - account VM events in a cgroup
844 * @memcg: the memory cgroup
845 * @idx: the event item
846 * @count: the number of events that occurred
847 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)848 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
849 unsigned long count)
850 {
851 int i = memcg_events_index(idx);
852
853 if (mem_cgroup_disabled())
854 return;
855
856 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
857 return;
858
859 memcg_stats_lock();
860 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
861 memcg_rstat_updated(memcg, count);
862 memcg_stats_unlock();
863 }
864
memcg_events(struct mem_cgroup * memcg,int event)865 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
866 {
867 int i = memcg_events_index(event);
868
869 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
870 return 0;
871
872 return READ_ONCE(memcg->vmstats->events[i]);
873 }
874
memcg_events_local(struct mem_cgroup * memcg,int event)875 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
876 {
877 int i = memcg_events_index(event);
878
879 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
880 return 0;
881
882 return READ_ONCE(memcg->vmstats->events_local[i]);
883 }
884
mem_cgroup_from_task(struct task_struct * p)885 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
886 {
887 /*
888 * mm_update_next_owner() may clear mm->owner to NULL
889 * if it races with swapoff, page migration, etc.
890 * So this can be called with p == NULL.
891 */
892 if (unlikely(!p))
893 return NULL;
894
895 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
896 }
897 EXPORT_SYMBOL(mem_cgroup_from_task);
898
active_memcg(void)899 static __always_inline struct mem_cgroup *active_memcg(void)
900 {
901 if (!in_task())
902 return this_cpu_read(int_active_memcg);
903 else
904 return current->active_memcg;
905 }
906
907 /**
908 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
909 * @mm: mm from which memcg should be extracted. It can be NULL.
910 *
911 * Obtain a reference on mm->memcg and returns it if successful. If mm
912 * is NULL, then the memcg is chosen as follows:
913 * 1) The active memcg, if set.
914 * 2) current->mm->memcg, if available
915 * 3) root memcg
916 * If mem_cgroup is disabled, NULL is returned.
917 */
get_mem_cgroup_from_mm(struct mm_struct * mm)918 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
919 {
920 struct mem_cgroup *memcg;
921
922 if (mem_cgroup_disabled())
923 return NULL;
924
925 /*
926 * Page cache insertions can happen without an
927 * actual mm context, e.g. during disk probing
928 * on boot, loopback IO, acct() writes etc.
929 *
930 * No need to css_get on root memcg as the reference
931 * counting is disabled on the root level in the
932 * cgroup core. See CSS_NO_REF.
933 */
934 if (unlikely(!mm)) {
935 memcg = active_memcg();
936 if (unlikely(memcg)) {
937 /* remote memcg must hold a ref */
938 css_get(&memcg->css);
939 return memcg;
940 }
941 mm = current->mm;
942 if (unlikely(!mm))
943 return root_mem_cgroup;
944 }
945
946 rcu_read_lock();
947 do {
948 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
949 if (unlikely(!memcg))
950 memcg = root_mem_cgroup;
951 } while (!css_tryget(&memcg->css));
952 rcu_read_unlock();
953 return memcg;
954 }
955 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
956
957 /**
958 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
959 */
get_mem_cgroup_from_current(void)960 struct mem_cgroup *get_mem_cgroup_from_current(void)
961 {
962 struct mem_cgroup *memcg;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 again:
968 rcu_read_lock();
969 memcg = mem_cgroup_from_task(current);
970 if (!css_tryget(&memcg->css)) {
971 rcu_read_unlock();
972 goto again;
973 }
974 rcu_read_unlock();
975 return memcg;
976 }
977
978 /**
979 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
980 * @folio: folio from which memcg should be extracted.
981 */
get_mem_cgroup_from_folio(struct folio * folio)982 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
983 {
984 struct mem_cgroup *memcg = folio_memcg(folio);
985
986 if (mem_cgroup_disabled())
987 return NULL;
988
989 rcu_read_lock();
990 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
991 memcg = root_mem_cgroup;
992 rcu_read_unlock();
993 return memcg;
994 }
995
996 /**
997 * mem_cgroup_iter - iterate over memory cgroup hierarchy
998 * @root: hierarchy root
999 * @prev: previously returned memcg, NULL on first invocation
1000 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1001 *
1002 * Returns references to children of the hierarchy below @root, or
1003 * @root itself, or %NULL after a full round-trip.
1004 *
1005 * Caller must pass the return value in @prev on subsequent
1006 * invocations for reference counting, or use mem_cgroup_iter_break()
1007 * to cancel a hierarchy walk before the round-trip is complete.
1008 *
1009 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1010 * in the hierarchy among all concurrent reclaimers operating on the
1011 * same node.
1012 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1013 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1014 struct mem_cgroup *prev,
1015 struct mem_cgroup_reclaim_cookie *reclaim)
1016 {
1017 struct mem_cgroup_reclaim_iter *iter;
1018 struct cgroup_subsys_state *css;
1019 struct mem_cgroup *pos;
1020 struct mem_cgroup *next;
1021
1022 if (mem_cgroup_disabled())
1023 return NULL;
1024
1025 if (!root)
1026 root = root_mem_cgroup;
1027
1028 rcu_read_lock();
1029 restart:
1030 next = NULL;
1031
1032 if (reclaim) {
1033 int gen;
1034 int nid = reclaim->pgdat->node_id;
1035
1036 iter = &root->nodeinfo[nid]->iter;
1037 gen = atomic_read(&iter->generation);
1038
1039 /*
1040 * On start, join the current reclaim iteration cycle.
1041 * Exit when a concurrent walker completes it.
1042 */
1043 if (!prev)
1044 reclaim->generation = gen;
1045 else if (reclaim->generation != gen)
1046 goto out_unlock;
1047
1048 pos = READ_ONCE(iter->position);
1049 } else
1050 pos = prev;
1051
1052 css = pos ? &pos->css : NULL;
1053
1054 while ((css = css_next_descendant_pre(css, &root->css))) {
1055 /*
1056 * Verify the css and acquire a reference. The root
1057 * is provided by the caller, so we know it's alive
1058 * and kicking, and don't take an extra reference.
1059 */
1060 if (css == &root->css || css_tryget(css))
1061 break;
1062 }
1063
1064 next = mem_cgroup_from_css(css);
1065
1066 if (reclaim) {
1067 /*
1068 * The position could have already been updated by a competing
1069 * thread, so check that the value hasn't changed since we read
1070 * it to avoid reclaiming from the same cgroup twice.
1071 */
1072 if (cmpxchg(&iter->position, pos, next) != pos) {
1073 if (css && css != &root->css)
1074 css_put(css);
1075 goto restart;
1076 }
1077
1078 if (!next) {
1079 atomic_inc(&iter->generation);
1080
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 goto restart;
1089 }
1090 }
1091
1092 out_unlock:
1093 rcu_read_unlock();
1094 if (prev && prev != root)
1095 css_put(&prev->css);
1096
1097 return next;
1098 }
1099
1100 /**
1101 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102 * @root: hierarchy root
1103 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1105 void mem_cgroup_iter_break(struct mem_cgroup *root,
1106 struct mem_cgroup *prev)
1107 {
1108 if (!root)
1109 root = root_mem_cgroup;
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1112 }
1113
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115 struct mem_cgroup *dead_memcg)
1116 {
1117 struct mem_cgroup_reclaim_iter *iter;
1118 struct mem_cgroup_per_node *mz;
1119 int nid;
1120
1121 for_each_node(nid) {
1122 mz = from->nodeinfo[nid];
1123 iter = &mz->iter;
1124 cmpxchg(&iter->position, dead_memcg, NULL);
1125 }
1126 }
1127
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129 {
1130 struct mem_cgroup *memcg = dead_memcg;
1131 struct mem_cgroup *last;
1132
1133 do {
1134 __invalidate_reclaim_iterators(memcg, dead_memcg);
1135 last = memcg;
1136 } while ((memcg = parent_mem_cgroup(memcg)));
1137
1138 /*
1139 * When cgroup1 non-hierarchy mode is used,
1140 * parent_mem_cgroup() does not walk all the way up to the
1141 * cgroup root (root_mem_cgroup). So we have to handle
1142 * dead_memcg from cgroup root separately.
1143 */
1144 if (!mem_cgroup_is_root(last))
1145 __invalidate_reclaim_iterators(root_mem_cgroup,
1146 dead_memcg);
1147 }
1148
1149 /**
1150 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151 * @memcg: hierarchy root
1152 * @fn: function to call for each task
1153 * @arg: argument passed to @fn
1154 *
1155 * This function iterates over tasks attached to @memcg or to any of its
1156 * descendants and calls @fn for each task. If @fn returns a non-zero
1157 * value, the function breaks the iteration loop. Otherwise, it will iterate
1158 * over all tasks and return 0.
1159 *
1160 * This function must not be called for the root memory cgroup.
1161 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1162 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163 int (*fn)(struct task_struct *, void *), void *arg)
1164 {
1165 struct mem_cgroup *iter;
1166 int ret = 0;
1167
1168 BUG_ON(mem_cgroup_is_root(memcg));
1169
1170 for_each_mem_cgroup_tree(iter, memcg) {
1171 struct css_task_iter it;
1172 struct task_struct *task;
1173
1174 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175 while (!ret && (task = css_task_iter_next(&it))) {
1176 ret = fn(task, arg);
1177 /* Avoid potential softlockup warning */
1178 cond_resched();
1179 }
1180 css_task_iter_end(&it);
1181 if (ret) {
1182 mem_cgroup_iter_break(memcg, iter);
1183 break;
1184 }
1185 }
1186 }
1187
1188 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1189 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1190 {
1191 struct mem_cgroup *memcg;
1192
1193 if (mem_cgroup_disabled())
1194 return;
1195
1196 memcg = folio_memcg(folio);
1197
1198 if (!memcg)
1199 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1200 else
1201 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1202 }
1203 #endif
1204
1205 /**
1206 * folio_lruvec_lock - Lock the lruvec for a folio.
1207 * @folio: Pointer to the folio.
1208 *
1209 * These functions are safe to use under any of the following conditions:
1210 * - folio locked
1211 * - folio_test_lru false
1212 * - folio_memcg_lock()
1213 * - folio frozen (refcount of 0)
1214 *
1215 * Return: The lruvec this folio is on with its lock held.
1216 */
folio_lruvec_lock(struct folio * folio)1217 struct lruvec *folio_lruvec_lock(struct folio *folio)
1218 {
1219 struct lruvec *lruvec = folio_lruvec(folio);
1220
1221 spin_lock(&lruvec->lru_lock);
1222 lruvec_memcg_debug(lruvec, folio);
1223
1224 return lruvec;
1225 }
1226
1227 /**
1228 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1229 * @folio: Pointer to the folio.
1230 *
1231 * These functions are safe to use under any of the following conditions:
1232 * - folio locked
1233 * - folio_test_lru false
1234 * - folio_memcg_lock()
1235 * - folio frozen (refcount of 0)
1236 *
1237 * Return: The lruvec this folio is on with its lock held and interrupts
1238 * disabled.
1239 */
folio_lruvec_lock_irq(struct folio * folio)1240 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1241 {
1242 struct lruvec *lruvec = folio_lruvec(folio);
1243
1244 spin_lock_irq(&lruvec->lru_lock);
1245 lruvec_memcg_debug(lruvec, folio);
1246
1247 return lruvec;
1248 }
1249
1250 /**
1251 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1252 * @folio: Pointer to the folio.
1253 * @flags: Pointer to irqsave flags.
1254 *
1255 * These functions are safe to use under any of the following conditions:
1256 * - folio locked
1257 * - folio_test_lru false
1258 * - folio_memcg_lock()
1259 * - folio frozen (refcount of 0)
1260 *
1261 * Return: The lruvec this folio is on with its lock held and interrupts
1262 * disabled.
1263 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1264 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1265 unsigned long *flags)
1266 {
1267 struct lruvec *lruvec = folio_lruvec(folio);
1268
1269 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1270 lruvec_memcg_debug(lruvec, folio);
1271
1272 return lruvec;
1273 }
1274
do_traversal_all_lruvec(int (* callback)(struct mem_cgroup * memcg,struct lruvec * lruvec,void * private),void * private)1275 void do_traversal_all_lruvec(int (*callback)(struct mem_cgroup *memcg,
1276 struct lruvec *lruvec,
1277 void *private),
1278 void *private)
1279 {
1280 pg_data_t *pgdat;
1281 int ret;
1282
1283 for_each_online_pgdat(pgdat) {
1284 struct mem_cgroup *memcg = NULL;
1285
1286 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1287 do {
1288 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
1289
1290 ret = callback(memcg, lruvec, private);
1291 if (ret) {
1292 mem_cgroup_iter_break(NULL, memcg);
1293 break;
1294 }
1295
1296 memcg = mem_cgroup_iter(NULL, memcg, NULL);
1297 } while (memcg);
1298 }
1299 }
1300 EXPORT_SYMBOL_GPL(do_traversal_all_lruvec);
1301
1302
1303 /**
1304 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1305 * @lruvec: mem_cgroup per zone lru vector
1306 * @lru: index of lru list the page is sitting on
1307 * @zid: zone id of the accounted pages
1308 * @nr_pages: positive when adding or negative when removing
1309 *
1310 * This function must be called under lru_lock, just before a page is added
1311 * to or just after a page is removed from an lru list.
1312 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1313 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1314 int zid, int nr_pages)
1315 {
1316 struct mem_cgroup_per_node *mz;
1317 unsigned long *lru_size;
1318 long size;
1319
1320 if (mem_cgroup_disabled())
1321 return;
1322
1323 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1324 lru_size = &mz->lru_zone_size[zid][lru];
1325
1326 if (nr_pages < 0)
1327 *lru_size += nr_pages;
1328
1329 size = *lru_size;
1330 if (WARN_ONCE(size < 0,
1331 "%s(%p, %d, %d): lru_size %ld\n",
1332 __func__, lruvec, lru, nr_pages, size)) {
1333 VM_BUG_ON(1);
1334 *lru_size = 0;
1335 }
1336
1337 if (nr_pages > 0)
1338 *lru_size += nr_pages;
1339 }
1340 EXPORT_SYMBOL_GPL(mem_cgroup_update_lru_size);
1341
1342 /**
1343 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1344 * @memcg: the memory cgroup
1345 *
1346 * Returns the maximum amount of memory @mem can be charged with, in
1347 * pages.
1348 */
mem_cgroup_margin(struct mem_cgroup * memcg)1349 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1350 {
1351 unsigned long margin = 0;
1352 unsigned long count;
1353 unsigned long limit;
1354
1355 count = page_counter_read(&memcg->memory);
1356 limit = READ_ONCE(memcg->memory.max);
1357 if (count < limit)
1358 margin = limit - count;
1359
1360 if (do_memsw_account()) {
1361 count = page_counter_read(&memcg->memsw);
1362 limit = READ_ONCE(memcg->memsw.max);
1363 if (count < limit)
1364 margin = min(margin, limit - count);
1365 else
1366 margin = 0;
1367 }
1368
1369 return margin;
1370 }
1371
1372 struct memory_stat {
1373 const char *name;
1374 unsigned int idx;
1375 };
1376
1377 static const struct memory_stat memory_stats[] = {
1378 { "anon", NR_ANON_MAPPED },
1379 { "file", NR_FILE_PAGES },
1380 { "kernel", MEMCG_KMEM },
1381 { "kernel_stack", NR_KERNEL_STACK_KB },
1382 { "pagetables", NR_PAGETABLE },
1383 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1384 { "percpu", MEMCG_PERCPU_B },
1385 { "sock", MEMCG_SOCK },
1386 { "vmalloc", MEMCG_VMALLOC },
1387 { "shmem", NR_SHMEM },
1388 #ifdef CONFIG_ZSWAP
1389 { "zswap", MEMCG_ZSWAP_B },
1390 { "zswapped", MEMCG_ZSWAPPED },
1391 #endif
1392 { "file_mapped", NR_FILE_MAPPED },
1393 { "file_dirty", NR_FILE_DIRTY },
1394 { "file_writeback", NR_WRITEBACK },
1395 #ifdef CONFIG_SWAP
1396 { "swapcached", NR_SWAPCACHE },
1397 #endif
1398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1399 { "anon_thp", NR_ANON_THPS },
1400 { "file_thp", NR_FILE_THPS },
1401 { "shmem_thp", NR_SHMEM_THPS },
1402 #endif
1403 { "inactive_anon", NR_INACTIVE_ANON },
1404 { "active_anon", NR_ACTIVE_ANON },
1405 { "inactive_file", NR_INACTIVE_FILE },
1406 { "active_file", NR_ACTIVE_FILE },
1407 { "unevictable", NR_UNEVICTABLE },
1408 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1409 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1410
1411 /* The memory events */
1412 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1413 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1414 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1415 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1416 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1417 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1418 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1419
1420 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1421 { "pgdemote_direct", PGDEMOTE_DIRECT },
1422 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1423 #ifdef CONFIG_NUMA_BALANCING
1424 { "pgpromote_success", PGPROMOTE_SUCCESS },
1425 #endif
1426 };
1427
1428 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1429 static int memcg_page_state_unit(int item)
1430 {
1431 switch (item) {
1432 case MEMCG_PERCPU_B:
1433 case MEMCG_ZSWAP_B:
1434 case NR_SLAB_RECLAIMABLE_B:
1435 case NR_SLAB_UNRECLAIMABLE_B:
1436 return 1;
1437 case NR_KERNEL_STACK_KB:
1438 return SZ_1K;
1439 default:
1440 return PAGE_SIZE;
1441 }
1442 }
1443
1444 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1445 static int memcg_page_state_output_unit(int item)
1446 {
1447 /*
1448 * Workingset state is actually in pages, but we export it to userspace
1449 * as a scalar count of events, so special case it here.
1450 *
1451 * Demotion and promotion activities are exported in pages, consistent
1452 * with their global counterparts.
1453 */
1454 switch (item) {
1455 case WORKINGSET_REFAULT_ANON:
1456 case WORKINGSET_REFAULT_FILE:
1457 case WORKINGSET_ACTIVATE_ANON:
1458 case WORKINGSET_ACTIVATE_FILE:
1459 case WORKINGSET_RESTORE_ANON:
1460 case WORKINGSET_RESTORE_FILE:
1461 case WORKINGSET_NODERECLAIM:
1462 case PGDEMOTE_KSWAPD:
1463 case PGDEMOTE_DIRECT:
1464 case PGDEMOTE_KHUGEPAGED:
1465 #ifdef CONFIG_NUMA_BALANCING
1466 case PGPROMOTE_SUCCESS:
1467 #endif
1468 return 1;
1469 default:
1470 return memcg_page_state_unit(item);
1471 }
1472 }
1473
memcg_page_state_output(struct mem_cgroup * memcg,int item)1474 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1475 {
1476 return memcg_page_state(memcg, item) *
1477 memcg_page_state_output_unit(item);
1478 }
1479
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1480 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1481 {
1482 return memcg_page_state_local(memcg, item) *
1483 memcg_page_state_output_unit(item);
1484 }
1485
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1486 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1487 {
1488 int i;
1489
1490 /*
1491 * Provide statistics on the state of the memory subsystem as
1492 * well as cumulative event counters that show past behavior.
1493 *
1494 * This list is ordered following a combination of these gradients:
1495 * 1) generic big picture -> specifics and details
1496 * 2) reflecting userspace activity -> reflecting kernel heuristics
1497 *
1498 * Current memory state:
1499 */
1500 mem_cgroup_flush_stats(memcg);
1501
1502 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1503 u64 size;
1504
1505 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1506 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1507
1508 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1509 size += memcg_page_state_output(memcg,
1510 NR_SLAB_RECLAIMABLE_B);
1511 seq_buf_printf(s, "slab %llu\n", size);
1512 }
1513 }
1514
1515 /* Accumulated memory events */
1516 seq_buf_printf(s, "pgscan %lu\n",
1517 memcg_events(memcg, PGSCAN_KSWAPD) +
1518 memcg_events(memcg, PGSCAN_DIRECT) +
1519 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1520 seq_buf_printf(s, "pgsteal %lu\n",
1521 memcg_events(memcg, PGSTEAL_KSWAPD) +
1522 memcg_events(memcg, PGSTEAL_DIRECT) +
1523 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1524
1525 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1526 #ifdef CONFIG_MEMCG_V1
1527 if (memcg_vm_event_stat[i] == PGPGIN ||
1528 memcg_vm_event_stat[i] == PGPGOUT)
1529 continue;
1530 #endif
1531 seq_buf_printf(s, "%s %lu\n",
1532 vm_event_name(memcg_vm_event_stat[i]),
1533 memcg_events(memcg, memcg_vm_event_stat[i]));
1534 }
1535 }
1536
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1537 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1538 {
1539 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1540 memcg_stat_format(memcg, s);
1541 else
1542 memcg1_stat_format(memcg, s);
1543 if (seq_buf_has_overflowed(s))
1544 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1545 }
1546
1547 /**
1548 * mem_cgroup_print_oom_context: Print OOM information relevant to
1549 * memory controller.
1550 * @memcg: The memory cgroup that went over limit
1551 * @p: Task that is going to be killed
1552 *
1553 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1554 * enabled
1555 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1556 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1557 {
1558 rcu_read_lock();
1559
1560 if (memcg) {
1561 pr_cont(",oom_memcg=");
1562 pr_cont_cgroup_path(memcg->css.cgroup);
1563 } else
1564 pr_cont(",global_oom");
1565 if (p) {
1566 pr_cont(",task_memcg=");
1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1568 }
1569 rcu_read_unlock();
1570 }
1571
1572 /**
1573 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1574 * memory controller.
1575 * @memcg: The memory cgroup that went over limit
1576 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1577 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1578 {
1579 /* Use static buffer, for the caller is holding oom_lock. */
1580 static char buf[PAGE_SIZE];
1581 struct seq_buf s;
1582
1583 lockdep_assert_held(&oom_lock);
1584
1585 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1586 K((u64)page_counter_read(&memcg->memory)),
1587 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1588 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1589 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1590 K((u64)page_counter_read(&memcg->swap)),
1591 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1592 #ifdef CONFIG_MEMCG_V1
1593 else {
1594 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1595 K((u64)page_counter_read(&memcg->memsw)),
1596 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1597 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1598 K((u64)page_counter_read(&memcg->kmem)),
1599 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1600 }
1601 #endif
1602
1603 pr_info("Memory cgroup stats for ");
1604 pr_cont_cgroup_path(memcg->css.cgroup);
1605 pr_cont(":");
1606 seq_buf_init(&s, buf, sizeof(buf));
1607 memory_stat_format(memcg, &s);
1608 seq_buf_do_printk(&s, KERN_INFO);
1609 }
1610
1611 /*
1612 * Return the memory (and swap, if configured) limit for a memcg.
1613 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1614 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1615 {
1616 unsigned long max = READ_ONCE(memcg->memory.max);
1617
1618 if (do_memsw_account()) {
1619 if (mem_cgroup_swappiness(memcg)) {
1620 /* Calculate swap excess capacity from memsw limit */
1621 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1622
1623 max += min(swap, (unsigned long)total_swap_pages);
1624 }
1625 } else {
1626 if (mem_cgroup_swappiness(memcg))
1627 max += min(READ_ONCE(memcg->swap.max),
1628 (unsigned long)total_swap_pages);
1629 }
1630 return max;
1631 }
1632
mem_cgroup_size(struct mem_cgroup * memcg)1633 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1634 {
1635 return page_counter_read(&memcg->memory);
1636 }
1637
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1638 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1639 int order)
1640 {
1641 struct oom_control oc = {
1642 .zonelist = NULL,
1643 .nodemask = NULL,
1644 .memcg = memcg,
1645 .gfp_mask = gfp_mask,
1646 .order = order,
1647 };
1648 bool ret = true;
1649
1650 if (mutex_lock_killable(&oom_lock))
1651 return true;
1652
1653 if (mem_cgroup_margin(memcg) >= (1 << order))
1654 goto unlock;
1655
1656 /*
1657 * A few threads which were not waiting at mutex_lock_killable() can
1658 * fail to bail out. Therefore, check again after holding oom_lock.
1659 */
1660 ret = task_is_dying() || out_of_memory(&oc);
1661
1662 unlock:
1663 mutex_unlock(&oom_lock);
1664 return ret;
1665 }
1666
1667 /*
1668 * Returns true if successfully killed one or more processes. Though in some
1669 * corner cases it can return true even without killing any process.
1670 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1671 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1672 {
1673 bool locked, ret;
1674
1675 if (order > PAGE_ALLOC_COSTLY_ORDER)
1676 return false;
1677
1678 memcg_memory_event(memcg, MEMCG_OOM);
1679
1680 if (!memcg1_oom_prepare(memcg, &locked))
1681 return false;
1682
1683 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1684
1685 memcg1_oom_finish(memcg, locked);
1686
1687 return ret;
1688 }
1689
1690 /**
1691 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1692 * @victim: task to be killed by the OOM killer
1693 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1694 *
1695 * Returns a pointer to a memory cgroup, which has to be cleaned up
1696 * by killing all belonging OOM-killable tasks.
1697 *
1698 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1699 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1700 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1701 struct mem_cgroup *oom_domain)
1702 {
1703 struct mem_cgroup *oom_group = NULL;
1704 struct mem_cgroup *memcg;
1705
1706 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1707 return NULL;
1708
1709 if (!oom_domain)
1710 oom_domain = root_mem_cgroup;
1711
1712 rcu_read_lock();
1713
1714 memcg = mem_cgroup_from_task(victim);
1715 if (mem_cgroup_is_root(memcg))
1716 goto out;
1717
1718 /*
1719 * If the victim task has been asynchronously moved to a different
1720 * memory cgroup, we might end up killing tasks outside oom_domain.
1721 * In this case it's better to ignore memory.group.oom.
1722 */
1723 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1724 goto out;
1725
1726 /*
1727 * Traverse the memory cgroup hierarchy from the victim task's
1728 * cgroup up to the OOMing cgroup (or root) to find the
1729 * highest-level memory cgroup with oom.group set.
1730 */
1731 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1732 if (READ_ONCE(memcg->oom_group))
1733 oom_group = memcg;
1734
1735 if (memcg == oom_domain)
1736 break;
1737 }
1738
1739 if (oom_group)
1740 css_get(&oom_group->css);
1741 out:
1742 rcu_read_unlock();
1743
1744 return oom_group;
1745 }
1746
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1747 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1748 {
1749 pr_info("Tasks in ");
1750 pr_cont_cgroup_path(memcg->css.cgroup);
1751 pr_cont(" are going to be killed due to memory.oom.group set\n");
1752 }
1753
1754 struct memcg_stock_pcp {
1755 local_lock_t stock_lock;
1756 struct mem_cgroup *cached; /* this never be root cgroup */
1757 unsigned int nr_pages;
1758
1759 struct obj_cgroup *cached_objcg;
1760 struct pglist_data *cached_pgdat;
1761 unsigned int nr_bytes;
1762 int nr_slab_reclaimable_b;
1763 int nr_slab_unreclaimable_b;
1764
1765 struct work_struct work;
1766 unsigned long flags;
1767 #define FLUSHING_CACHED_CHARGE 0
1768 };
1769 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1770 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1771 };
1772 static DEFINE_MUTEX(percpu_charge_mutex);
1773
1774 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1775 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1776 struct mem_cgroup *root_memcg);
1777
1778 /**
1779 * consume_stock: Try to consume stocked charge on this cpu.
1780 * @memcg: memcg to consume from.
1781 * @nr_pages: how many pages to charge.
1782 *
1783 * The charges will only happen if @memcg matches the current cpu's memcg
1784 * stock, and at least @nr_pages are available in that stock. Failure to
1785 * service an allocation will refill the stock.
1786 *
1787 * returns true if successful, false otherwise.
1788 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1789 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 {
1791 struct memcg_stock_pcp *stock;
1792 unsigned int stock_pages;
1793 unsigned long flags;
1794 bool ret = false;
1795
1796 if (nr_pages > MEMCG_CHARGE_BATCH)
1797 return ret;
1798
1799 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1800
1801 stock = this_cpu_ptr(&memcg_stock);
1802 stock_pages = READ_ONCE(stock->nr_pages);
1803 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1804 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1805 ret = true;
1806 }
1807
1808 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1809
1810 return ret;
1811 }
1812
1813 /*
1814 * Returns stocks cached in percpu and reset cached information.
1815 */
drain_stock(struct memcg_stock_pcp * stock)1816 static void drain_stock(struct memcg_stock_pcp *stock)
1817 {
1818 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1819 struct mem_cgroup *old = READ_ONCE(stock->cached);
1820
1821 if (!old)
1822 return;
1823
1824 if (stock_pages) {
1825 page_counter_uncharge(&old->memory, stock_pages);
1826 if (do_memsw_account())
1827 page_counter_uncharge(&old->memsw, stock_pages);
1828
1829 WRITE_ONCE(stock->nr_pages, 0);
1830 }
1831
1832 css_put(&old->css);
1833 WRITE_ONCE(stock->cached, NULL);
1834 }
1835
drain_local_stock(struct work_struct * dummy)1836 static void drain_local_stock(struct work_struct *dummy)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 struct obj_cgroup *old = NULL;
1840 unsigned long flags;
1841
1842 /*
1843 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1844 * drain_stock races is that we always operate on local CPU stock
1845 * here with IRQ disabled
1846 */
1847 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1848
1849 stock = this_cpu_ptr(&memcg_stock);
1850 old = drain_obj_stock(stock);
1851 drain_stock(stock);
1852 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1853
1854 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1855 obj_cgroup_put(old);
1856 }
1857
1858 /*
1859 * Cache charges(val) to local per_cpu area.
1860 * This will be consumed by consume_stock() function, later.
1861 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1862 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 {
1864 struct memcg_stock_pcp *stock;
1865 unsigned int stock_pages;
1866
1867 stock = this_cpu_ptr(&memcg_stock);
1868 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1869 drain_stock(stock);
1870 css_get(&memcg->css);
1871 WRITE_ONCE(stock->cached, memcg);
1872 }
1873 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1874 WRITE_ONCE(stock->nr_pages, stock_pages);
1875
1876 if (stock_pages > MEMCG_CHARGE_BATCH)
1877 drain_stock(stock);
1878 }
1879
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1880 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1881 {
1882 unsigned long flags;
1883
1884 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1885 __refill_stock(memcg, nr_pages);
1886 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1887 }
1888
1889 /*
1890 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1891 * of the hierarchy under it.
1892 */
drain_all_stock(struct mem_cgroup * root_memcg)1893 void drain_all_stock(struct mem_cgroup *root_memcg)
1894 {
1895 int cpu, curcpu;
1896
1897 /* If someone's already draining, avoid adding running more workers. */
1898 if (!mutex_trylock(&percpu_charge_mutex))
1899 return;
1900 /*
1901 * Notify other cpus that system-wide "drain" is running
1902 * We do not care about races with the cpu hotplug because cpu down
1903 * as well as workers from this path always operate on the local
1904 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1905 */
1906 migrate_disable();
1907 curcpu = smp_processor_id();
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1910 struct mem_cgroup *memcg;
1911 bool flush = false;
1912
1913 rcu_read_lock();
1914 memcg = READ_ONCE(stock->cached);
1915 if (memcg && READ_ONCE(stock->nr_pages) &&
1916 mem_cgroup_is_descendant(memcg, root_memcg))
1917 flush = true;
1918 else if (obj_stock_flush_required(stock, root_memcg))
1919 flush = true;
1920 rcu_read_unlock();
1921
1922 if (flush &&
1923 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1924 if (cpu == curcpu)
1925 drain_local_stock(&stock->work);
1926 else if (!cpu_is_isolated(cpu))
1927 schedule_work_on(cpu, &stock->work);
1928 }
1929 }
1930 migrate_enable();
1931 mutex_unlock(&percpu_charge_mutex);
1932 }
1933
memcg_hotplug_cpu_dead(unsigned int cpu)1934 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1935 {
1936 struct memcg_stock_pcp *stock;
1937 struct obj_cgroup *old;
1938 unsigned long flags;
1939
1940 stock = &per_cpu(memcg_stock, cpu);
1941
1942 /* drain_obj_stock requires stock_lock */
1943 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1944 old = drain_obj_stock(stock);
1945 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1946
1947 drain_stock(stock);
1948 obj_cgroup_put(old);
1949
1950 return 0;
1951 }
1952
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1953 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1954 unsigned int nr_pages,
1955 gfp_t gfp_mask)
1956 {
1957 unsigned long nr_reclaimed = 0;
1958
1959 do {
1960 unsigned long pflags;
1961
1962 if (page_counter_read(&memcg->memory) <=
1963 READ_ONCE(memcg->memory.high))
1964 continue;
1965
1966 memcg_memory_event(memcg, MEMCG_HIGH);
1967
1968 psi_memstall_enter(&pflags);
1969 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1970 gfp_mask,
1971 MEMCG_RECLAIM_MAY_SWAP,
1972 NULL);
1973 psi_memstall_leave(&pflags);
1974 } while ((memcg = parent_mem_cgroup(memcg)) &&
1975 !mem_cgroup_is_root(memcg));
1976
1977 return nr_reclaimed;
1978 }
1979
high_work_func(struct work_struct * work)1980 static void high_work_func(struct work_struct *work)
1981 {
1982 struct mem_cgroup *memcg;
1983
1984 memcg = container_of(work, struct mem_cgroup, high_work);
1985 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1986 }
1987
1988 /*
1989 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1990 * enough to still cause a significant slowdown in most cases, while still
1991 * allowing diagnostics and tracing to proceed without becoming stuck.
1992 */
1993 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1994
1995 /*
1996 * When calculating the delay, we use these either side of the exponentiation to
1997 * maintain precision and scale to a reasonable number of jiffies (see the table
1998 * below.
1999 *
2000 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2001 * overage ratio to a delay.
2002 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2003 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2004 * to produce a reasonable delay curve.
2005 *
2006 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2007 * reasonable delay curve compared to precision-adjusted overage, not
2008 * penalising heavily at first, but still making sure that growth beyond the
2009 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2010 * example, with a high of 100 megabytes:
2011 *
2012 * +-------+------------------------+
2013 * | usage | time to allocate in ms |
2014 * +-------+------------------------+
2015 * | 100M | 0 |
2016 * | 101M | 6 |
2017 * | 102M | 25 |
2018 * | 103M | 57 |
2019 * | 104M | 102 |
2020 * | 105M | 159 |
2021 * | 106M | 230 |
2022 * | 107M | 313 |
2023 * | 108M | 409 |
2024 * | 109M | 518 |
2025 * | 110M | 639 |
2026 * | 111M | 774 |
2027 * | 112M | 921 |
2028 * | 113M | 1081 |
2029 * | 114M | 1254 |
2030 * | 115M | 1439 |
2031 * | 116M | 1638 |
2032 * | 117M | 1849 |
2033 * | 118M | 2000 |
2034 * | 119M | 2000 |
2035 * | 120M | 2000 |
2036 * +-------+------------------------+
2037 */
2038 #define MEMCG_DELAY_PRECISION_SHIFT 20
2039 #define MEMCG_DELAY_SCALING_SHIFT 14
2040
calculate_overage(unsigned long usage,unsigned long high)2041 static u64 calculate_overage(unsigned long usage, unsigned long high)
2042 {
2043 u64 overage;
2044
2045 if (usage <= high)
2046 return 0;
2047
2048 /*
2049 * Prevent division by 0 in overage calculation by acting as if
2050 * it was a threshold of 1 page
2051 */
2052 high = max(high, 1UL);
2053
2054 overage = usage - high;
2055 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2056 return div64_u64(overage, high);
2057 }
2058
mem_find_max_overage(struct mem_cgroup * memcg)2059 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2060 {
2061 u64 overage, max_overage = 0;
2062
2063 do {
2064 overage = calculate_overage(page_counter_read(&memcg->memory),
2065 READ_ONCE(memcg->memory.high));
2066 max_overage = max(overage, max_overage);
2067 } while ((memcg = parent_mem_cgroup(memcg)) &&
2068 !mem_cgroup_is_root(memcg));
2069
2070 return max_overage;
2071 }
2072
swap_find_max_overage(struct mem_cgroup * memcg)2073 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2074 {
2075 u64 overage, max_overage = 0;
2076
2077 do {
2078 overage = calculate_overage(page_counter_read(&memcg->swap),
2079 READ_ONCE(memcg->swap.high));
2080 if (overage)
2081 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2082 max_overage = max(overage, max_overage);
2083 } while ((memcg = parent_mem_cgroup(memcg)) &&
2084 !mem_cgroup_is_root(memcg));
2085
2086 return max_overage;
2087 }
2088
2089 /*
2090 * Get the number of jiffies that we should penalise a mischievous cgroup which
2091 * is exceeding its memory.high by checking both it and its ancestors.
2092 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2093 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2094 unsigned int nr_pages,
2095 u64 max_overage)
2096 {
2097 unsigned long penalty_jiffies;
2098
2099 if (!max_overage)
2100 return 0;
2101
2102 /*
2103 * We use overage compared to memory.high to calculate the number of
2104 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2105 * fairly lenient on small overages, and increasingly harsh when the
2106 * memcg in question makes it clear that it has no intention of stopping
2107 * its crazy behaviour, so we exponentially increase the delay based on
2108 * overage amount.
2109 */
2110 penalty_jiffies = max_overage * max_overage * HZ;
2111 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2112 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2113
2114 /*
2115 * Factor in the task's own contribution to the overage, such that four
2116 * N-sized allocations are throttled approximately the same as one
2117 * 4N-sized allocation.
2118 *
2119 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2120 * larger the current charge patch is than that.
2121 */
2122 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2123 }
2124
2125 /*
2126 * Reclaims memory over the high limit. Called directly from
2127 * try_charge() (context permitting), as well as from the userland
2128 * return path where reclaim is always able to block.
2129 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2130 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2131 {
2132 unsigned long penalty_jiffies;
2133 unsigned long pflags;
2134 unsigned long nr_reclaimed;
2135 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2136 int nr_retries = MAX_RECLAIM_RETRIES;
2137 struct mem_cgroup *memcg;
2138 bool in_retry = false;
2139
2140 if (likely(!nr_pages))
2141 return;
2142
2143 memcg = get_mem_cgroup_from_mm(current->mm);
2144 current->memcg_nr_pages_over_high = 0;
2145
2146 retry_reclaim:
2147 /*
2148 * Bail if the task is already exiting. Unlike memory.max,
2149 * memory.high enforcement isn't as strict, and there is no
2150 * OOM killer involved, which means the excess could already
2151 * be much bigger (and still growing) than it could for
2152 * memory.max; the dying task could get stuck in fruitless
2153 * reclaim for a long time, which isn't desirable.
2154 */
2155 if (task_is_dying())
2156 goto out;
2157
2158 /*
2159 * The allocating task should reclaim at least the batch size, but for
2160 * subsequent retries we only want to do what's necessary to prevent oom
2161 * or breaching resource isolation.
2162 *
2163 * This is distinct from memory.max or page allocator behaviour because
2164 * memory.high is currently batched, whereas memory.max and the page
2165 * allocator run every time an allocation is made.
2166 */
2167 nr_reclaimed = reclaim_high(memcg,
2168 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2169 gfp_mask);
2170
2171 /*
2172 * memory.high is breached and reclaim is unable to keep up. Throttle
2173 * allocators proactively to slow down excessive growth.
2174 */
2175 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2176 mem_find_max_overage(memcg));
2177
2178 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2179 swap_find_max_overage(memcg));
2180
2181 /*
2182 * Clamp the max delay per usermode return so as to still keep the
2183 * application moving forwards and also permit diagnostics, albeit
2184 * extremely slowly.
2185 */
2186 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2187
2188 /*
2189 * Don't sleep if the amount of jiffies this memcg owes us is so low
2190 * that it's not even worth doing, in an attempt to be nice to those who
2191 * go only a small amount over their memory.high value and maybe haven't
2192 * been aggressively reclaimed enough yet.
2193 */
2194 if (penalty_jiffies <= HZ / 100)
2195 goto out;
2196
2197 /*
2198 * If reclaim is making forward progress but we're still over
2199 * memory.high, we want to encourage that rather than doing allocator
2200 * throttling.
2201 */
2202 if (nr_reclaimed || nr_retries--) {
2203 in_retry = true;
2204 goto retry_reclaim;
2205 }
2206
2207 /*
2208 * Reclaim didn't manage to push usage below the limit, slow
2209 * this allocating task down.
2210 *
2211 * If we exit early, we're guaranteed to die (since
2212 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2213 * need to account for any ill-begotten jiffies to pay them off later.
2214 */
2215 psi_memstall_enter(&pflags);
2216 schedule_timeout_killable(penalty_jiffies);
2217 psi_memstall_leave(&pflags);
2218
2219 out:
2220 css_put(&memcg->css);
2221 }
2222
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2223 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2224 unsigned int nr_pages)
2225 {
2226 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2227 int nr_retries = MAX_RECLAIM_RETRIES;
2228 struct mem_cgroup *mem_over_limit;
2229 struct page_counter *counter;
2230 unsigned long nr_reclaimed;
2231 bool passed_oom = false;
2232 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2233 bool drained = false;
2234 bool raised_max_event = false;
2235 unsigned long pflags;
2236
2237 retry:
2238 if (consume_stock(memcg, nr_pages))
2239 return 0;
2240
2241 if (!do_memsw_account() ||
2242 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2243 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2244 goto done_restock;
2245 if (do_memsw_account())
2246 page_counter_uncharge(&memcg->memsw, batch);
2247 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2248 } else {
2249 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2250 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2251 }
2252
2253 if (batch > nr_pages) {
2254 batch = nr_pages;
2255 goto retry;
2256 }
2257
2258 /*
2259 * Prevent unbounded recursion when reclaim operations need to
2260 * allocate memory. This might exceed the limits temporarily,
2261 * but we prefer facilitating memory reclaim and getting back
2262 * under the limit over triggering OOM kills in these cases.
2263 */
2264 if (unlikely(current->flags & PF_MEMALLOC))
2265 goto force;
2266
2267 if (unlikely(task_in_memcg_oom(current)))
2268 goto nomem;
2269
2270 if (!gfpflags_allow_blocking(gfp_mask))
2271 goto nomem;
2272
2273 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2274 raised_max_event = true;
2275
2276 psi_memstall_enter(&pflags);
2277 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2278 gfp_mask, reclaim_options, NULL);
2279 psi_memstall_leave(&pflags);
2280
2281 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2282 goto retry;
2283
2284 if (!drained) {
2285 drain_all_stock(mem_over_limit);
2286 drained = true;
2287 goto retry;
2288 }
2289
2290 if (gfp_mask & __GFP_NORETRY)
2291 goto nomem;
2292 /*
2293 * Even though the limit is exceeded at this point, reclaim
2294 * may have been able to free some pages. Retry the charge
2295 * before killing the task.
2296 *
2297 * Only for regular pages, though: huge pages are rather
2298 * unlikely to succeed so close to the limit, and we fall back
2299 * to regular pages anyway in case of failure.
2300 */
2301 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2302 goto retry;
2303 /*
2304 * At task move, charge accounts can be doubly counted. So, it's
2305 * better to wait until the end of task_move if something is going on.
2306 */
2307 if (memcg1_wait_acct_move(mem_over_limit))
2308 goto retry;
2309
2310 if (nr_retries--)
2311 goto retry;
2312
2313 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2314 goto nomem;
2315
2316 /* Avoid endless loop for tasks bypassed by the oom killer */
2317 if (passed_oom && task_is_dying())
2318 goto nomem;
2319
2320 /*
2321 * keep retrying as long as the memcg oom killer is able to make
2322 * a forward progress or bypass the charge if the oom killer
2323 * couldn't make any progress.
2324 */
2325 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2326 get_order(nr_pages * PAGE_SIZE))) {
2327 passed_oom = true;
2328 nr_retries = MAX_RECLAIM_RETRIES;
2329 goto retry;
2330 }
2331 nomem:
2332 /*
2333 * Memcg doesn't have a dedicated reserve for atomic
2334 * allocations. But like the global atomic pool, we need to
2335 * put the burden of reclaim on regular allocation requests
2336 * and let these go through as privileged allocations.
2337 */
2338 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2339 return -ENOMEM;
2340 force:
2341 /*
2342 * If the allocation has to be enforced, don't forget to raise
2343 * a MEMCG_MAX event.
2344 */
2345 if (!raised_max_event)
2346 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2347
2348 /*
2349 * The allocation either can't fail or will lead to more memory
2350 * being freed very soon. Allow memory usage go over the limit
2351 * temporarily by force charging it.
2352 */
2353 page_counter_charge(&memcg->memory, nr_pages);
2354 if (do_memsw_account())
2355 page_counter_charge(&memcg->memsw, nr_pages);
2356
2357 return 0;
2358
2359 done_restock:
2360 if (batch > nr_pages)
2361 refill_stock(memcg, batch - nr_pages);
2362
2363 /*
2364 * If the hierarchy is above the normal consumption range, schedule
2365 * reclaim on returning to userland. We can perform reclaim here
2366 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2367 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2368 * not recorded as it most likely matches current's and won't
2369 * change in the meantime. As high limit is checked again before
2370 * reclaim, the cost of mismatch is negligible.
2371 */
2372 do {
2373 bool mem_high, swap_high;
2374
2375 mem_high = page_counter_read(&memcg->memory) >
2376 READ_ONCE(memcg->memory.high);
2377 swap_high = page_counter_read(&memcg->swap) >
2378 READ_ONCE(memcg->swap.high);
2379
2380 /* Don't bother a random interrupted task */
2381 if (!in_task()) {
2382 if (mem_high) {
2383 schedule_work(&memcg->high_work);
2384 break;
2385 }
2386 continue;
2387 }
2388
2389 if (mem_high || swap_high) {
2390 /*
2391 * The allocating tasks in this cgroup will need to do
2392 * reclaim or be throttled to prevent further growth
2393 * of the memory or swap footprints.
2394 *
2395 * Target some best-effort fairness between the tasks,
2396 * and distribute reclaim work and delay penalties
2397 * based on how much each task is actually allocating.
2398 */
2399 current->memcg_nr_pages_over_high += batch;
2400 set_notify_resume(current);
2401 break;
2402 }
2403 } while ((memcg = parent_mem_cgroup(memcg)));
2404
2405 /*
2406 * Reclaim is set up above to be called from the userland
2407 * return path. But also attempt synchronous reclaim to avoid
2408 * excessive overrun while the task is still inside the
2409 * kernel. If this is successful, the return path will see it
2410 * when it rechecks the overage and simply bail out.
2411 */
2412 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2413 !(current->flags & PF_MEMALLOC) &&
2414 gfpflags_allow_blocking(gfp_mask))
2415 mem_cgroup_handle_over_high(gfp_mask);
2416 return 0;
2417 }
2418
2419 /**
2420 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2421 * @memcg: memcg previously charged.
2422 * @nr_pages: number of pages previously charged.
2423 */
mem_cgroup_cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2424 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2425 {
2426 if (mem_cgroup_is_root(memcg))
2427 return;
2428
2429 page_counter_uncharge(&memcg->memory, nr_pages);
2430 if (do_memsw_account())
2431 page_counter_uncharge(&memcg->memsw, nr_pages);
2432 }
2433
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2434 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2435 {
2436 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2437 /*
2438 * Any of the following ensures page's memcg stability:
2439 *
2440 * - the page lock
2441 * - LRU isolation
2442 * - folio_memcg_lock()
2443 * - exclusive reference
2444 * - mem_cgroup_trylock_pages()
2445 */
2446 folio->memcg_data = (unsigned long)memcg;
2447 }
2448
2449 /**
2450 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2451 * @folio: folio to commit the charge to.
2452 * @memcg: memcg previously charged.
2453 */
mem_cgroup_commit_charge(struct folio * folio,struct mem_cgroup * memcg)2454 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2455 {
2456 css_get(&memcg->css);
2457 commit_charge(folio, memcg);
2458 memcg1_commit_charge(folio, memcg);
2459 }
2460
__mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2461 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2462 struct pglist_data *pgdat,
2463 enum node_stat_item idx, int nr)
2464 {
2465 struct mem_cgroup *memcg;
2466 struct lruvec *lruvec;
2467
2468 rcu_read_lock();
2469 memcg = obj_cgroup_memcg(objcg);
2470 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2471 __mod_memcg_lruvec_state(lruvec, idx, nr);
2472 rcu_read_unlock();
2473 }
2474
2475 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2476 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2477 {
2478 /*
2479 * Slab objects are accounted individually, not per-page.
2480 * Memcg membership data for each individual object is saved in
2481 * slab->obj_exts.
2482 */
2483 if (folio_test_slab(folio)) {
2484 struct slabobj_ext *obj_exts;
2485 struct slab *slab;
2486 unsigned int off;
2487
2488 slab = folio_slab(folio);
2489 obj_exts = slab_obj_exts(slab);
2490 if (!obj_exts)
2491 return NULL;
2492
2493 off = obj_to_index(slab->slab_cache, slab, p);
2494 if (obj_exts[off].objcg)
2495 return obj_cgroup_memcg(obj_exts[off].objcg);
2496
2497 return NULL;
2498 }
2499
2500 /*
2501 * folio_memcg_check() is used here, because in theory we can encounter
2502 * a folio where the slab flag has been cleared already, but
2503 * slab->obj_exts has not been freed yet
2504 * folio_memcg_check() will guarantee that a proper memory
2505 * cgroup pointer or NULL will be returned.
2506 */
2507 return folio_memcg_check(folio);
2508 }
2509
2510 /*
2511 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2512 * It is not suitable for objects allocated using vmalloc().
2513 *
2514 * A passed kernel object must be a slab object or a generic kernel page.
2515 *
2516 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2517 * cgroup_mutex, etc.
2518 */
mem_cgroup_from_slab_obj(void * p)2519 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2520 {
2521 if (mem_cgroup_disabled())
2522 return NULL;
2523
2524 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2525 }
2526
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2527 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2528 {
2529 struct obj_cgroup *objcg = NULL;
2530
2531 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2532 objcg = rcu_dereference(memcg->objcg);
2533 if (likely(objcg && obj_cgroup_tryget(objcg)))
2534 break;
2535 objcg = NULL;
2536 }
2537 return objcg;
2538 }
2539
current_objcg_update(void)2540 static struct obj_cgroup *current_objcg_update(void)
2541 {
2542 struct mem_cgroup *memcg;
2543 struct obj_cgroup *old, *objcg = NULL;
2544
2545 do {
2546 /* Atomically drop the update bit. */
2547 old = xchg(¤t->objcg, NULL);
2548 if (old) {
2549 old = (struct obj_cgroup *)
2550 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2551 obj_cgroup_put(old);
2552
2553 old = NULL;
2554 }
2555
2556 /* If new objcg is NULL, no reason for the second atomic update. */
2557 if (!current->mm || (current->flags & PF_KTHREAD))
2558 return NULL;
2559
2560 /*
2561 * Release the objcg pointer from the previous iteration,
2562 * if try_cmpxcg() below fails.
2563 */
2564 if (unlikely(objcg)) {
2565 obj_cgroup_put(objcg);
2566 objcg = NULL;
2567 }
2568
2569 /*
2570 * Obtain the new objcg pointer. The current task can be
2571 * asynchronously moved to another memcg and the previous
2572 * memcg can be offlined. So let's get the memcg pointer
2573 * and try get a reference to objcg under a rcu read lock.
2574 */
2575
2576 rcu_read_lock();
2577 memcg = mem_cgroup_from_task(current);
2578 objcg = __get_obj_cgroup_from_memcg(memcg);
2579 rcu_read_unlock();
2580
2581 /*
2582 * Try set up a new objcg pointer atomically. If it
2583 * fails, it means the update flag was set concurrently, so
2584 * the whole procedure should be repeated.
2585 */
2586 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2587
2588 return objcg;
2589 }
2590
current_obj_cgroup(void)2591 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2592 {
2593 struct mem_cgroup *memcg;
2594 struct obj_cgroup *objcg;
2595
2596 if (in_task()) {
2597 memcg = current->active_memcg;
2598 if (unlikely(memcg))
2599 goto from_memcg;
2600
2601 objcg = READ_ONCE(current->objcg);
2602 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2603 objcg = current_objcg_update();
2604 /*
2605 * Objcg reference is kept by the task, so it's safe
2606 * to use the objcg by the current task.
2607 */
2608 return objcg;
2609 }
2610
2611 memcg = this_cpu_read(int_active_memcg);
2612 if (unlikely(memcg))
2613 goto from_memcg;
2614
2615 return NULL;
2616
2617 from_memcg:
2618 objcg = NULL;
2619 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2620 /*
2621 * Memcg pointer is protected by scope (see set_active_memcg())
2622 * and is pinning the corresponding objcg, so objcg can't go
2623 * away and can be used within the scope without any additional
2624 * protection.
2625 */
2626 objcg = rcu_dereference_check(memcg->objcg, 1);
2627 if (likely(objcg))
2628 break;
2629 }
2630
2631 return objcg;
2632 }
2633
get_obj_cgroup_from_folio(struct folio * folio)2634 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2635 {
2636 struct obj_cgroup *objcg;
2637
2638 if (!memcg_kmem_online())
2639 return NULL;
2640
2641 if (folio_memcg_kmem(folio)) {
2642 objcg = __folio_objcg(folio);
2643 obj_cgroup_get(objcg);
2644 } else {
2645 struct mem_cgroup *memcg;
2646
2647 rcu_read_lock();
2648 memcg = __folio_memcg(folio);
2649 if (memcg)
2650 objcg = __get_obj_cgroup_from_memcg(memcg);
2651 else
2652 objcg = NULL;
2653 rcu_read_unlock();
2654 }
2655 return objcg;
2656 }
2657
2658 /*
2659 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2660 * @objcg: object cgroup to uncharge
2661 * @nr_pages: number of pages to uncharge
2662 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2663 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2664 unsigned int nr_pages)
2665 {
2666 struct mem_cgroup *memcg;
2667
2668 memcg = get_mem_cgroup_from_objcg(objcg);
2669
2670 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2671 memcg1_account_kmem(memcg, -nr_pages);
2672 refill_stock(memcg, nr_pages);
2673
2674 css_put(&memcg->css);
2675 }
2676
2677 /*
2678 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2679 * @objcg: object cgroup to charge
2680 * @gfp: reclaim mode
2681 * @nr_pages: number of pages to charge
2682 *
2683 * Returns 0 on success, an error code on failure.
2684 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2685 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2686 unsigned int nr_pages)
2687 {
2688 struct mem_cgroup *memcg;
2689 int ret;
2690
2691 memcg = get_mem_cgroup_from_objcg(objcg);
2692
2693 ret = try_charge_memcg(memcg, gfp, nr_pages);
2694 if (ret)
2695 goto out;
2696
2697 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2698 memcg1_account_kmem(memcg, nr_pages);
2699 out:
2700 css_put(&memcg->css);
2701
2702 return ret;
2703 }
2704
2705 /**
2706 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2707 * @page: page to charge
2708 * @gfp: reclaim mode
2709 * @order: allocation order
2710 *
2711 * Returns 0 on success, an error code on failure.
2712 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2713 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2714 {
2715 struct obj_cgroup *objcg;
2716 int ret = 0;
2717
2718 objcg = current_obj_cgroup();
2719 if (objcg) {
2720 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2721 if (!ret) {
2722 obj_cgroup_get(objcg);
2723 page->memcg_data = (unsigned long)objcg |
2724 MEMCG_DATA_KMEM;
2725 return 0;
2726 }
2727 }
2728 return ret;
2729 }
2730
2731 /**
2732 * __memcg_kmem_uncharge_page: uncharge a kmem page
2733 * @page: page to uncharge
2734 * @order: allocation order
2735 */
__memcg_kmem_uncharge_page(struct page * page,int order)2736 void __memcg_kmem_uncharge_page(struct page *page, int order)
2737 {
2738 struct folio *folio = page_folio(page);
2739 struct obj_cgroup *objcg;
2740 unsigned int nr_pages = 1 << order;
2741
2742 if (!folio_memcg_kmem(folio))
2743 return;
2744
2745 objcg = __folio_objcg(folio);
2746 obj_cgroup_uncharge_pages(objcg, nr_pages);
2747 folio->memcg_data = 0;
2748 obj_cgroup_put(objcg);
2749 }
2750
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2751 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2752 enum node_stat_item idx, int nr)
2753 {
2754 struct memcg_stock_pcp *stock;
2755 struct obj_cgroup *old = NULL;
2756 unsigned long flags;
2757 int *bytes;
2758
2759 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2760 stock = this_cpu_ptr(&memcg_stock);
2761
2762 /*
2763 * Save vmstat data in stock and skip vmstat array update unless
2764 * accumulating over a page of vmstat data or when pgdat or idx
2765 * changes.
2766 */
2767 if (READ_ONCE(stock->cached_objcg) != objcg) {
2768 old = drain_obj_stock(stock);
2769 obj_cgroup_get(objcg);
2770 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2771 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2772 WRITE_ONCE(stock->cached_objcg, objcg);
2773 stock->cached_pgdat = pgdat;
2774 } else if (stock->cached_pgdat != pgdat) {
2775 /* Flush the existing cached vmstat data */
2776 struct pglist_data *oldpg = stock->cached_pgdat;
2777
2778 if (stock->nr_slab_reclaimable_b) {
2779 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2780 stock->nr_slab_reclaimable_b);
2781 stock->nr_slab_reclaimable_b = 0;
2782 }
2783 if (stock->nr_slab_unreclaimable_b) {
2784 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2785 stock->nr_slab_unreclaimable_b);
2786 stock->nr_slab_unreclaimable_b = 0;
2787 }
2788 stock->cached_pgdat = pgdat;
2789 }
2790
2791 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2792 : &stock->nr_slab_unreclaimable_b;
2793 /*
2794 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2795 * cached locally at least once before pushing it out.
2796 */
2797 if (!*bytes) {
2798 *bytes = nr;
2799 nr = 0;
2800 } else {
2801 *bytes += nr;
2802 if (abs(*bytes) > PAGE_SIZE) {
2803 nr = *bytes;
2804 *bytes = 0;
2805 } else {
2806 nr = 0;
2807 }
2808 }
2809 if (nr)
2810 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2811
2812 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2813 obj_cgroup_put(old);
2814 }
2815
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)2816 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2817 {
2818 struct memcg_stock_pcp *stock;
2819 unsigned long flags;
2820 bool ret = false;
2821
2822 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2823
2824 stock = this_cpu_ptr(&memcg_stock);
2825 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2826 stock->nr_bytes -= nr_bytes;
2827 ret = true;
2828 }
2829
2830 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2831
2832 return ret;
2833 }
2834
drain_obj_stock(struct memcg_stock_pcp * stock)2835 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2836 {
2837 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2838
2839 if (!old)
2840 return NULL;
2841
2842 if (stock->nr_bytes) {
2843 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2844 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2845
2846 if (nr_pages) {
2847 struct mem_cgroup *memcg;
2848
2849 memcg = get_mem_cgroup_from_objcg(old);
2850
2851 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2852 memcg1_account_kmem(memcg, -nr_pages);
2853 __refill_stock(memcg, nr_pages);
2854
2855 css_put(&memcg->css);
2856 }
2857
2858 /*
2859 * The leftover is flushed to the centralized per-memcg value.
2860 * On the next attempt to refill obj stock it will be moved
2861 * to a per-cpu stock (probably, on an other CPU), see
2862 * refill_obj_stock().
2863 *
2864 * How often it's flushed is a trade-off between the memory
2865 * limit enforcement accuracy and potential CPU contention,
2866 * so it might be changed in the future.
2867 */
2868 atomic_add(nr_bytes, &old->nr_charged_bytes);
2869 stock->nr_bytes = 0;
2870 }
2871
2872 /*
2873 * Flush the vmstat data in current stock
2874 */
2875 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2876 if (stock->nr_slab_reclaimable_b) {
2877 __mod_objcg_mlstate(old, stock->cached_pgdat,
2878 NR_SLAB_RECLAIMABLE_B,
2879 stock->nr_slab_reclaimable_b);
2880 stock->nr_slab_reclaimable_b = 0;
2881 }
2882 if (stock->nr_slab_unreclaimable_b) {
2883 __mod_objcg_mlstate(old, stock->cached_pgdat,
2884 NR_SLAB_UNRECLAIMABLE_B,
2885 stock->nr_slab_unreclaimable_b);
2886 stock->nr_slab_unreclaimable_b = 0;
2887 }
2888 stock->cached_pgdat = NULL;
2889 }
2890
2891 WRITE_ONCE(stock->cached_objcg, NULL);
2892 /*
2893 * The `old' objects needs to be released by the caller via
2894 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2895 */
2896 return old;
2897 }
2898
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2899 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2900 struct mem_cgroup *root_memcg)
2901 {
2902 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2903 struct mem_cgroup *memcg;
2904
2905 if (objcg) {
2906 memcg = obj_cgroup_memcg(objcg);
2907 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2908 return true;
2909 }
2910
2911 return false;
2912 }
2913
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)2914 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2915 bool allow_uncharge)
2916 {
2917 struct memcg_stock_pcp *stock;
2918 struct obj_cgroup *old = NULL;
2919 unsigned long flags;
2920 unsigned int nr_pages = 0;
2921
2922 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2923
2924 stock = this_cpu_ptr(&memcg_stock);
2925 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2926 old = drain_obj_stock(stock);
2927 obj_cgroup_get(objcg);
2928 WRITE_ONCE(stock->cached_objcg, objcg);
2929 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2930 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2931 allow_uncharge = true; /* Allow uncharge when objcg changes */
2932 }
2933 stock->nr_bytes += nr_bytes;
2934
2935 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2936 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2937 stock->nr_bytes &= (PAGE_SIZE - 1);
2938 }
2939
2940 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2941 obj_cgroup_put(old);
2942
2943 if (nr_pages)
2944 obj_cgroup_uncharge_pages(objcg, nr_pages);
2945 }
2946
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)2947 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2948 {
2949 unsigned int nr_pages, nr_bytes;
2950 int ret;
2951
2952 if (consume_obj_stock(objcg, size))
2953 return 0;
2954
2955 /*
2956 * In theory, objcg->nr_charged_bytes can have enough
2957 * pre-charged bytes to satisfy the allocation. However,
2958 * flushing objcg->nr_charged_bytes requires two atomic
2959 * operations, and objcg->nr_charged_bytes can't be big.
2960 * The shared objcg->nr_charged_bytes can also become a
2961 * performance bottleneck if all tasks of the same memcg are
2962 * trying to update it. So it's better to ignore it and try
2963 * grab some new pages. The stock's nr_bytes will be flushed to
2964 * objcg->nr_charged_bytes later on when objcg changes.
2965 *
2966 * The stock's nr_bytes may contain enough pre-charged bytes
2967 * to allow one less page from being charged, but we can't rely
2968 * on the pre-charged bytes not being changed outside of
2969 * consume_obj_stock() or refill_obj_stock(). So ignore those
2970 * pre-charged bytes as well when charging pages. To avoid a
2971 * page uncharge right after a page charge, we set the
2972 * allow_uncharge flag to false when calling refill_obj_stock()
2973 * to temporarily allow the pre-charged bytes to exceed the page
2974 * size limit. The maximum reachable value of the pre-charged
2975 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2976 * race.
2977 */
2978 nr_pages = size >> PAGE_SHIFT;
2979 nr_bytes = size & (PAGE_SIZE - 1);
2980
2981 if (nr_bytes)
2982 nr_pages += 1;
2983
2984 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2985 if (!ret && nr_bytes)
2986 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2987
2988 return ret;
2989 }
2990
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)2991 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2992 {
2993 refill_obj_stock(objcg, size, true);
2994 }
2995
obj_full_size(struct kmem_cache * s)2996 static inline size_t obj_full_size(struct kmem_cache *s)
2997 {
2998 /*
2999 * For each accounted object there is an extra space which is used
3000 * to store obj_cgroup membership. Charge it too.
3001 */
3002 return s->size + sizeof(struct obj_cgroup *);
3003 }
3004
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3005 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3006 gfp_t flags, size_t size, void **p)
3007 {
3008 struct obj_cgroup *objcg;
3009 struct slab *slab;
3010 unsigned long off;
3011 size_t i;
3012
3013 /*
3014 * The obtained objcg pointer is safe to use within the current scope,
3015 * defined by current task or set_active_memcg() pair.
3016 * obj_cgroup_get() is used to get a permanent reference.
3017 */
3018 objcg = current_obj_cgroup();
3019 if (!objcg)
3020 return true;
3021
3022 /*
3023 * slab_alloc_node() avoids the NULL check, so we might be called with a
3024 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3025 * the whole requested size.
3026 * return success as there's nothing to free back
3027 */
3028 if (unlikely(*p == NULL))
3029 return true;
3030
3031 flags &= gfp_allowed_mask;
3032
3033 if (lru) {
3034 int ret;
3035 struct mem_cgroup *memcg;
3036
3037 memcg = get_mem_cgroup_from_objcg(objcg);
3038 ret = memcg_list_lru_alloc(memcg, lru, flags);
3039 css_put(&memcg->css);
3040
3041 if (ret)
3042 return false;
3043 }
3044
3045 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3046 return false;
3047
3048 for (i = 0; i < size; i++) {
3049 slab = virt_to_slab(p[i]);
3050
3051 if (!slab_obj_exts(slab) &&
3052 alloc_slab_obj_exts(slab, s, flags, false)) {
3053 obj_cgroup_uncharge(objcg, obj_full_size(s));
3054 continue;
3055 }
3056
3057 off = obj_to_index(s, slab, p[i]);
3058 obj_cgroup_get(objcg);
3059 slab_obj_exts(slab)[off].objcg = objcg;
3060 mod_objcg_state(objcg, slab_pgdat(slab),
3061 cache_vmstat_idx(s), obj_full_size(s));
3062 }
3063
3064 return true;
3065 }
3066
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3067 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3068 void **p, int objects, struct slabobj_ext *obj_exts)
3069 {
3070 for (int i = 0; i < objects; i++) {
3071 struct obj_cgroup *objcg;
3072 unsigned int off;
3073
3074 off = obj_to_index(s, slab, p[i]);
3075 objcg = obj_exts[off].objcg;
3076 if (!objcg)
3077 continue;
3078
3079 obj_exts[off].objcg = NULL;
3080 obj_cgroup_uncharge(objcg, obj_full_size(s));
3081 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3082 -obj_full_size(s));
3083 obj_cgroup_put(objcg);
3084 }
3085 }
3086
3087 /*
3088 * Because folio_memcg(head) is not set on tails, set it now.
3089 */
split_page_memcg(struct page * head,int old_order,int new_order)3090 void split_page_memcg(struct page *head, int old_order, int new_order)
3091 {
3092 struct folio *folio = page_folio(head);
3093 int i;
3094 unsigned int old_nr = 1 << old_order;
3095 unsigned int new_nr = 1 << new_order;
3096
3097 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3098 return;
3099
3100 for (i = new_nr; i < old_nr; i += new_nr)
3101 folio_page(folio, i)->memcg_data = folio->memcg_data;
3102
3103 if (folio_memcg_kmem(folio))
3104 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3105 else
3106 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3107 }
3108
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3109 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3110 {
3111 unsigned long val;
3112
3113 if (mem_cgroup_is_root(memcg)) {
3114 /*
3115 * Approximate root's usage from global state. This isn't
3116 * perfect, but the root usage was always an approximation.
3117 */
3118 val = global_node_page_state(NR_FILE_PAGES) +
3119 global_node_page_state(NR_ANON_MAPPED);
3120 if (swap)
3121 val += total_swap_pages - get_nr_swap_pages();
3122 } else {
3123 if (!swap)
3124 val = page_counter_read(&memcg->memory);
3125 else
3126 val = page_counter_read(&memcg->memsw);
3127 }
3128 return val;
3129 }
3130
memcg_online_kmem(struct mem_cgroup * memcg)3131 static int memcg_online_kmem(struct mem_cgroup *memcg)
3132 {
3133 struct obj_cgroup *objcg;
3134
3135 if (mem_cgroup_kmem_disabled())
3136 return 0;
3137
3138 if (unlikely(mem_cgroup_is_root(memcg)))
3139 return 0;
3140
3141 objcg = obj_cgroup_alloc();
3142 if (!objcg)
3143 return -ENOMEM;
3144
3145 objcg->memcg = memcg;
3146 rcu_assign_pointer(memcg->objcg, objcg);
3147 obj_cgroup_get(objcg);
3148 memcg->orig_objcg = objcg;
3149
3150 static_branch_enable(&memcg_kmem_online_key);
3151
3152 memcg->kmemcg_id = memcg->id.id;
3153
3154 return 0;
3155 }
3156
memcg_offline_kmem(struct mem_cgroup * memcg)3157 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3158 {
3159 struct mem_cgroup *parent;
3160
3161 if (mem_cgroup_kmem_disabled())
3162 return;
3163
3164 if (unlikely(mem_cgroup_is_root(memcg)))
3165 return;
3166
3167 parent = parent_mem_cgroup(memcg);
3168 if (!parent)
3169 parent = root_mem_cgroup;
3170
3171 memcg_reparent_objcgs(memcg, parent);
3172
3173 /*
3174 * After we have finished memcg_reparent_objcgs(), all list_lrus
3175 * corresponding to this cgroup are guaranteed to remain empty.
3176 * The ordering is imposed by list_lru_node->lock taken by
3177 * memcg_reparent_list_lrus().
3178 */
3179 memcg_reparent_list_lrus(memcg, parent);
3180 }
3181
3182 #ifdef CONFIG_CGROUP_WRITEBACK
3183
3184 #include <trace/events/writeback.h>
3185
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3186 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3187 {
3188 return wb_domain_init(&memcg->cgwb_domain, gfp);
3189 }
3190
memcg_wb_domain_exit(struct mem_cgroup * memcg)3191 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3192 {
3193 wb_domain_exit(&memcg->cgwb_domain);
3194 }
3195
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3196 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3197 {
3198 wb_domain_size_changed(&memcg->cgwb_domain);
3199 }
3200
mem_cgroup_wb_domain(struct bdi_writeback * wb)3201 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3202 {
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3204
3205 if (!memcg->css.parent)
3206 return NULL;
3207
3208 return &memcg->cgwb_domain;
3209 }
3210
3211 /**
3212 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3213 * @wb: bdi_writeback in question
3214 * @pfilepages: out parameter for number of file pages
3215 * @pheadroom: out parameter for number of allocatable pages according to memcg
3216 * @pdirty: out parameter for number of dirty pages
3217 * @pwriteback: out parameter for number of pages under writeback
3218 *
3219 * Determine the numbers of file, headroom, dirty, and writeback pages in
3220 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3221 * is a bit more involved.
3222 *
3223 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3224 * headroom is calculated as the lowest headroom of itself and the
3225 * ancestors. Note that this doesn't consider the actual amount of
3226 * available memory in the system. The caller should further cap
3227 * *@pheadroom accordingly.
3228 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3229 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3230 unsigned long *pheadroom, unsigned long *pdirty,
3231 unsigned long *pwriteback)
3232 {
3233 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3234 struct mem_cgroup *parent;
3235
3236 mem_cgroup_flush_stats_ratelimited(memcg);
3237
3238 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3239 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3240 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3241 memcg_page_state(memcg, NR_ACTIVE_FILE);
3242
3243 *pheadroom = PAGE_COUNTER_MAX;
3244 while ((parent = parent_mem_cgroup(memcg))) {
3245 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3246 READ_ONCE(memcg->memory.high));
3247 unsigned long used = page_counter_read(&memcg->memory);
3248
3249 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3250 memcg = parent;
3251 }
3252 }
3253
3254 /*
3255 * Foreign dirty flushing
3256 *
3257 * There's an inherent mismatch between memcg and writeback. The former
3258 * tracks ownership per-page while the latter per-inode. This was a
3259 * deliberate design decision because honoring per-page ownership in the
3260 * writeback path is complicated, may lead to higher CPU and IO overheads
3261 * and deemed unnecessary given that write-sharing an inode across
3262 * different cgroups isn't a common use-case.
3263 *
3264 * Combined with inode majority-writer ownership switching, this works well
3265 * enough in most cases but there are some pathological cases. For
3266 * example, let's say there are two cgroups A and B which keep writing to
3267 * different but confined parts of the same inode. B owns the inode and
3268 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3269 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3270 * triggering background writeback. A will be slowed down without a way to
3271 * make writeback of the dirty pages happen.
3272 *
3273 * Conditions like the above can lead to a cgroup getting repeatedly and
3274 * severely throttled after making some progress after each
3275 * dirty_expire_interval while the underlying IO device is almost
3276 * completely idle.
3277 *
3278 * Solving this problem completely requires matching the ownership tracking
3279 * granularities between memcg and writeback in either direction. However,
3280 * the more egregious behaviors can be avoided by simply remembering the
3281 * most recent foreign dirtying events and initiating remote flushes on
3282 * them when local writeback isn't enough to keep the memory clean enough.
3283 *
3284 * The following two functions implement such mechanism. When a foreign
3285 * page - a page whose memcg and writeback ownerships don't match - is
3286 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3287 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3288 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3289 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3290 * foreign bdi_writebacks which haven't expired. Both the numbers of
3291 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3292 * limited to MEMCG_CGWB_FRN_CNT.
3293 *
3294 * The mechanism only remembers IDs and doesn't hold any object references.
3295 * As being wrong occasionally doesn't matter, updates and accesses to the
3296 * records are lockless and racy.
3297 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3298 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3299 struct bdi_writeback *wb)
3300 {
3301 struct mem_cgroup *memcg = folio_memcg(folio);
3302 struct memcg_cgwb_frn *frn;
3303 u64 now = get_jiffies_64();
3304 u64 oldest_at = now;
3305 int oldest = -1;
3306 int i;
3307
3308 trace_track_foreign_dirty(folio, wb);
3309
3310 /*
3311 * Pick the slot to use. If there is already a slot for @wb, keep
3312 * using it. If not replace the oldest one which isn't being
3313 * written out.
3314 */
3315 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3316 frn = &memcg->cgwb_frn[i];
3317 if (frn->bdi_id == wb->bdi->id &&
3318 frn->memcg_id == wb->memcg_css->id)
3319 break;
3320 if (time_before64(frn->at, oldest_at) &&
3321 atomic_read(&frn->done.cnt) == 1) {
3322 oldest = i;
3323 oldest_at = frn->at;
3324 }
3325 }
3326
3327 if (i < MEMCG_CGWB_FRN_CNT) {
3328 /*
3329 * Re-using an existing one. Update timestamp lazily to
3330 * avoid making the cacheline hot. We want them to be
3331 * reasonably up-to-date and significantly shorter than
3332 * dirty_expire_interval as that's what expires the record.
3333 * Use the shorter of 1s and dirty_expire_interval / 8.
3334 */
3335 unsigned long update_intv =
3336 min_t(unsigned long, HZ,
3337 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3338
3339 if (time_before64(frn->at, now - update_intv))
3340 frn->at = now;
3341 } else if (oldest >= 0) {
3342 /* replace the oldest free one */
3343 frn = &memcg->cgwb_frn[oldest];
3344 frn->bdi_id = wb->bdi->id;
3345 frn->memcg_id = wb->memcg_css->id;
3346 frn->at = now;
3347 }
3348 }
3349
3350 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3351 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3352 {
3353 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3354 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3355 u64 now = jiffies_64;
3356 int i;
3357
3358 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3359 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3360
3361 /*
3362 * If the record is older than dirty_expire_interval,
3363 * writeback on it has already started. No need to kick it
3364 * off again. Also, don't start a new one if there's
3365 * already one in flight.
3366 */
3367 if (time_after64(frn->at, now - intv) &&
3368 atomic_read(&frn->done.cnt) == 1) {
3369 frn->at = 0;
3370 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3371 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3372 WB_REASON_FOREIGN_FLUSH,
3373 &frn->done);
3374 }
3375 }
3376 }
3377
3378 #else /* CONFIG_CGROUP_WRITEBACK */
3379
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3380 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3381 {
3382 return 0;
3383 }
3384
memcg_wb_domain_exit(struct mem_cgroup * memcg)3385 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3386 {
3387 }
3388
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3389 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3390 {
3391 }
3392
3393 #endif /* CONFIG_CGROUP_WRITEBACK */
3394
3395 /*
3396 * Private memory cgroup IDR
3397 *
3398 * Swap-out records and page cache shadow entries need to store memcg
3399 * references in constrained space, so we maintain an ID space that is
3400 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3401 * memory-controlled cgroups to 64k.
3402 *
3403 * However, there usually are many references to the offline CSS after
3404 * the cgroup has been destroyed, such as page cache or reclaimable
3405 * slab objects, that don't need to hang on to the ID. We want to keep
3406 * those dead CSS from occupying IDs, or we might quickly exhaust the
3407 * relatively small ID space and prevent the creation of new cgroups
3408 * even when there are much fewer than 64k cgroups - possibly none.
3409 *
3410 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3411 * be freed and recycled when it's no longer needed, which is usually
3412 * when the CSS is offlined.
3413 *
3414 * The only exception to that are records of swapped out tmpfs/shmem
3415 * pages that need to be attributed to live ancestors on swapin. But
3416 * those references are manageable from userspace.
3417 */
3418
3419 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3420 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3421
mem_cgroup_id_remove(struct mem_cgroup * memcg)3422 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3423 {
3424 if (memcg->id.id > 0) {
3425 trace_android_vh_mem_cgroup_id_remove(memcg);
3426 xa_erase(&mem_cgroup_ids, memcg->id.id);
3427 memcg->id.id = 0;
3428 }
3429 }
3430
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3431 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3432 unsigned int n)
3433 {
3434 refcount_add(n, &memcg->id.ref);
3435 }
3436
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3437 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3438 {
3439 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3440 mem_cgroup_id_remove(memcg);
3441
3442 /* Memcg ID pins CSS */
3443 css_put(&memcg->css);
3444 }
3445 }
3446
mem_cgroup_id_put(struct mem_cgroup * memcg)3447 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3448 {
3449 mem_cgroup_id_put_many(memcg, 1);
3450 }
3451
3452 /**
3453 * mem_cgroup_from_id - look up a memcg from a memcg id
3454 * @id: the memcg id to look up
3455 *
3456 * Caller must hold rcu_read_lock().
3457 */
mem_cgroup_from_id(unsigned short id)3458 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3459 {
3460 WARN_ON_ONCE(!rcu_read_lock_held());
3461 return xa_load(&mem_cgroup_ids, id);
3462 }
3463 EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
3464
3465 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3466 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3467 {
3468 struct cgroup *cgrp;
3469 struct cgroup_subsys_state *css;
3470 struct mem_cgroup *memcg;
3471
3472 cgrp = cgroup_get_from_id(ino);
3473 if (IS_ERR(cgrp))
3474 return ERR_CAST(cgrp);
3475
3476 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3477 if (css)
3478 memcg = container_of(css, struct mem_cgroup, css);
3479 else
3480 memcg = ERR_PTR(-ENOENT);
3481
3482 cgroup_put(cgrp);
3483
3484 return memcg;
3485 }
3486 #endif
3487
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3488 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3489 {
3490 struct mem_cgroup_per_node *pn;
3491
3492 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3493 node);
3494 if (!pn)
3495 return false;
3496
3497 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3498 GFP_KERNEL_ACCOUNT, node);
3499 if (!pn->lruvec_stats)
3500 goto fail;
3501
3502 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3503 GFP_KERNEL_ACCOUNT);
3504 if (!pn->lruvec_stats_percpu)
3505 goto fail;
3506
3507 lruvec_init(&pn->lruvec);
3508 pn->memcg = memcg;
3509
3510 memcg->nodeinfo[node] = pn;
3511 return true;
3512 fail:
3513 kfree(pn->lruvec_stats);
3514 kfree(pn);
3515 return false;
3516 }
3517
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3518 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3519 {
3520 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3521
3522 if (!pn)
3523 return;
3524
3525 free_percpu(pn->lruvec_stats_percpu);
3526 kfree(pn->lruvec_stats);
3527 kfree(pn);
3528 }
3529
__mem_cgroup_free(struct mem_cgroup * memcg)3530 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3531 {
3532 int node;
3533
3534 trace_android_vh_mem_cgroup_free(memcg);
3535 obj_cgroup_put(memcg->orig_objcg);
3536
3537 for_each_node(node)
3538 free_mem_cgroup_per_node_info(memcg, node);
3539 memcg1_free_events(memcg);
3540 kfree(memcg->vmstats);
3541 free_percpu(memcg->vmstats_percpu);
3542 kfree(memcg);
3543 }
3544
mem_cgroup_free(struct mem_cgroup * memcg)3545 static void mem_cgroup_free(struct mem_cgroup *memcg)
3546 {
3547 lru_gen_exit_memcg(memcg);
3548 memcg_wb_domain_exit(memcg);
3549 __mem_cgroup_free(memcg);
3550 }
3551
mem_cgroup_alloc(struct mem_cgroup * parent)3552 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3553 {
3554 struct memcg_vmstats_percpu *statc, *pstatc;
3555 struct mem_cgroup *memcg;
3556 int node, cpu;
3557 int __maybe_unused i;
3558 long error;
3559
3560 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3561 if (!memcg)
3562 return ERR_PTR(-ENOMEM);
3563
3564 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3565 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3566 if (error)
3567 goto fail;
3568 error = -ENOMEM;
3569
3570 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3571 GFP_KERNEL_ACCOUNT);
3572 if (!memcg->vmstats)
3573 goto fail;
3574
3575 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3576 GFP_KERNEL_ACCOUNT);
3577 if (!memcg->vmstats_percpu)
3578 goto fail;
3579
3580 if (!memcg1_alloc_events(memcg))
3581 goto fail;
3582
3583 for_each_possible_cpu(cpu) {
3584 if (parent)
3585 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3586 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3587 statc->parent = parent ? pstatc : NULL;
3588 statc->vmstats = memcg->vmstats;
3589 }
3590
3591 for_each_node(node)
3592 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3593 goto fail;
3594
3595 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3596 goto fail;
3597
3598 INIT_WORK(&memcg->high_work, high_work_func);
3599 vmpressure_init(&memcg->vmpressure);
3600 INIT_LIST_HEAD(&memcg->memory_peaks);
3601 INIT_LIST_HEAD(&memcg->swap_peaks);
3602 spin_lock_init(&memcg->peaks_lock);
3603 memcg->socket_pressure = jiffies;
3604 memcg1_memcg_init(memcg);
3605 memcg->kmemcg_id = -1;
3606 INIT_LIST_HEAD(&memcg->objcg_list);
3607 #ifdef CONFIG_CGROUP_WRITEBACK
3608 INIT_LIST_HEAD(&memcg->cgwb_list);
3609 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3610 memcg->cgwb_frn[i].done =
3611 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3612 #endif
3613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3614 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3615 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3616 memcg->deferred_split_queue.split_queue_len = 0;
3617 #endif
3618 lru_gen_init_memcg(memcg);
3619 trace_android_vh_mem_cgroup_alloc(memcg);
3620 return memcg;
3621 fail:
3622 mem_cgroup_id_remove(memcg);
3623 __mem_cgroup_free(memcg);
3624 return ERR_PTR(error);
3625 }
3626
3627 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3628 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3629 {
3630 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3631 struct mem_cgroup *memcg, *old_memcg;
3632
3633 old_memcg = set_active_memcg(parent);
3634 memcg = mem_cgroup_alloc(parent);
3635 set_active_memcg(old_memcg);
3636 if (IS_ERR(memcg))
3637 return ERR_CAST(memcg);
3638
3639 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3640 memcg1_soft_limit_reset(memcg);
3641 #ifdef CONFIG_ZSWAP
3642 memcg->zswap_max = PAGE_COUNTER_MAX;
3643 WRITE_ONCE(memcg->zswap_writeback, true);
3644 #endif
3645 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3646 if (parent) {
3647 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3648
3649 page_counter_init(&memcg->memory, &parent->memory, true);
3650 page_counter_init(&memcg->swap, &parent->swap, false);
3651 #ifdef CONFIG_MEMCG_V1
3652 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3653 page_counter_init(&memcg->kmem, &parent->kmem, false);
3654 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3655 #endif
3656 } else {
3657 init_memcg_stats();
3658 init_memcg_events();
3659 page_counter_init(&memcg->memory, NULL, true);
3660 page_counter_init(&memcg->swap, NULL, false);
3661 #ifdef CONFIG_MEMCG_V1
3662 page_counter_init(&memcg->kmem, NULL, false);
3663 page_counter_init(&memcg->tcpmem, NULL, false);
3664 #endif
3665 root_mem_cgroup = memcg;
3666 return &memcg->css;
3667 }
3668
3669 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3670 static_branch_inc(&memcg_sockets_enabled_key);
3671
3672 if (!cgroup_memory_nobpf)
3673 static_branch_inc(&memcg_bpf_enabled_key);
3674
3675 return &memcg->css;
3676 }
3677
mem_cgroup_css_online(struct cgroup_subsys_state * css)3678 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3679 {
3680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3681
3682 if (memcg_online_kmem(memcg))
3683 goto remove_id;
3684
3685 /*
3686 * A memcg must be visible for expand_shrinker_info()
3687 * by the time the maps are allocated. So, we allocate maps
3688 * here, when for_each_mem_cgroup() can't skip it.
3689 */
3690 if (alloc_shrinker_info(memcg))
3691 goto offline_kmem;
3692
3693 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3694 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3695 FLUSH_TIME);
3696 lru_gen_online_memcg(memcg);
3697
3698 /* Online state pins memcg ID, memcg ID pins CSS */
3699 refcount_set(&memcg->id.ref, 1);
3700 css_get(css);
3701
3702 /*
3703 * Ensure mem_cgroup_from_id() works once we're fully online.
3704 *
3705 * We could do this earlier and require callers to filter with
3706 * css_tryget_online(). But right now there are no users that
3707 * need earlier access, and the workingset code relies on the
3708 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3709 * publish it here at the end of onlining. This matches the
3710 * regular ID destruction during offlining.
3711 */
3712 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3713 trace_android_vh_mem_cgroup_css_online(css, memcg);
3714
3715 return 0;
3716 offline_kmem:
3717 memcg_offline_kmem(memcg);
3718 remove_id:
3719 mem_cgroup_id_remove(memcg);
3720 return -ENOMEM;
3721 }
3722
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3723 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3724 {
3725 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3726
3727 trace_android_vh_mem_cgroup_css_offline(css, memcg);
3728 memcg1_css_offline(memcg);
3729
3730 page_counter_set_min(&memcg->memory, 0);
3731 page_counter_set_low(&memcg->memory, 0);
3732
3733 zswap_memcg_offline_cleanup(memcg);
3734
3735 memcg_offline_kmem(memcg);
3736 reparent_shrinker_deferred(memcg);
3737 wb_memcg_offline(memcg);
3738 lru_gen_offline_memcg(memcg);
3739
3740 drain_all_stock(memcg);
3741
3742 mem_cgroup_id_put(memcg);
3743 }
3744
mem_cgroup_css_released(struct cgroup_subsys_state * css)3745 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3746 {
3747 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3748
3749 invalidate_reclaim_iterators(memcg);
3750 lru_gen_release_memcg(memcg);
3751 }
3752
mem_cgroup_css_free(struct cgroup_subsys_state * css)3753 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3754 {
3755 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3756 int __maybe_unused i;
3757
3758 #ifdef CONFIG_CGROUP_WRITEBACK
3759 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3760 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3761 #endif
3762 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3763 static_branch_dec(&memcg_sockets_enabled_key);
3764
3765 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3766 static_branch_dec(&memcg_sockets_enabled_key);
3767
3768 if (!cgroup_memory_nobpf)
3769 static_branch_dec(&memcg_bpf_enabled_key);
3770
3771 vmpressure_cleanup(&memcg->vmpressure);
3772 cancel_work_sync(&memcg->high_work);
3773 memcg1_remove_from_trees(memcg);
3774 free_shrinker_info(memcg);
3775 mem_cgroup_free(memcg);
3776 }
3777
3778 /**
3779 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3780 * @css: the target css
3781 *
3782 * Reset the states of the mem_cgroup associated with @css. This is
3783 * invoked when the userland requests disabling on the default hierarchy
3784 * but the memcg is pinned through dependency. The memcg should stop
3785 * applying policies and should revert to the vanilla state as it may be
3786 * made visible again.
3787 *
3788 * The current implementation only resets the essential configurations.
3789 * This needs to be expanded to cover all the visible parts.
3790 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3791 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3792 {
3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3794
3795 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3796 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3797 #ifdef CONFIG_MEMCG_V1
3798 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3799 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3800 #endif
3801 page_counter_set_min(&memcg->memory, 0);
3802 page_counter_set_low(&memcg->memory, 0);
3803 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3804 memcg1_soft_limit_reset(memcg);
3805 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3806 memcg_wb_domain_size_changed(memcg);
3807 }
3808
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)3809 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3810 {
3811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3812 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3813 struct memcg_vmstats_percpu *statc;
3814 long delta, delta_cpu, v;
3815 int i, nid;
3816
3817 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3818
3819 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
3820 /*
3821 * Collect the aggregated propagation counts of groups
3822 * below us. We're in a per-cpu loop here and this is
3823 * a global counter, so the first cycle will get them.
3824 */
3825 delta = memcg->vmstats->state_pending[i];
3826 if (delta)
3827 memcg->vmstats->state_pending[i] = 0;
3828
3829 /* Add CPU changes on this level since the last flush */
3830 delta_cpu = 0;
3831 v = READ_ONCE(statc->state[i]);
3832 if (v != statc->state_prev[i]) {
3833 delta_cpu = v - statc->state_prev[i];
3834 delta += delta_cpu;
3835 statc->state_prev[i] = v;
3836 }
3837
3838 /* Aggregate counts on this level and propagate upwards */
3839 if (delta_cpu)
3840 memcg->vmstats->state_local[i] += delta_cpu;
3841
3842 if (delta) {
3843 memcg->vmstats->state[i] += delta;
3844 if (parent)
3845 parent->vmstats->state_pending[i] += delta;
3846 }
3847 }
3848
3849 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
3850 delta = memcg->vmstats->events_pending[i];
3851 if (delta)
3852 memcg->vmstats->events_pending[i] = 0;
3853
3854 delta_cpu = 0;
3855 v = READ_ONCE(statc->events[i]);
3856 if (v != statc->events_prev[i]) {
3857 delta_cpu = v - statc->events_prev[i];
3858 delta += delta_cpu;
3859 statc->events_prev[i] = v;
3860 }
3861
3862 if (delta_cpu)
3863 memcg->vmstats->events_local[i] += delta_cpu;
3864
3865 if (delta) {
3866 memcg->vmstats->events[i] += delta;
3867 if (parent)
3868 parent->vmstats->events_pending[i] += delta;
3869 }
3870 }
3871
3872 for_each_node_state(nid, N_MEMORY) {
3873 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3874 struct lruvec_stats *lstats = pn->lruvec_stats;
3875 struct lruvec_stats *plstats = NULL;
3876 struct lruvec_stats_percpu *lstatc;
3877
3878 if (parent)
3879 plstats = parent->nodeinfo[nid]->lruvec_stats;
3880
3881 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3882
3883 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
3884 delta = lstats->state_pending[i];
3885 if (delta)
3886 lstats->state_pending[i] = 0;
3887
3888 delta_cpu = 0;
3889 v = READ_ONCE(lstatc->state[i]);
3890 if (v != lstatc->state_prev[i]) {
3891 delta_cpu = v - lstatc->state_prev[i];
3892 delta += delta_cpu;
3893 lstatc->state_prev[i] = v;
3894 }
3895
3896 if (delta_cpu)
3897 lstats->state_local[i] += delta_cpu;
3898
3899 if (delta) {
3900 lstats->state[i] += delta;
3901 if (plstats)
3902 plstats->state_pending[i] += delta;
3903 }
3904 }
3905 }
3906 WRITE_ONCE(statc->stats_updates, 0);
3907 /* We are in a per-cpu loop here, only do the atomic write once */
3908 if (atomic64_read(&memcg->vmstats->stats_updates))
3909 atomic64_set(&memcg->vmstats->stats_updates, 0);
3910 }
3911
mem_cgroup_fork(struct task_struct * task)3912 static void mem_cgroup_fork(struct task_struct *task)
3913 {
3914 /*
3915 * Set the update flag to cause task->objcg to be initialized lazily
3916 * on the first allocation. It can be done without any synchronization
3917 * because it's always performed on the current task, so does
3918 * current_objcg_update().
3919 */
3920 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3921 }
3922
mem_cgroup_exit(struct task_struct * task)3923 static void mem_cgroup_exit(struct task_struct *task)
3924 {
3925 struct obj_cgroup *objcg = task->objcg;
3926
3927 objcg = (struct obj_cgroup *)
3928 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3929 obj_cgroup_put(objcg);
3930
3931 /*
3932 * Some kernel allocations can happen after this point,
3933 * but let's ignore them. It can be done without any synchronization
3934 * because it's always performed on the current task, so does
3935 * current_objcg_update().
3936 */
3937 task->objcg = NULL;
3938 }
3939
3940 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3941 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3942 {
3943 struct task_struct *task;
3944 struct cgroup_subsys_state *css;
3945
3946 /* find the first leader if there is any */
3947 cgroup_taskset_for_each_leader(task, css, tset)
3948 break;
3949
3950 if (!task)
3951 return;
3952
3953 task_lock(task);
3954 if (task->mm && READ_ONCE(task->mm->owner) == task)
3955 lru_gen_migrate_mm(task->mm);
3956 task_unlock(task);
3957 }
3958 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3959 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3960 #endif /* CONFIG_LRU_GEN */
3961
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)3962 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3963 {
3964 struct task_struct *task;
3965 struct cgroup_subsys_state *css;
3966
3967 cgroup_taskset_for_each(task, css, tset) {
3968 /* atomically set the update bit */
3969 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3970 }
3971 }
3972
mem_cgroup_attach(struct cgroup_taskset * tset)3973 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3974 {
3975 mem_cgroup_lru_gen_attach(tset);
3976 mem_cgroup_kmem_attach(tset);
3977 }
3978
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)3979 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3980 {
3981 if (value == PAGE_COUNTER_MAX)
3982 seq_puts(m, "max\n");
3983 else
3984 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3985
3986 return 0;
3987 }
3988
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)3989 static u64 memory_current_read(struct cgroup_subsys_state *css,
3990 struct cftype *cft)
3991 {
3992 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3993
3994 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3995 }
3996
3997 #define OFP_PEAK_UNSET (((-1UL)))
3998
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)3999 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4000 {
4001 struct cgroup_of_peak *ofp = of_peak(sf->private);
4002 u64 fd_peak = READ_ONCE(ofp->value), peak;
4003
4004 /* User wants global or local peak? */
4005 if (fd_peak == OFP_PEAK_UNSET)
4006 peak = pc->watermark;
4007 else
4008 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4009
4010 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4011 return 0;
4012 }
4013
memory_peak_show(struct seq_file * sf,void * v)4014 static int memory_peak_show(struct seq_file *sf, void *v)
4015 {
4016 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4017
4018 return peak_show(sf, v, &memcg->memory);
4019 }
4020
peak_open(struct kernfs_open_file * of)4021 static int peak_open(struct kernfs_open_file *of)
4022 {
4023 struct cgroup_of_peak *ofp = of_peak(of);
4024
4025 ofp->value = OFP_PEAK_UNSET;
4026 return 0;
4027 }
4028
peak_release(struct kernfs_open_file * of)4029 static void peak_release(struct kernfs_open_file *of)
4030 {
4031 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4032 struct cgroup_of_peak *ofp = of_peak(of);
4033
4034 if (ofp->value == OFP_PEAK_UNSET) {
4035 /* fast path (no writes on this fd) */
4036 return;
4037 }
4038 spin_lock(&memcg->peaks_lock);
4039 list_del(&ofp->list);
4040 spin_unlock(&memcg->peaks_lock);
4041 }
4042
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4043 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4044 loff_t off, struct page_counter *pc,
4045 struct list_head *watchers)
4046 {
4047 unsigned long usage;
4048 struct cgroup_of_peak *peer_ctx;
4049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050 struct cgroup_of_peak *ofp = of_peak(of);
4051
4052 spin_lock(&memcg->peaks_lock);
4053
4054 usage = page_counter_read(pc);
4055 WRITE_ONCE(pc->local_watermark, usage);
4056
4057 list_for_each_entry(peer_ctx, watchers, list)
4058 if (usage > peer_ctx->value)
4059 WRITE_ONCE(peer_ctx->value, usage);
4060
4061 /* initial write, register watcher */
4062 if (ofp->value == -1)
4063 list_add(&ofp->list, watchers);
4064
4065 WRITE_ONCE(ofp->value, usage);
4066 spin_unlock(&memcg->peaks_lock);
4067
4068 return nbytes;
4069 }
4070
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4071 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4072 size_t nbytes, loff_t off)
4073 {
4074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4075
4076 return peak_write(of, buf, nbytes, off, &memcg->memory,
4077 &memcg->memory_peaks);
4078 }
4079
4080 #undef OFP_PEAK_UNSET
4081
memory_min_show(struct seq_file * m,void * v)4082 static int memory_min_show(struct seq_file *m, void *v)
4083 {
4084 return seq_puts_memcg_tunable(m,
4085 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4086 }
4087
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4088 static ssize_t memory_min_write(struct kernfs_open_file *of,
4089 char *buf, size_t nbytes, loff_t off)
4090 {
4091 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4092 unsigned long min;
4093 int err;
4094
4095 buf = strstrip(buf);
4096 err = page_counter_memparse(buf, "max", &min);
4097 if (err)
4098 return err;
4099
4100 page_counter_set_min(&memcg->memory, min);
4101
4102 return nbytes;
4103 }
4104
memory_low_show(struct seq_file * m,void * v)4105 static int memory_low_show(struct seq_file *m, void *v)
4106 {
4107 return seq_puts_memcg_tunable(m,
4108 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4109 }
4110
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4111 static ssize_t memory_low_write(struct kernfs_open_file *of,
4112 char *buf, size_t nbytes, loff_t off)
4113 {
4114 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4115 unsigned long low;
4116 int err;
4117
4118 buf = strstrip(buf);
4119 err = page_counter_memparse(buf, "max", &low);
4120 if (err)
4121 return err;
4122
4123 page_counter_set_low(&memcg->memory, low);
4124
4125 return nbytes;
4126 }
4127
memory_high_show(struct seq_file * m,void * v)4128 static int memory_high_show(struct seq_file *m, void *v)
4129 {
4130 return seq_puts_memcg_tunable(m,
4131 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4132 }
4133
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4134 static ssize_t memory_high_write(struct kernfs_open_file *of,
4135 char *buf, size_t nbytes, loff_t off)
4136 {
4137 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4138 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4139 bool drained = false;
4140 unsigned long high;
4141 int err;
4142
4143 buf = strstrip(buf);
4144 err = page_counter_memparse(buf, "max", &high);
4145 if (err)
4146 return err;
4147
4148 page_counter_set_high(&memcg->memory, high);
4149
4150 for (;;) {
4151 unsigned long nr_pages = page_counter_read(&memcg->memory);
4152 unsigned long reclaimed;
4153
4154 if (nr_pages <= high)
4155 break;
4156
4157 if (signal_pending(current))
4158 break;
4159
4160 if (!drained) {
4161 drain_all_stock(memcg);
4162 drained = true;
4163 continue;
4164 }
4165
4166 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4167 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4168
4169 if (!reclaimed && !nr_retries--)
4170 break;
4171 }
4172
4173 memcg_wb_domain_size_changed(memcg);
4174 return nbytes;
4175 }
4176
memory_max_show(struct seq_file * m,void * v)4177 static int memory_max_show(struct seq_file *m, void *v)
4178 {
4179 return seq_puts_memcg_tunable(m,
4180 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4181 }
4182
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4183 static ssize_t memory_max_write(struct kernfs_open_file *of,
4184 char *buf, size_t nbytes, loff_t off)
4185 {
4186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4187 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4188 bool drained = false;
4189 unsigned long max;
4190 int err;
4191
4192 buf = strstrip(buf);
4193 err = page_counter_memparse(buf, "max", &max);
4194 if (err)
4195 return err;
4196
4197 xchg(&memcg->memory.max, max);
4198
4199 for (;;) {
4200 unsigned long nr_pages = page_counter_read(&memcg->memory);
4201
4202 if (nr_pages <= max)
4203 break;
4204
4205 if (signal_pending(current))
4206 break;
4207
4208 if (!drained) {
4209 drain_all_stock(memcg);
4210 drained = true;
4211 continue;
4212 }
4213
4214 if (nr_reclaims) {
4215 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4216 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4217 nr_reclaims--;
4218 continue;
4219 }
4220
4221 memcg_memory_event(memcg, MEMCG_OOM);
4222 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4223 break;
4224 }
4225
4226 memcg_wb_domain_size_changed(memcg);
4227 return nbytes;
4228 }
4229
4230 /*
4231 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4232 * if any new events become available.
4233 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4234 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4235 {
4236 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4237 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4238 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4239 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4240 seq_printf(m, "oom_kill %lu\n",
4241 atomic_long_read(&events[MEMCG_OOM_KILL]));
4242 seq_printf(m, "oom_group_kill %lu\n",
4243 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4244 }
4245
memory_events_show(struct seq_file * m,void * v)4246 static int memory_events_show(struct seq_file *m, void *v)
4247 {
4248 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4249
4250 __memory_events_show(m, memcg->memory_events);
4251 return 0;
4252 }
4253
memory_events_local_show(struct seq_file * m,void * v)4254 static int memory_events_local_show(struct seq_file *m, void *v)
4255 {
4256 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4257
4258 __memory_events_show(m, memcg->memory_events_local);
4259 return 0;
4260 }
4261
memory_stat_show(struct seq_file * m,void * v)4262 int memory_stat_show(struct seq_file *m, void *v)
4263 {
4264 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4265 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4266 struct seq_buf s;
4267
4268 if (!buf)
4269 return -ENOMEM;
4270 seq_buf_init(&s, buf, PAGE_SIZE);
4271 memory_stat_format(memcg, &s);
4272 seq_puts(m, buf);
4273 kfree(buf);
4274 return 0;
4275 }
4276
4277 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4278 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4279 int item)
4280 {
4281 return lruvec_page_state(lruvec, item) *
4282 memcg_page_state_output_unit(item);
4283 }
4284
memory_numa_stat_show(struct seq_file * m,void * v)4285 static int memory_numa_stat_show(struct seq_file *m, void *v)
4286 {
4287 int i;
4288 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4289
4290 mem_cgroup_flush_stats(memcg);
4291
4292 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4293 int nid;
4294
4295 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4296 continue;
4297
4298 seq_printf(m, "%s", memory_stats[i].name);
4299 for_each_node_state(nid, N_MEMORY) {
4300 u64 size;
4301 struct lruvec *lruvec;
4302
4303 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4304 size = lruvec_page_state_output(lruvec,
4305 memory_stats[i].idx);
4306 seq_printf(m, " N%d=%llu", nid, size);
4307 }
4308 seq_putc(m, '\n');
4309 }
4310
4311 return 0;
4312 }
4313 #endif
4314
memory_oom_group_show(struct seq_file * m,void * v)4315 static int memory_oom_group_show(struct seq_file *m, void *v)
4316 {
4317 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4318
4319 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4320
4321 return 0;
4322 }
4323
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4324 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4325 char *buf, size_t nbytes, loff_t off)
4326 {
4327 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4328 int ret, oom_group;
4329
4330 buf = strstrip(buf);
4331 if (!buf)
4332 return -EINVAL;
4333
4334 ret = kstrtoint(buf, 0, &oom_group);
4335 if (ret)
4336 return ret;
4337
4338 if (oom_group != 0 && oom_group != 1)
4339 return -EINVAL;
4340
4341 WRITE_ONCE(memcg->oom_group, oom_group);
4342
4343 return nbytes;
4344 }
4345
4346 enum {
4347 MEMORY_RECLAIM_SWAPPINESS = 0,
4348 MEMORY_RECLAIM_NULL,
4349 };
4350
4351 static const match_table_t tokens = {
4352 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4353 { MEMORY_RECLAIM_NULL, NULL },
4354 };
4355
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4356 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4357 size_t nbytes, loff_t off)
4358 {
4359 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4360 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4361 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4362 int swappiness = -1;
4363 unsigned int reclaim_options;
4364 char *old_buf, *start;
4365 substring_t args[MAX_OPT_ARGS];
4366
4367 buf = strstrip(buf);
4368
4369 old_buf = buf;
4370 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4371 if (buf == old_buf)
4372 return -EINVAL;
4373
4374 buf = strstrip(buf);
4375
4376 while ((start = strsep(&buf, " ")) != NULL) {
4377 if (!strlen(start))
4378 continue;
4379 switch (match_token(start, tokens, args)) {
4380 case MEMORY_RECLAIM_SWAPPINESS:
4381 if (match_int(&args[0], &swappiness))
4382 return -EINVAL;
4383 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4384 return -EINVAL;
4385 break;
4386 default:
4387 return -EINVAL;
4388 }
4389 }
4390
4391 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4392 while (nr_reclaimed < nr_to_reclaim) {
4393 /* Will converge on zero, but reclaim enforces a minimum */
4394 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4395 unsigned long reclaimed;
4396
4397 if (signal_pending(current))
4398 return -EINTR;
4399
4400 /*
4401 * This is the final attempt, drain percpu lru caches in the
4402 * hope of introducing more evictable pages for
4403 * try_to_free_mem_cgroup_pages().
4404 */
4405 if (!nr_retries)
4406 lru_add_drain_all();
4407
4408 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4409 batch_size, GFP_KERNEL,
4410 reclaim_options,
4411 swappiness == -1 ? NULL : &swappiness);
4412
4413 if (!reclaimed && !nr_retries--)
4414 return -EAGAIN;
4415
4416 nr_reclaimed += reclaimed;
4417 }
4418
4419 return nbytes;
4420 }
4421
4422 static struct cftype memory_files[] = {
4423 {
4424 .name = "current",
4425 .flags = CFTYPE_NOT_ON_ROOT,
4426 .read_u64 = memory_current_read,
4427 },
4428 {
4429 .name = "peak",
4430 .flags = CFTYPE_NOT_ON_ROOT,
4431 .open = peak_open,
4432 .release = peak_release,
4433 .seq_show = memory_peak_show,
4434 .write = memory_peak_write,
4435 },
4436 {
4437 .name = "min",
4438 .flags = CFTYPE_NOT_ON_ROOT,
4439 .seq_show = memory_min_show,
4440 .write = memory_min_write,
4441 },
4442 {
4443 .name = "low",
4444 .flags = CFTYPE_NOT_ON_ROOT,
4445 .seq_show = memory_low_show,
4446 .write = memory_low_write,
4447 },
4448 {
4449 .name = "high",
4450 .flags = CFTYPE_NOT_ON_ROOT,
4451 .seq_show = memory_high_show,
4452 .write = memory_high_write,
4453 },
4454 {
4455 .name = "max",
4456 .flags = CFTYPE_NOT_ON_ROOT,
4457 .seq_show = memory_max_show,
4458 .write = memory_max_write,
4459 },
4460 {
4461 .name = "events",
4462 .flags = CFTYPE_NOT_ON_ROOT,
4463 .file_offset = offsetof(struct mem_cgroup, events_file),
4464 .seq_show = memory_events_show,
4465 },
4466 {
4467 .name = "events.local",
4468 .flags = CFTYPE_NOT_ON_ROOT,
4469 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4470 .seq_show = memory_events_local_show,
4471 },
4472 {
4473 .name = "stat",
4474 .seq_show = memory_stat_show,
4475 },
4476 #ifdef CONFIG_NUMA
4477 {
4478 .name = "numa_stat",
4479 .seq_show = memory_numa_stat_show,
4480 },
4481 #endif
4482 {
4483 .name = "oom.group",
4484 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4485 .seq_show = memory_oom_group_show,
4486 .write = memory_oom_group_write,
4487 },
4488 {
4489 .name = "reclaim",
4490 .flags = CFTYPE_NS_DELEGATABLE,
4491 .write = memory_reclaim,
4492 },
4493 { } /* terminate */
4494 };
4495
4496 struct cgroup_subsys memory_cgrp_subsys = {
4497 .css_alloc = mem_cgroup_css_alloc,
4498 .css_online = mem_cgroup_css_online,
4499 .css_offline = mem_cgroup_css_offline,
4500 .css_released = mem_cgroup_css_released,
4501 .css_free = mem_cgroup_css_free,
4502 .css_reset = mem_cgroup_css_reset,
4503 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4504 .attach = mem_cgroup_attach,
4505 .fork = mem_cgroup_fork,
4506 .exit = mem_cgroup_exit,
4507 .dfl_cftypes = memory_files,
4508 #ifdef CONFIG_MEMCG_V1
4509 .can_attach = memcg1_can_attach,
4510 .cancel_attach = memcg1_cancel_attach,
4511 .post_attach = memcg1_move_task,
4512 .legacy_cftypes = mem_cgroup_legacy_files,
4513 #endif
4514 .early_init = 0,
4515 };
4516
4517 /**
4518 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4519 * @root: the top ancestor of the sub-tree being checked
4520 * @memcg: the memory cgroup to check
4521 *
4522 * WARNING: This function is not stateless! It can only be used as part
4523 * of a top-down tree iteration, not for isolated queries.
4524 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4525 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4526 struct mem_cgroup *memcg)
4527 {
4528 bool recursive_protection =
4529 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4530
4531 if (mem_cgroup_disabled())
4532 return;
4533
4534 if (!root)
4535 root = root_mem_cgroup;
4536
4537 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4538 }
4539
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4540 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4541 gfp_t gfp)
4542 {
4543 int ret;
4544
4545 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4546 if (ret)
4547 goto out;
4548
4549 mem_cgroup_commit_charge(folio, memcg);
4550 out:
4551 return ret;
4552 }
4553
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4554 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4555 {
4556 struct mem_cgroup *memcg;
4557 int ret;
4558
4559 memcg = get_mem_cgroup_from_mm(mm);
4560 trace_android_vh_mem_cgroup_charge(folio, &memcg);
4561 ret = charge_memcg(folio, memcg, gfp);
4562 css_put(&memcg->css);
4563
4564 return ret;
4565 }
4566
4567 /**
4568 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4569 * @memcg: memcg to charge.
4570 * @gfp: reclaim mode.
4571 * @nr_pages: number of pages to charge.
4572 *
4573 * This function is called when allocating a huge page folio to determine if
4574 * the memcg has the capacity for it. It does not commit the charge yet,
4575 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4576 *
4577 * Once we have obtained the hugetlb folio, we can call
4578 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4579 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4580 * of try_charge().
4581 *
4582 * Returns 0 on success. Otherwise, an error code is returned.
4583 */
mem_cgroup_hugetlb_try_charge(struct mem_cgroup * memcg,gfp_t gfp,long nr_pages)4584 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4585 long nr_pages)
4586 {
4587 /*
4588 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4589 * but do not attempt to commit charge later (or cancel on error) either.
4590 */
4591 if (mem_cgroup_disabled() || !memcg ||
4592 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4593 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4594 return -EOPNOTSUPP;
4595
4596 if (try_charge(memcg, gfp, nr_pages))
4597 return -ENOMEM;
4598
4599 return 0;
4600 }
4601
4602 /**
4603 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4604 * @folio: folio to charge.
4605 * @mm: mm context of the victim
4606 * @gfp: reclaim mode
4607 * @entry: swap entry for which the folio is allocated
4608 *
4609 * This function charges a folio allocated for swapin. Please call this before
4610 * adding the folio to the swapcache.
4611 *
4612 * Returns 0 on success. Otherwise, an error code is returned.
4613 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4614 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4615 gfp_t gfp, swp_entry_t entry)
4616 {
4617 struct mem_cgroup *memcg;
4618 unsigned short id;
4619 int ret;
4620
4621 if (mem_cgroup_disabled())
4622 return 0;
4623
4624 id = lookup_swap_cgroup_id(entry);
4625 rcu_read_lock();
4626 memcg = mem_cgroup_from_id(id);
4627 if (!memcg || !css_tryget_online(&memcg->css))
4628 memcg = get_mem_cgroup_from_mm(mm);
4629 rcu_read_unlock();
4630
4631 ret = charge_memcg(folio, memcg, gfp);
4632
4633 css_put(&memcg->css);
4634 return ret;
4635 }
4636
4637 /*
4638 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4639 * @entry: the first swap entry for which the pages are charged
4640 * @nr_pages: number of pages which will be uncharged
4641 *
4642 * Call this function after successfully adding the charged page to swapcache.
4643 *
4644 * Note: This function assumes the page for which swap slot is being uncharged
4645 * is order 0 page.
4646 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)4647 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4648 {
4649 /*
4650 * Cgroup1's unified memory+swap counter has been charged with the
4651 * new swapcache page, finish the transfer by uncharging the swap
4652 * slot. The swap slot would also get uncharged when it dies, but
4653 * it can stick around indefinitely and we'd count the page twice
4654 * the entire time.
4655 *
4656 * Cgroup2 has separate resource counters for memory and swap,
4657 * so this is a non-issue here. Memory and swap charge lifetimes
4658 * correspond 1:1 to page and swap slot lifetimes: we charge the
4659 * page to memory here, and uncharge swap when the slot is freed.
4660 */
4661 if (!mem_cgroup_disabled() && do_memsw_account()) {
4662 /*
4663 * The swap entry might not get freed for a long time,
4664 * let's not wait for it. The page already received a
4665 * memory+swap charge, drop the swap entry duplicate.
4666 */
4667 mem_cgroup_uncharge_swap(entry, nr_pages);
4668 }
4669 }
4670
4671 struct uncharge_gather {
4672 struct mem_cgroup *memcg;
4673 unsigned long nr_memory;
4674 unsigned long pgpgout;
4675 unsigned long nr_kmem;
4676 int nid;
4677 };
4678
uncharge_gather_clear(struct uncharge_gather * ug)4679 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4680 {
4681 memset(ug, 0, sizeof(*ug));
4682 }
4683
uncharge_batch(const struct uncharge_gather * ug)4684 static void uncharge_batch(const struct uncharge_gather *ug)
4685 {
4686 if (ug->nr_memory) {
4687 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4688 if (do_memsw_account())
4689 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4690 if (ug->nr_kmem) {
4691 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4692 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4693 }
4694 memcg1_oom_recover(ug->memcg);
4695 }
4696
4697 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4698
4699 /* drop reference from uncharge_folio */
4700 css_put(&ug->memcg->css);
4701 }
4702
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4703 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4704 {
4705 long nr_pages;
4706 struct mem_cgroup *memcg;
4707 struct obj_cgroup *objcg;
4708
4709 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4710
4711 /*
4712 * Nobody should be changing or seriously looking at
4713 * folio memcg or objcg at this point, we have fully
4714 * exclusive access to the folio.
4715 */
4716 if (folio_memcg_kmem(folio)) {
4717 objcg = __folio_objcg(folio);
4718 /*
4719 * This get matches the put at the end of the function and
4720 * kmem pages do not hold memcg references anymore.
4721 */
4722 memcg = get_mem_cgroup_from_objcg(objcg);
4723 } else {
4724 memcg = __folio_memcg(folio);
4725 }
4726
4727 if (!memcg)
4728 return;
4729
4730 if (ug->memcg != memcg) {
4731 if (ug->memcg) {
4732 uncharge_batch(ug);
4733 uncharge_gather_clear(ug);
4734 }
4735 ug->memcg = memcg;
4736 ug->nid = folio_nid(folio);
4737
4738 /* pairs with css_put in uncharge_batch */
4739 css_get(&memcg->css);
4740 }
4741
4742 nr_pages = folio_nr_pages(folio);
4743
4744 if (folio_memcg_kmem(folio)) {
4745 ug->nr_memory += nr_pages;
4746 ug->nr_kmem += nr_pages;
4747
4748 folio->memcg_data = 0;
4749 obj_cgroup_put(objcg);
4750 } else {
4751 /* LRU pages aren't accounted at the root level */
4752 if (!mem_cgroup_is_root(memcg))
4753 ug->nr_memory += nr_pages;
4754 ug->pgpgout++;
4755
4756 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4757 folio->memcg_data = 0;
4758 }
4759
4760 css_put(&memcg->css);
4761 }
4762
__mem_cgroup_uncharge(struct folio * folio)4763 void __mem_cgroup_uncharge(struct folio *folio)
4764 {
4765 struct uncharge_gather ug;
4766
4767 /* Don't touch folio->lru of any random page, pre-check: */
4768 if (!folio_memcg_charged(folio))
4769 return;
4770
4771 uncharge_gather_clear(&ug);
4772 uncharge_folio(folio, &ug);
4773 uncharge_batch(&ug);
4774 }
4775
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4776 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4777 {
4778 struct uncharge_gather ug;
4779 unsigned int i;
4780
4781 uncharge_gather_clear(&ug);
4782 for (i = 0; i < folios->nr; i++)
4783 uncharge_folio(folios->folios[i], &ug);
4784 if (ug.memcg)
4785 uncharge_batch(&ug);
4786 }
4787
4788 /**
4789 * mem_cgroup_replace_folio - Charge a folio's replacement.
4790 * @old: Currently circulating folio.
4791 * @new: Replacement folio.
4792 *
4793 * Charge @new as a replacement folio for @old. @old will
4794 * be uncharged upon free.
4795 *
4796 * Both folios must be locked, @new->mapping must be set up.
4797 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4798 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4799 {
4800 struct mem_cgroup *memcg;
4801 long nr_pages = folio_nr_pages(new);
4802
4803 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4804 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4805 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4806 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4807
4808 if (mem_cgroup_disabled())
4809 return;
4810
4811 /* Page cache replacement: new folio already charged? */
4812 if (folio_memcg_charged(new))
4813 return;
4814
4815 memcg = folio_memcg(old);
4816 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4817 if (!memcg)
4818 return;
4819
4820 /* Force-charge the new page. The old one will be freed soon */
4821 if (!mem_cgroup_is_root(memcg)) {
4822 page_counter_charge(&memcg->memory, nr_pages);
4823 if (do_memsw_account())
4824 page_counter_charge(&memcg->memsw, nr_pages);
4825 }
4826
4827 css_get(&memcg->css);
4828 commit_charge(new, memcg);
4829 memcg1_commit_charge(new, memcg);
4830 }
4831
4832 /**
4833 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4834 * @old: Currently circulating folio.
4835 * @new: Replacement folio.
4836 *
4837 * Transfer the memcg data from the old folio to the new folio for migration.
4838 * The old folio's data info will be cleared. Note that the memory counters
4839 * will remain unchanged throughout the process.
4840 *
4841 * Both folios must be locked, @new->mapping must be set up.
4842 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4843 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4844 {
4845 struct mem_cgroup *memcg;
4846
4847 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4848 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4849 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4850 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4851 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4852
4853 if (mem_cgroup_disabled())
4854 return;
4855
4856 memcg = folio_memcg(old);
4857 /*
4858 * Note that it is normal to see !memcg for a hugetlb folio.
4859 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4860 * was not selected.
4861 */
4862 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4863 if (!memcg)
4864 return;
4865
4866 /* Transfer the charge and the css ref */
4867 commit_charge(new, memcg);
4868
4869 /* Warning should never happen, so don't worry about refcount non-0 */
4870 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4871 old->memcg_data = 0;
4872 }
4873
4874 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4875 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4876
mem_cgroup_sk_alloc(struct sock * sk)4877 void mem_cgroup_sk_alloc(struct sock *sk)
4878 {
4879 struct mem_cgroup *memcg;
4880
4881 if (!mem_cgroup_sockets_enabled)
4882 return;
4883
4884 /* Do not associate the sock with unrelated interrupted task's memcg. */
4885 if (!in_task())
4886 return;
4887
4888 rcu_read_lock();
4889 memcg = mem_cgroup_from_task(current);
4890 if (mem_cgroup_is_root(memcg))
4891 goto out;
4892 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4893 goto out;
4894 if (css_tryget(&memcg->css))
4895 sk->sk_memcg = memcg;
4896 out:
4897 rcu_read_unlock();
4898 }
4899
mem_cgroup_sk_free(struct sock * sk)4900 void mem_cgroup_sk_free(struct sock *sk)
4901 {
4902 if (sk->sk_memcg)
4903 css_put(&sk->sk_memcg->css);
4904 }
4905
4906 /**
4907 * mem_cgroup_charge_skmem - charge socket memory
4908 * @memcg: memcg to charge
4909 * @nr_pages: number of pages to charge
4910 * @gfp_mask: reclaim mode
4911 *
4912 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4913 * @memcg's configured limit, %false if it doesn't.
4914 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)4915 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4916 gfp_t gfp_mask)
4917 {
4918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4919 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4920
4921 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4922 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4923 return true;
4924 }
4925
4926 return false;
4927 }
4928
4929 /**
4930 * mem_cgroup_uncharge_skmem - uncharge socket memory
4931 * @memcg: memcg to uncharge
4932 * @nr_pages: number of pages to uncharge
4933 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)4934 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4935 {
4936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4937 memcg1_uncharge_skmem(memcg, nr_pages);
4938 return;
4939 }
4940
4941 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4942
4943 refill_stock(memcg, nr_pages);
4944 }
4945
cgroup_memory(char * s)4946 static int __init cgroup_memory(char *s)
4947 {
4948 char *token;
4949
4950 while ((token = strsep(&s, ",")) != NULL) {
4951 if (!*token)
4952 continue;
4953 if (!strcmp(token, "nosocket"))
4954 cgroup_memory_nosocket = true;
4955 if (!strcmp(token, "nokmem"))
4956 cgroup_memory_nokmem = true;
4957 if (!strcmp(token, "nobpf"))
4958 cgroup_memory_nobpf = true;
4959 }
4960 return 1;
4961 }
4962 __setup("cgroup.memory=", cgroup_memory);
4963
4964 /*
4965 * Memory controller init before cgroup_init() initialize root_mem_cgroup.
4966 *
4967 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4968 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4969 * basically everything that doesn't depend on a specific mem_cgroup structure
4970 * should be initialized from here.
4971 */
mem_cgroup_init(void)4972 int __init mem_cgroup_init(void)
4973 {
4974 unsigned int memcg_size;
4975 int cpu;
4976
4977 /*
4978 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4979 * used for per-memcg-per-cpu caching of per-node statistics. In order
4980 * to work fine, we should make sure that the overfill threshold can't
4981 * exceed S32_MAX / PAGE_SIZE.
4982 */
4983 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4984
4985 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4986 memcg_hotplug_cpu_dead);
4987
4988 for_each_possible_cpu(cpu)
4989 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4990 drain_local_stock);
4991
4992 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
4993 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
4994 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
4995
4996 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
4997 SLAB_PANIC | SLAB_HWCACHE_ALIGN);
4998
4999 return 0;
5000 }
5001
5002 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)5003 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5004 {
5005 while (!refcount_inc_not_zero(&memcg->id.ref)) {
5006 /*
5007 * The root cgroup cannot be destroyed, so it's refcount must
5008 * always be >= 1.
5009 */
5010 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
5011 VM_BUG_ON(1);
5012 break;
5013 }
5014 memcg = parent_mem_cgroup(memcg);
5015 if (!memcg)
5016 memcg = root_mem_cgroup;
5017 }
5018 return memcg;
5019 }
5020
5021 /**
5022 * mem_cgroup_swapout - transfer a memsw charge to swap
5023 * @folio: folio whose memsw charge to transfer
5024 * @entry: swap entry to move the charge to
5025 *
5026 * Transfer the memsw charge of @folio to @entry.
5027 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)5028 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
5029 {
5030 struct mem_cgroup *memcg, *swap_memcg;
5031 unsigned int nr_entries;
5032 unsigned short oldid;
5033
5034 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5035 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
5036
5037 if (mem_cgroup_disabled())
5038 return;
5039
5040 if (!do_memsw_account())
5041 return;
5042
5043 memcg = folio_memcg(folio);
5044
5045 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5046 if (!memcg)
5047 return;
5048
5049 /*
5050 * In case the memcg owning these pages has been offlined and doesn't
5051 * have an ID allocated to it anymore, charge the closest online
5052 * ancestor for the swap instead and transfer the memory+swap charge.
5053 */
5054 swap_memcg = mem_cgroup_id_get_online(memcg);
5055 nr_entries = folio_nr_pages(folio);
5056 /* Get references for the tail pages, too */
5057 if (nr_entries > 1)
5058 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5059 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5060 nr_entries);
5061 VM_BUG_ON_FOLIO(oldid, folio);
5062 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5063
5064 folio_unqueue_deferred_split(folio);
5065 folio->memcg_data = 0;
5066
5067 if (!mem_cgroup_is_root(memcg))
5068 page_counter_uncharge(&memcg->memory, nr_entries);
5069
5070 if (memcg != swap_memcg) {
5071 if (!mem_cgroup_is_root(swap_memcg))
5072 page_counter_charge(&swap_memcg->memsw, nr_entries);
5073 page_counter_uncharge(&memcg->memsw, nr_entries);
5074 }
5075
5076 memcg1_swapout(folio, memcg);
5077 css_put(&memcg->css);
5078 }
5079
5080 /**
5081 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5082 * @folio: folio being added to swap
5083 * @entry: swap entry to charge
5084 *
5085 * Try to charge @folio's memcg for the swap space at @entry.
5086 *
5087 * Returns 0 on success, -ENOMEM on failure.
5088 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5089 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5090 {
5091 unsigned int nr_pages = folio_nr_pages(folio);
5092 struct page_counter *counter;
5093 struct mem_cgroup *memcg;
5094 unsigned short oldid;
5095
5096 if (do_memsw_account())
5097 return 0;
5098
5099 memcg = folio_memcg(folio);
5100
5101 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5102 if (!memcg)
5103 return 0;
5104
5105 if (!entry.val) {
5106 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5107 return 0;
5108 }
5109
5110 memcg = mem_cgroup_id_get_online(memcg);
5111
5112 if (!mem_cgroup_is_root(memcg) &&
5113 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5114 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5115 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5116 mem_cgroup_id_put(memcg);
5117 return -ENOMEM;
5118 }
5119
5120 /* Get references for the tail pages, too */
5121 if (nr_pages > 1)
5122 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5123 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5124 VM_BUG_ON_FOLIO(oldid, folio);
5125 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5126
5127 return 0;
5128 }
5129
5130 /**
5131 * __mem_cgroup_uncharge_swap - uncharge swap space
5132 * @entry: swap entry to uncharge
5133 * @nr_pages: the amount of swap space to uncharge
5134 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5135 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5136 {
5137 struct mem_cgroup *memcg;
5138 unsigned short id;
5139
5140 id = swap_cgroup_record(entry, 0, nr_pages);
5141 rcu_read_lock();
5142 memcg = mem_cgroup_from_id(id);
5143 if (memcg) {
5144 if (!mem_cgroup_is_root(memcg)) {
5145 if (do_memsw_account())
5146 page_counter_uncharge(&memcg->memsw, nr_pages);
5147 else
5148 page_counter_uncharge(&memcg->swap, nr_pages);
5149 }
5150 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5151 mem_cgroup_id_put_many(memcg, nr_pages);
5152 }
5153 rcu_read_unlock();
5154 }
5155
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5156 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5157 {
5158 long nr_swap_pages = get_nr_swap_pages();
5159
5160 if (mem_cgroup_disabled() || do_memsw_account())
5161 return nr_swap_pages;
5162 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5163 nr_swap_pages = min_t(long, nr_swap_pages,
5164 READ_ONCE(memcg->swap.max) -
5165 page_counter_read(&memcg->swap));
5166 return nr_swap_pages;
5167 }
5168
mem_cgroup_swap_full(struct folio * folio)5169 bool mem_cgroup_swap_full(struct folio *folio)
5170 {
5171 struct mem_cgroup *memcg;
5172
5173 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5174
5175 if (vm_swap_full())
5176 return true;
5177 if (do_memsw_account())
5178 return false;
5179
5180 memcg = folio_memcg(folio);
5181 if (!memcg)
5182 return false;
5183
5184 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5185 unsigned long usage = page_counter_read(&memcg->swap);
5186
5187 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5188 usage * 2 >= READ_ONCE(memcg->swap.max))
5189 return true;
5190 }
5191
5192 return false;
5193 }
5194
setup_swap_account(char * s)5195 static int __init setup_swap_account(char *s)
5196 {
5197 bool res;
5198
5199 if (!kstrtobool(s, &res) && !res)
5200 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5201 "in favor of configuring swap control via cgroupfs. "
5202 "Please report your usecase to linux-mm@kvack.org if you "
5203 "depend on this functionality.\n");
5204 return 1;
5205 }
5206 __setup("swapaccount=", setup_swap_account);
5207
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5208 static u64 swap_current_read(struct cgroup_subsys_state *css,
5209 struct cftype *cft)
5210 {
5211 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5212
5213 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5214 }
5215
swap_peak_show(struct seq_file * sf,void * v)5216 static int swap_peak_show(struct seq_file *sf, void *v)
5217 {
5218 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5219
5220 return peak_show(sf, v, &memcg->swap);
5221 }
5222
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5223 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5224 size_t nbytes, loff_t off)
5225 {
5226 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5227
5228 return peak_write(of, buf, nbytes, off, &memcg->swap,
5229 &memcg->swap_peaks);
5230 }
5231
swap_high_show(struct seq_file * m,void * v)5232 static int swap_high_show(struct seq_file *m, void *v)
5233 {
5234 return seq_puts_memcg_tunable(m,
5235 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5236 }
5237
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5238 static ssize_t swap_high_write(struct kernfs_open_file *of,
5239 char *buf, size_t nbytes, loff_t off)
5240 {
5241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5242 unsigned long high;
5243 int err;
5244
5245 buf = strstrip(buf);
5246 err = page_counter_memparse(buf, "max", &high);
5247 if (err)
5248 return err;
5249
5250 page_counter_set_high(&memcg->swap, high);
5251
5252 return nbytes;
5253 }
5254
swap_max_show(struct seq_file * m,void * v)5255 static int swap_max_show(struct seq_file *m, void *v)
5256 {
5257 return seq_puts_memcg_tunable(m,
5258 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5259 }
5260
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5261 static ssize_t swap_max_write(struct kernfs_open_file *of,
5262 char *buf, size_t nbytes, loff_t off)
5263 {
5264 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5265 unsigned long max;
5266 int err;
5267
5268 buf = strstrip(buf);
5269 err = page_counter_memparse(buf, "max", &max);
5270 if (err)
5271 return err;
5272
5273 xchg(&memcg->swap.max, max);
5274
5275 return nbytes;
5276 }
5277
swap_events_show(struct seq_file * m,void * v)5278 static int swap_events_show(struct seq_file *m, void *v)
5279 {
5280 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5281
5282 seq_printf(m, "high %lu\n",
5283 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5284 seq_printf(m, "max %lu\n",
5285 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5286 seq_printf(m, "fail %lu\n",
5287 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5288
5289 return 0;
5290 }
5291
5292 static struct cftype swap_files[] = {
5293 {
5294 .name = "swap.current",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .read_u64 = swap_current_read,
5297 },
5298 {
5299 .name = "swap.high",
5300 .flags = CFTYPE_NOT_ON_ROOT,
5301 .seq_show = swap_high_show,
5302 .write = swap_high_write,
5303 },
5304 {
5305 .name = "swap.max",
5306 .flags = CFTYPE_NOT_ON_ROOT,
5307 .seq_show = swap_max_show,
5308 .write = swap_max_write,
5309 },
5310 {
5311 .name = "swap.peak",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .open = peak_open,
5314 .release = peak_release,
5315 .seq_show = swap_peak_show,
5316 .write = swap_peak_write,
5317 },
5318 {
5319 .name = "swap.events",
5320 .flags = CFTYPE_NOT_ON_ROOT,
5321 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5322 .seq_show = swap_events_show,
5323 },
5324 { } /* terminate */
5325 };
5326
5327 #ifdef CONFIG_ZSWAP
5328 /**
5329 * obj_cgroup_may_zswap - check if this cgroup can zswap
5330 * @objcg: the object cgroup
5331 *
5332 * Check if the hierarchical zswap limit has been reached.
5333 *
5334 * This doesn't check for specific headroom, and it is not atomic
5335 * either. But with zswap, the size of the allocation is only known
5336 * once compression has occurred, and this optimistic pre-check avoids
5337 * spending cycles on compression when there is already no room left
5338 * or zswap is disabled altogether somewhere in the hierarchy.
5339 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5340 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5341 {
5342 struct mem_cgroup *memcg, *original_memcg;
5343 bool ret = true;
5344
5345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5346 return true;
5347
5348 original_memcg = get_mem_cgroup_from_objcg(objcg);
5349 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5350 memcg = parent_mem_cgroup(memcg)) {
5351 unsigned long max = READ_ONCE(memcg->zswap_max);
5352 unsigned long pages;
5353
5354 if (max == PAGE_COUNTER_MAX)
5355 continue;
5356 if (max == 0) {
5357 ret = false;
5358 break;
5359 }
5360
5361 /*
5362 * mem_cgroup_flush_stats() ignores small changes. Use
5363 * do_flush_stats() directly to get accurate stats for charging.
5364 */
5365 do_flush_stats(memcg);
5366 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5367 if (pages < max)
5368 continue;
5369 ret = false;
5370 break;
5371 }
5372 mem_cgroup_put(original_memcg);
5373 return ret;
5374 }
5375
5376 /**
5377 * obj_cgroup_charge_zswap - charge compression backend memory
5378 * @objcg: the object cgroup
5379 * @size: size of compressed object
5380 *
5381 * This forces the charge after obj_cgroup_may_zswap() allowed
5382 * compression and storage in zwap for this cgroup to go ahead.
5383 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5384 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5385 {
5386 struct mem_cgroup *memcg;
5387
5388 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5389 return;
5390
5391 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5392
5393 /* PF_MEMALLOC context, charging must succeed */
5394 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5395 VM_WARN_ON_ONCE(1);
5396
5397 rcu_read_lock();
5398 memcg = obj_cgroup_memcg(objcg);
5399 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5400 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5401 rcu_read_unlock();
5402 }
5403
5404 /**
5405 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5406 * @objcg: the object cgroup
5407 * @size: size of compressed object
5408 *
5409 * Uncharges zswap memory on page in.
5410 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5411 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5412 {
5413 struct mem_cgroup *memcg;
5414
5415 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5416 return;
5417
5418 obj_cgroup_uncharge(objcg, size);
5419
5420 rcu_read_lock();
5421 memcg = obj_cgroup_memcg(objcg);
5422 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5423 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5424 rcu_read_unlock();
5425 }
5426
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5427 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5428 {
5429 /* if zswap is disabled, do not block pages going to the swapping device */
5430 if (!zswap_is_enabled())
5431 return true;
5432
5433 for (; memcg; memcg = parent_mem_cgroup(memcg))
5434 if (!READ_ONCE(memcg->zswap_writeback))
5435 return false;
5436
5437 return true;
5438 }
5439
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5440 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5441 struct cftype *cft)
5442 {
5443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5444
5445 mem_cgroup_flush_stats(memcg);
5446 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5447 }
5448
zswap_max_show(struct seq_file * m,void * v)5449 static int zswap_max_show(struct seq_file *m, void *v)
5450 {
5451 return seq_puts_memcg_tunable(m,
5452 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5453 }
5454
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5455 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5456 char *buf, size_t nbytes, loff_t off)
5457 {
5458 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5459 unsigned long max;
5460 int err;
5461
5462 buf = strstrip(buf);
5463 err = page_counter_memparse(buf, "max", &max);
5464 if (err)
5465 return err;
5466
5467 xchg(&memcg->zswap_max, max);
5468
5469 return nbytes;
5470 }
5471
zswap_writeback_show(struct seq_file * m,void * v)5472 static int zswap_writeback_show(struct seq_file *m, void *v)
5473 {
5474 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5475
5476 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5477 return 0;
5478 }
5479
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5480 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5481 char *buf, size_t nbytes, loff_t off)
5482 {
5483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5484 int zswap_writeback;
5485 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5486
5487 if (parse_ret)
5488 return parse_ret;
5489
5490 if (zswap_writeback != 0 && zswap_writeback != 1)
5491 return -EINVAL;
5492
5493 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5494 return nbytes;
5495 }
5496
5497 static struct cftype zswap_files[] = {
5498 {
5499 .name = "zswap.current",
5500 .flags = CFTYPE_NOT_ON_ROOT,
5501 .read_u64 = zswap_current_read,
5502 },
5503 {
5504 .name = "zswap.max",
5505 .flags = CFTYPE_NOT_ON_ROOT,
5506 .seq_show = zswap_max_show,
5507 .write = zswap_max_write,
5508 },
5509 {
5510 .name = "zswap.writeback",
5511 .seq_show = zswap_writeback_show,
5512 .write = zswap_writeback_write,
5513 },
5514 { } /* terminate */
5515 };
5516 #endif /* CONFIG_ZSWAP */
5517
mem_cgroup_swap_init(void)5518 static int __init mem_cgroup_swap_init(void)
5519 {
5520 if (mem_cgroup_disabled())
5521 return 0;
5522
5523 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5524 #ifdef CONFIG_MEMCG_V1
5525 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5526 #endif
5527 #ifdef CONFIG_ZSWAP
5528 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5529 #endif
5530 return 0;
5531 }
5532 subsys_initcall(mem_cgroup_swap_init);
5533
5534 #endif /* CONFIG_SWAP */
5535