• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/mmu_notifier.c
4  *
5  *  Copyright (C) 2008  Qumranet, Inc.
6  *  Copyright (C) 2008  SGI
7  *             Christoph Lameter <cl@linux.com>
8  */
9 
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 
22 #include "vma.h"
23 
24 /* global SRCU for all MMs */
25 DEFINE_STATIC_SRCU(srcu);
26 
27 #ifdef CONFIG_LOCKDEP
28 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
29 	.name = "mmu_notifier_invalidate_range_start"
30 };
31 #endif
32 
33 /*
34  * The mmu_notifier_subscriptions structure is allocated and installed in
35  * mm->notifier_subscriptions inside the mm_take_all_locks() protected
36  * critical section and it's released only when mm_count reaches zero
37  * in mmdrop().
38  */
39 struct mmu_notifier_subscriptions {
40 	/* all mmu notifiers registered in this mm are queued in this list */
41 	struct hlist_head list;
42 	bool has_itree;
43 	/* to serialize the list modifications and hlist_unhashed */
44 	spinlock_t lock;
45 	unsigned long invalidate_seq;
46 	unsigned long active_invalidate_ranges;
47 	struct rb_root_cached itree;
48 	wait_queue_head_t wq;
49 	struct hlist_head deferred_list;
50 };
51 
52 /*
53  * This is a collision-retry read-side/write-side 'lock', a lot like a
54  * seqcount, however this allows multiple write-sides to hold it at
55  * once. Conceptually the write side is protecting the values of the PTEs in
56  * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
57  * writer exists.
58  *
59  * Note that the core mm creates nested invalidate_range_start()/end() regions
60  * within the same thread, and runs invalidate_range_start()/end() in parallel
61  * on multiple CPUs. This is designed to not reduce concurrency or block
62  * progress on the mm side.
63  *
64  * As a secondary function, holding the full write side also serves to prevent
65  * writers for the itree, this is an optimization to avoid extra locking
66  * during invalidate_range_start/end notifiers.
67  *
68  * The write side has two states, fully excluded:
69  *  - mm->active_invalidate_ranges != 0
70  *  - subscriptions->invalidate_seq & 1 == True (odd)
71  *  - some range on the mm_struct is being invalidated
72  *  - the itree is not allowed to change
73  *
74  * And partially excluded:
75  *  - mm->active_invalidate_ranges != 0
76  *  - subscriptions->invalidate_seq & 1 == False (even)
77  *  - some range on the mm_struct is being invalidated
78  *  - the itree is allowed to change
79  *
80  * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
81  *    seq |= 1  # Begin writing
82  *    seq++     # Release the writing state
83  *    seq & 1   # True if a writer exists
84  *
85  * The later state avoids some expensive work on inv_end in the common case of
86  * no mmu_interval_notifier monitoring the VA.
87  */
88 static bool
mn_itree_is_invalidating(struct mmu_notifier_subscriptions * subscriptions)89 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
90 {
91 	lockdep_assert_held(&subscriptions->lock);
92 	return subscriptions->invalidate_seq & 1;
93 }
94 
95 static struct mmu_interval_notifier *
mn_itree_inv_start_range(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range,unsigned long * seq)96 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
97 			 const struct mmu_notifier_range *range,
98 			 unsigned long *seq)
99 {
100 	struct interval_tree_node *node;
101 	struct mmu_interval_notifier *res = NULL;
102 
103 	spin_lock(&subscriptions->lock);
104 	subscriptions->active_invalidate_ranges++;
105 	node = interval_tree_iter_first(&subscriptions->itree, range->start,
106 					range->end - 1);
107 	if (node) {
108 		subscriptions->invalidate_seq |= 1;
109 		res = container_of(node, struct mmu_interval_notifier,
110 				   interval_tree);
111 	}
112 
113 	*seq = subscriptions->invalidate_seq;
114 	spin_unlock(&subscriptions->lock);
115 	return res;
116 }
117 
118 static struct mmu_interval_notifier *
mn_itree_inv_next(struct mmu_interval_notifier * interval_sub,const struct mmu_notifier_range * range)119 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
120 		  const struct mmu_notifier_range *range)
121 {
122 	struct interval_tree_node *node;
123 
124 	node = interval_tree_iter_next(&interval_sub->interval_tree,
125 				       range->start, range->end - 1);
126 	if (!node)
127 		return NULL;
128 	return container_of(node, struct mmu_interval_notifier, interval_tree);
129 }
130 
mn_itree_inv_end(struct mmu_notifier_subscriptions * subscriptions)131 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
132 {
133 	struct mmu_interval_notifier *interval_sub;
134 	struct hlist_node *next;
135 
136 	spin_lock(&subscriptions->lock);
137 	if (--subscriptions->active_invalidate_ranges ||
138 	    !mn_itree_is_invalidating(subscriptions)) {
139 		spin_unlock(&subscriptions->lock);
140 		return;
141 	}
142 
143 	/* Make invalidate_seq even */
144 	subscriptions->invalidate_seq++;
145 
146 	/*
147 	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
148 	 * Adds and removes are queued until the final inv_end happens then
149 	 * they are progressed. This arrangement for tree updates is used to
150 	 * avoid using a blocking lock during invalidate_range_start.
151 	 */
152 	hlist_for_each_entry_safe(interval_sub, next,
153 				  &subscriptions->deferred_list,
154 				  deferred_item) {
155 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
156 			interval_tree_insert(&interval_sub->interval_tree,
157 					     &subscriptions->itree);
158 		else
159 			interval_tree_remove(&interval_sub->interval_tree,
160 					     &subscriptions->itree);
161 		hlist_del(&interval_sub->deferred_item);
162 	}
163 	spin_unlock(&subscriptions->lock);
164 
165 	wake_up_all(&subscriptions->wq);
166 }
167 
168 /**
169  * mmu_interval_read_begin - Begin a read side critical section against a VA
170  *                           range
171  * @interval_sub: The interval subscription
172  *
173  * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
174  * collision-retry scheme similar to seqcount for the VA range under
175  * subscription. If the mm invokes invalidation during the critical section
176  * then mmu_interval_read_retry() will return true.
177  *
178  * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
179  * require a blocking context.  The critical region formed by this can sleep,
180  * and the required 'user_lock' can also be a sleeping lock.
181  *
182  * The caller is required to provide a 'user_lock' to serialize both teardown
183  * and setup.
184  *
185  * The return value should be passed to mmu_interval_read_retry().
186  */
187 unsigned long
mmu_interval_read_begin(struct mmu_interval_notifier * interval_sub)188 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
189 {
190 	struct mmu_notifier_subscriptions *subscriptions =
191 		interval_sub->mm->notifier_subscriptions;
192 	unsigned long seq;
193 	bool is_invalidating;
194 
195 	/*
196 	 * If the subscription has a different seq value under the user_lock
197 	 * than we started with then it has collided.
198 	 *
199 	 * If the subscription currently has the same seq value as the
200 	 * subscriptions seq, then it is currently between
201 	 * invalidate_start/end and is colliding.
202 	 *
203 	 * The locking looks broadly like this:
204 	 *   mn_itree_inv_start():                 mmu_interval_read_begin():
205 	 *                                         spin_lock
206 	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
207 	 *                                          seq == subs->invalidate_seq
208 	 *                                         spin_unlock
209 	 *    spin_lock
210 	 *     seq = ++subscriptions->invalidate_seq
211 	 *    spin_unlock
212 	 *     op->invalidate():
213 	 *       user_lock
214 	 *        mmu_interval_set_seq()
215 	 *         interval_sub->invalidate_seq = seq
216 	 *       user_unlock
217 	 *
218 	 *                          [Required: mmu_interval_read_retry() == true]
219 	 *
220 	 *   mn_itree_inv_end():
221 	 *    spin_lock
222 	 *     seq = ++subscriptions->invalidate_seq
223 	 *    spin_unlock
224 	 *
225 	 *                                        user_lock
226 	 *                                         mmu_interval_read_retry():
227 	 *                                          interval_sub->invalidate_seq != seq
228 	 *                                        user_unlock
229 	 *
230 	 * Barriers are not needed here as any races here are closed by an
231 	 * eventual mmu_interval_read_retry(), which provides a barrier via the
232 	 * user_lock.
233 	 */
234 	spin_lock(&subscriptions->lock);
235 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
236 	seq = READ_ONCE(interval_sub->invalidate_seq);
237 	is_invalidating = seq == subscriptions->invalidate_seq;
238 	spin_unlock(&subscriptions->lock);
239 
240 	/*
241 	 * interval_sub->invalidate_seq must always be set to an odd value via
242 	 * mmu_interval_set_seq() using the provided cur_seq from
243 	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
244 	 * will always clear the below sleep in some reasonable time as
245 	 * subscriptions->invalidate_seq is even in the idle state.
246 	 */
247 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
248 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
249 	if (is_invalidating)
250 		wait_event(subscriptions->wq,
251 			   READ_ONCE(subscriptions->invalidate_seq) != seq);
252 
253 	/*
254 	 * Notice that mmu_interval_read_retry() can already be true at this
255 	 * point, avoiding loops here allows the caller to provide a global
256 	 * time bound.
257 	 */
258 
259 	return seq;
260 }
261 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
262 
mn_itree_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)263 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
264 			     struct mm_struct *mm)
265 {
266 	struct mmu_notifier_range range = {
267 		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
268 		.event = MMU_NOTIFY_RELEASE,
269 		.mm = mm,
270 		.start = 0,
271 		.end = ULONG_MAX,
272 	};
273 	struct mmu_interval_notifier *interval_sub;
274 	unsigned long cur_seq;
275 	bool ret;
276 
277 	for (interval_sub =
278 		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
279 	     interval_sub;
280 	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
281 		ret = interval_sub->ops->invalidate(interval_sub, &range,
282 						    cur_seq);
283 		WARN_ON(!ret);
284 	}
285 
286 	mn_itree_inv_end(subscriptions);
287 }
288 
289 /*
290  * This function can't run concurrently against mmu_notifier_register
291  * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
292  * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
293  * in parallel despite there being no task using this mm any more,
294  * through the vmas outside of the exit_mmap context, such as with
295  * vmtruncate. This serializes against mmu_notifier_unregister with
296  * the notifier_subscriptions->lock in addition to SRCU and it serializes
297  * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
298  * can't go away from under us as exit_mmap holds an mm_count pin
299  * itself.
300  */
mn_hlist_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)301 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
302 			     struct mm_struct *mm)
303 {
304 	struct mmu_notifier *subscription;
305 	int id;
306 
307 	/*
308 	 * SRCU here will block mmu_notifier_unregister until
309 	 * ->release returns.
310 	 */
311 	id = srcu_read_lock(&srcu);
312 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
313 				 srcu_read_lock_held(&srcu))
314 		/*
315 		 * If ->release runs before mmu_notifier_unregister it must be
316 		 * handled, as it's the only way for the driver to flush all
317 		 * existing sptes and stop the driver from establishing any more
318 		 * sptes before all the pages in the mm are freed.
319 		 */
320 		if (subscription->ops->release)
321 			subscription->ops->release(subscription, mm);
322 
323 	spin_lock(&subscriptions->lock);
324 	while (unlikely(!hlist_empty(&subscriptions->list))) {
325 		subscription = hlist_entry(subscriptions->list.first,
326 					   struct mmu_notifier, hlist);
327 		/*
328 		 * We arrived before mmu_notifier_unregister so
329 		 * mmu_notifier_unregister will do nothing other than to wait
330 		 * for ->release to finish and for mmu_notifier_unregister to
331 		 * return.
332 		 */
333 		hlist_del_init_rcu(&subscription->hlist);
334 	}
335 	spin_unlock(&subscriptions->lock);
336 	srcu_read_unlock(&srcu, id);
337 
338 	/*
339 	 * synchronize_srcu here prevents mmu_notifier_release from returning to
340 	 * exit_mmap (which would proceed with freeing all pages in the mm)
341 	 * until the ->release method returns, if it was invoked by
342 	 * mmu_notifier_unregister.
343 	 *
344 	 * The notifier_subscriptions can't go away from under us because
345 	 * one mm_count is held by exit_mmap.
346 	 */
347 	synchronize_srcu(&srcu);
348 }
349 
__mmu_notifier_release(struct mm_struct * mm)350 void __mmu_notifier_release(struct mm_struct *mm)
351 {
352 	struct mmu_notifier_subscriptions *subscriptions =
353 		mm->notifier_subscriptions;
354 
355 	if (subscriptions->has_itree)
356 		mn_itree_release(subscriptions, mm);
357 
358 	if (!hlist_empty(&subscriptions->list))
359 		mn_hlist_release(subscriptions, mm);
360 }
361 
362 /*
363  * If no young bitflag is supported by the hardware, ->clear_flush_young can
364  * unmap the address and return 1 or 0 depending if the mapping previously
365  * existed or not.
366  */
__mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)367 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
368 					unsigned long start,
369 					unsigned long end)
370 {
371 	struct mmu_notifier *subscription;
372 	int young = 0, id;
373 
374 	id = srcu_read_lock(&srcu);
375 	hlist_for_each_entry_rcu(subscription,
376 				 &mm->notifier_subscriptions->list, hlist,
377 				 srcu_read_lock_held(&srcu)) {
378 		if (subscription->ops->clear_flush_young)
379 			young |= subscription->ops->clear_flush_young(
380 				subscription, mm, start, end);
381 	}
382 	srcu_read_unlock(&srcu, id);
383 
384 	return young;
385 }
386 
__mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)387 int __mmu_notifier_clear_young(struct mm_struct *mm,
388 			       unsigned long start,
389 			       unsigned long end)
390 {
391 	struct mmu_notifier *subscription;
392 	int young = 0, id;
393 
394 	id = srcu_read_lock(&srcu);
395 	hlist_for_each_entry_rcu(subscription,
396 				 &mm->notifier_subscriptions->list, hlist,
397 				 srcu_read_lock_held(&srcu)) {
398 		if (subscription->ops->clear_young)
399 			young |= subscription->ops->clear_young(subscription,
400 								mm, start, end);
401 	}
402 	srcu_read_unlock(&srcu, id);
403 
404 	return young;
405 }
406 
__mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)407 int __mmu_notifier_test_young(struct mm_struct *mm,
408 			      unsigned long address)
409 {
410 	struct mmu_notifier *subscription;
411 	int young = 0, id;
412 
413 	id = srcu_read_lock(&srcu);
414 	hlist_for_each_entry_rcu(subscription,
415 				 &mm->notifier_subscriptions->list, hlist,
416 				 srcu_read_lock_held(&srcu)) {
417 		if (subscription->ops->test_young) {
418 			young = subscription->ops->test_young(subscription, mm,
419 							      address);
420 			if (young)
421 				break;
422 		}
423 	}
424 	srcu_read_unlock(&srcu, id);
425 
426 	return young;
427 }
428 
mn_itree_invalidate(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range)429 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
430 			       const struct mmu_notifier_range *range)
431 {
432 	struct mmu_interval_notifier *interval_sub;
433 	unsigned long cur_seq;
434 
435 	for (interval_sub =
436 		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
437 	     interval_sub;
438 	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
439 		bool ret;
440 
441 		ret = interval_sub->ops->invalidate(interval_sub, range,
442 						    cur_seq);
443 		if (!ret) {
444 			if (WARN_ON(mmu_notifier_range_blockable(range)))
445 				continue;
446 			goto out_would_block;
447 		}
448 	}
449 	return 0;
450 
451 out_would_block:
452 	/*
453 	 * On -EAGAIN the non-blocking caller is not allowed to call
454 	 * invalidate_range_end()
455 	 */
456 	mn_itree_inv_end(subscriptions);
457 	return -EAGAIN;
458 }
459 
mn_hlist_invalidate_range_start(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range)460 static int mn_hlist_invalidate_range_start(
461 	struct mmu_notifier_subscriptions *subscriptions,
462 	struct mmu_notifier_range *range)
463 {
464 	struct mmu_notifier *subscription;
465 	int ret = 0;
466 	int id;
467 
468 	id = srcu_read_lock(&srcu);
469 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
470 				 srcu_read_lock_held(&srcu)) {
471 		const struct mmu_notifier_ops *ops = subscription->ops;
472 
473 		if (ops->invalidate_range_start) {
474 			int _ret;
475 
476 			if (!mmu_notifier_range_blockable(range))
477 				non_block_start();
478 			_ret = ops->invalidate_range_start(subscription, range);
479 			if (!mmu_notifier_range_blockable(range))
480 				non_block_end();
481 			if (_ret) {
482 				pr_info("%pS callback failed with %d in %sblockable context.\n",
483 					ops->invalidate_range_start, _ret,
484 					!mmu_notifier_range_blockable(range) ?
485 						"non-" :
486 						"");
487 				WARN_ON(mmu_notifier_range_blockable(range) ||
488 					_ret != -EAGAIN);
489 				/*
490 				 * We call all the notifiers on any EAGAIN,
491 				 * there is no way for a notifier to know if
492 				 * its start method failed, thus a start that
493 				 * does EAGAIN can't also do end.
494 				 */
495 				WARN_ON(ops->invalidate_range_end);
496 				ret = _ret;
497 			}
498 		}
499 	}
500 
501 	if (ret) {
502 		/*
503 		 * Must be non-blocking to get here.  If there are multiple
504 		 * notifiers and one or more failed start, any that succeeded
505 		 * start are expecting their end to be called.  Do so now.
506 		 */
507 		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
508 					 hlist, srcu_read_lock_held(&srcu)) {
509 			if (!subscription->ops->invalidate_range_end)
510 				continue;
511 
512 			subscription->ops->invalidate_range_end(subscription,
513 								range);
514 		}
515 	}
516 	srcu_read_unlock(&srcu, id);
517 
518 	return ret;
519 }
520 
__mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)521 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
522 {
523 	struct mmu_notifier_subscriptions *subscriptions =
524 		range->mm->notifier_subscriptions;
525 	int ret;
526 
527 	if (subscriptions->has_itree) {
528 		ret = mn_itree_invalidate(subscriptions, range);
529 		if (ret)
530 			return ret;
531 	}
532 	if (!hlist_empty(&subscriptions->list))
533 		return mn_hlist_invalidate_range_start(subscriptions, range);
534 	return 0;
535 }
536 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_start);
537 
538 static void
mn_hlist_invalidate_end(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range)539 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
540 			struct mmu_notifier_range *range)
541 {
542 	struct mmu_notifier *subscription;
543 	int id;
544 
545 	id = srcu_read_lock(&srcu);
546 	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
547 				 srcu_read_lock_held(&srcu)) {
548 		if (subscription->ops->invalidate_range_end) {
549 			if (!mmu_notifier_range_blockable(range))
550 				non_block_start();
551 			subscription->ops->invalidate_range_end(subscription,
552 								range);
553 			if (!mmu_notifier_range_blockable(range))
554 				non_block_end();
555 		}
556 	}
557 	srcu_read_unlock(&srcu, id);
558 }
559 
__mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)560 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
561 {
562 	struct mmu_notifier_subscriptions *subscriptions =
563 		range->mm->notifier_subscriptions;
564 
565 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
566 	if (subscriptions->has_itree)
567 		mn_itree_inv_end(subscriptions);
568 
569 	if (!hlist_empty(&subscriptions->list))
570 		mn_hlist_invalidate_end(subscriptions, range);
571 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
572 }
573 EXPORT_SYMBOL_GPL(__mmu_notifier_invalidate_range_end);
574 
__mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct * mm,unsigned long start,unsigned long end)575 void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
576 					unsigned long start, unsigned long end)
577 {
578 	struct mmu_notifier *subscription;
579 	int id;
580 
581 	id = srcu_read_lock(&srcu);
582 	hlist_for_each_entry_rcu(subscription,
583 				 &mm->notifier_subscriptions->list, hlist,
584 				 srcu_read_lock_held(&srcu)) {
585 		if (subscription->ops->arch_invalidate_secondary_tlbs)
586 			subscription->ops->arch_invalidate_secondary_tlbs(
587 				subscription, mm,
588 				start, end);
589 	}
590 	srcu_read_unlock(&srcu, id);
591 }
592 EXPORT_SYMBOL_GPL(__mmu_notifier_arch_invalidate_secondary_tlbs);
593 
594 /*
595  * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
596  * write mode. A NULL mn signals the notifier is being registered for itree
597  * mode.
598  */
__mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)599 int __mmu_notifier_register(struct mmu_notifier *subscription,
600 			    struct mm_struct *mm)
601 {
602 	struct mmu_notifier_subscriptions *subscriptions = NULL;
603 	int ret;
604 
605 	mmap_assert_write_locked(mm);
606 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
607 
608 	/*
609 	 * Subsystems should only register for invalidate_secondary_tlbs() or
610 	 * invalidate_range_start()/end() callbacks, not both.
611 	 */
612 	if (WARN_ON_ONCE(subscription &&
613 			 (subscription->ops->arch_invalidate_secondary_tlbs &&
614 			 (subscription->ops->invalidate_range_start ||
615 			  subscription->ops->invalidate_range_end))))
616 		return -EINVAL;
617 
618 	if (!mm->notifier_subscriptions) {
619 		/*
620 		 * kmalloc cannot be called under mm_take_all_locks(), but we
621 		 * know that mm->notifier_subscriptions can't change while we
622 		 * hold the write side of the mmap_lock.
623 		 */
624 		subscriptions = kzalloc(
625 			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
626 		if (!subscriptions)
627 			return -ENOMEM;
628 
629 		INIT_HLIST_HEAD(&subscriptions->list);
630 		spin_lock_init(&subscriptions->lock);
631 		subscriptions->invalidate_seq = 2;
632 		subscriptions->itree = RB_ROOT_CACHED;
633 		init_waitqueue_head(&subscriptions->wq);
634 		INIT_HLIST_HEAD(&subscriptions->deferred_list);
635 	}
636 
637 	ret = mm_take_all_locks(mm);
638 	if (unlikely(ret))
639 		goto out_clean;
640 
641 	/*
642 	 * Serialize the update against mmu_notifier_unregister. A
643 	 * side note: mmu_notifier_release can't run concurrently with
644 	 * us because we hold the mm_users pin (either implicitly as
645 	 * current->mm or explicitly with get_task_mm() or similar).
646 	 * We can't race against any other mmu notifier method either
647 	 * thanks to mm_take_all_locks().
648 	 *
649 	 * release semantics on the initialization of the
650 	 * mmu_notifier_subscriptions's contents are provided for unlocked
651 	 * readers.  acquire can only be used while holding the mmgrab or
652 	 * mmget, and is safe because once created the
653 	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
654 	 * As above, users holding the mmap_lock or one of the
655 	 * mm_take_all_locks() do not need to use acquire semantics.
656 	 */
657 	if (subscriptions)
658 		smp_store_release(&mm->notifier_subscriptions, subscriptions);
659 
660 	if (subscription) {
661 		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
662 		mmgrab(mm);
663 		subscription->mm = mm;
664 		subscription->users = 1;
665 
666 		spin_lock(&mm->notifier_subscriptions->lock);
667 		hlist_add_head_rcu(&subscription->hlist,
668 				   &mm->notifier_subscriptions->list);
669 		spin_unlock(&mm->notifier_subscriptions->lock);
670 	} else
671 		mm->notifier_subscriptions->has_itree = true;
672 
673 	mm_drop_all_locks(mm);
674 	BUG_ON(atomic_read(&mm->mm_users) <= 0);
675 	return 0;
676 
677 out_clean:
678 	kfree(subscriptions);
679 	return ret;
680 }
681 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
682 
683 /**
684  * mmu_notifier_register - Register a notifier on a mm
685  * @subscription: The notifier to attach
686  * @mm: The mm to attach the notifier to
687  *
688  * Must not hold mmap_lock nor any other VM related lock when calling
689  * this registration function. Must also ensure mm_users can't go down
690  * to zero while this runs to avoid races with mmu_notifier_release,
691  * so mm has to be current->mm or the mm should be pinned safely such
692  * as with get_task_mm(). If the mm is not current->mm, the mm_users
693  * pin should be released by calling mmput after mmu_notifier_register
694  * returns.
695  *
696  * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
697  * unregister the notifier.
698  *
699  * While the caller has a mmu_notifier get the subscription->mm pointer will remain
700  * valid, and can be converted to an active mm pointer via mmget_not_zero().
701  */
mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)702 int mmu_notifier_register(struct mmu_notifier *subscription,
703 			  struct mm_struct *mm)
704 {
705 	int ret;
706 
707 	mmap_write_lock(mm);
708 	ret = __mmu_notifier_register(subscription, mm);
709 	mmap_write_unlock(mm);
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(mmu_notifier_register);
713 
714 static struct mmu_notifier *
find_get_mmu_notifier(struct mm_struct * mm,const struct mmu_notifier_ops * ops)715 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
716 {
717 	struct mmu_notifier *subscription;
718 
719 	spin_lock(&mm->notifier_subscriptions->lock);
720 	hlist_for_each_entry_rcu(subscription,
721 				 &mm->notifier_subscriptions->list, hlist,
722 				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
723 		if (subscription->ops != ops)
724 			continue;
725 
726 		if (likely(subscription->users != UINT_MAX))
727 			subscription->users++;
728 		else
729 			subscription = ERR_PTR(-EOVERFLOW);
730 		spin_unlock(&mm->notifier_subscriptions->lock);
731 		return subscription;
732 	}
733 	spin_unlock(&mm->notifier_subscriptions->lock);
734 	return NULL;
735 }
736 
737 /**
738  * mmu_notifier_get_locked - Return the single struct mmu_notifier for
739  *                           the mm & ops
740  * @ops: The operations struct being subscribe with
741  * @mm : The mm to attach notifiers too
742  *
743  * This function either allocates a new mmu_notifier via
744  * ops->alloc_notifier(), or returns an already existing notifier on the
745  * list. The value of the ops pointer is used to determine when two notifiers
746  * are the same.
747  *
748  * Each call to mmu_notifier_get() must be paired with a call to
749  * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
750  *
751  * While the caller has a mmu_notifier get the mm pointer will remain valid,
752  * and can be converted to an active mm pointer via mmget_not_zero().
753  */
mmu_notifier_get_locked(const struct mmu_notifier_ops * ops,struct mm_struct * mm)754 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
755 					     struct mm_struct *mm)
756 {
757 	struct mmu_notifier *subscription;
758 	int ret;
759 
760 	mmap_assert_write_locked(mm);
761 
762 	if (mm->notifier_subscriptions) {
763 		subscription = find_get_mmu_notifier(mm, ops);
764 		if (subscription)
765 			return subscription;
766 	}
767 
768 	subscription = ops->alloc_notifier(mm);
769 	if (IS_ERR(subscription))
770 		return subscription;
771 	subscription->ops = ops;
772 	ret = __mmu_notifier_register(subscription, mm);
773 	if (ret)
774 		goto out_free;
775 	return subscription;
776 out_free:
777 	subscription->ops->free_notifier(subscription);
778 	return ERR_PTR(ret);
779 }
780 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
781 
782 /* this is called after the last mmu_notifier_unregister() returned */
__mmu_notifier_subscriptions_destroy(struct mm_struct * mm)783 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
784 {
785 	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
786 	kfree(mm->notifier_subscriptions);
787 	mm->notifier_subscriptions = LIST_POISON1; /* debug */
788 }
789 
790 /*
791  * This releases the mm_count pin automatically and frees the mm
792  * structure if it was the last user of it. It serializes against
793  * running mmu notifiers with SRCU and against mmu_notifier_unregister
794  * with the unregister lock + SRCU. All sptes must be dropped before
795  * calling mmu_notifier_unregister. ->release or any other notifier
796  * method may be invoked concurrently with mmu_notifier_unregister,
797  * and only after mmu_notifier_unregister returned we're guaranteed
798  * that ->release or any other method can't run anymore.
799  */
mmu_notifier_unregister(struct mmu_notifier * subscription,struct mm_struct * mm)800 void mmu_notifier_unregister(struct mmu_notifier *subscription,
801 			     struct mm_struct *mm)
802 {
803 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
804 
805 	if (!hlist_unhashed(&subscription->hlist)) {
806 		/*
807 		 * SRCU here will force exit_mmap to wait for ->release to
808 		 * finish before freeing the pages.
809 		 */
810 		int id;
811 
812 		id = srcu_read_lock(&srcu);
813 		/*
814 		 * exit_mmap will block in mmu_notifier_release to guarantee
815 		 * that ->release is called before freeing the pages.
816 		 */
817 		if (subscription->ops->release)
818 			subscription->ops->release(subscription, mm);
819 		srcu_read_unlock(&srcu, id);
820 
821 		spin_lock(&mm->notifier_subscriptions->lock);
822 		/*
823 		 * Can not use list_del_rcu() since __mmu_notifier_release
824 		 * can delete it before we hold the lock.
825 		 */
826 		hlist_del_init_rcu(&subscription->hlist);
827 		spin_unlock(&mm->notifier_subscriptions->lock);
828 	}
829 
830 	/*
831 	 * Wait for any running method to finish, of course including
832 	 * ->release if it was run by mmu_notifier_release instead of us.
833 	 */
834 	synchronize_srcu(&srcu);
835 
836 	BUG_ON(atomic_read(&mm->mm_count) <= 0);
837 
838 	mmdrop(mm);
839 }
840 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
841 
mmu_notifier_free_rcu(struct rcu_head * rcu)842 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
843 {
844 	struct mmu_notifier *subscription =
845 		container_of(rcu, struct mmu_notifier, rcu);
846 	struct mm_struct *mm = subscription->mm;
847 
848 	subscription->ops->free_notifier(subscription);
849 	/* Pairs with the get in __mmu_notifier_register() */
850 	mmdrop(mm);
851 }
852 
853 /**
854  * mmu_notifier_put - Release the reference on the notifier
855  * @subscription: The notifier to act on
856  *
857  * This function must be paired with each mmu_notifier_get(), it releases the
858  * reference obtained by the get. If this is the last reference then process
859  * to free the notifier will be run asynchronously.
860  *
861  * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
862  * when the mm_struct is destroyed. Instead free_notifier is always called to
863  * release any resources held by the user.
864  *
865  * As ops->release is not guaranteed to be called, the user must ensure that
866  * all sptes are dropped, and no new sptes can be established before
867  * mmu_notifier_put() is called.
868  *
869  * This function can be called from the ops->release callback, however the
870  * caller must still ensure it is called pairwise with mmu_notifier_get().
871  *
872  * Modules calling this function must call mmu_notifier_synchronize() in
873  * their __exit functions to ensure the async work is completed.
874  */
mmu_notifier_put(struct mmu_notifier * subscription)875 void mmu_notifier_put(struct mmu_notifier *subscription)
876 {
877 	struct mm_struct *mm = subscription->mm;
878 
879 	spin_lock(&mm->notifier_subscriptions->lock);
880 	if (WARN_ON(!subscription->users) || --subscription->users)
881 		goto out_unlock;
882 	hlist_del_init_rcu(&subscription->hlist);
883 	spin_unlock(&mm->notifier_subscriptions->lock);
884 
885 	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
886 	return;
887 
888 out_unlock:
889 	spin_unlock(&mm->notifier_subscriptions->lock);
890 }
891 EXPORT_SYMBOL_GPL(mmu_notifier_put);
892 
__mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,struct mmu_notifier_subscriptions * subscriptions,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)893 static int __mmu_interval_notifier_insert(
894 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
895 	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
896 	unsigned long length, const struct mmu_interval_notifier_ops *ops)
897 {
898 	interval_sub->mm = mm;
899 	interval_sub->ops = ops;
900 	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
901 	interval_sub->interval_tree.start = start;
902 	/*
903 	 * Note that the representation of the intervals in the interval tree
904 	 * considers the ending point as contained in the interval.
905 	 */
906 	if (length == 0 ||
907 	    check_add_overflow(start, length - 1,
908 			       &interval_sub->interval_tree.last))
909 		return -EOVERFLOW;
910 
911 	/* Must call with a mmget() held */
912 	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
913 		return -EINVAL;
914 
915 	/* pairs with mmdrop in mmu_interval_notifier_remove() */
916 	mmgrab(mm);
917 
918 	/*
919 	 * If some invalidate_range_start/end region is going on in parallel
920 	 * we don't know what VA ranges are affected, so we must assume this
921 	 * new range is included.
922 	 *
923 	 * If the itree is invalidating then we are not allowed to change
924 	 * it. Retrying until invalidation is done is tricky due to the
925 	 * possibility for live lock, instead defer the add to
926 	 * mn_itree_inv_end() so this algorithm is deterministic.
927 	 *
928 	 * In all cases the value for the interval_sub->invalidate_seq should be
929 	 * odd, see mmu_interval_read_begin()
930 	 */
931 	spin_lock(&subscriptions->lock);
932 	if (subscriptions->active_invalidate_ranges) {
933 		if (mn_itree_is_invalidating(subscriptions))
934 			hlist_add_head(&interval_sub->deferred_item,
935 				       &subscriptions->deferred_list);
936 		else {
937 			subscriptions->invalidate_seq |= 1;
938 			interval_tree_insert(&interval_sub->interval_tree,
939 					     &subscriptions->itree);
940 		}
941 		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
942 	} else {
943 		WARN_ON(mn_itree_is_invalidating(subscriptions));
944 		/*
945 		 * The starting seq for a subscription not under invalidation
946 		 * should be odd, not equal to the current invalidate_seq and
947 		 * invalidate_seq should not 'wrap' to the new seq any time
948 		 * soon.
949 		 */
950 		interval_sub->invalidate_seq =
951 			subscriptions->invalidate_seq - 1;
952 		interval_tree_insert(&interval_sub->interval_tree,
953 				     &subscriptions->itree);
954 	}
955 	spin_unlock(&subscriptions->lock);
956 	return 0;
957 }
958 
959 /**
960  * mmu_interval_notifier_insert - Insert an interval notifier
961  * @interval_sub: Interval subscription to register
962  * @start: Starting virtual address to monitor
963  * @length: Length of the range to monitor
964  * @mm: mm_struct to attach to
965  * @ops: Interval notifier operations to be called on matching events
966  *
967  * This function subscribes the interval notifier for notifications from the
968  * mm.  Upon return the ops related to mmu_interval_notifier will be called
969  * whenever an event that intersects with the given range occurs.
970  *
971  * Upon return the range_notifier may not be present in the interval tree yet.
972  * The caller must use the normal interval notifier read flow via
973  * mmu_interval_read_begin() to establish SPTEs for this range.
974  */
mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)975 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
976 				 struct mm_struct *mm, unsigned long start,
977 				 unsigned long length,
978 				 const struct mmu_interval_notifier_ops *ops)
979 {
980 	struct mmu_notifier_subscriptions *subscriptions;
981 	int ret;
982 
983 	might_lock(&mm->mmap_lock);
984 
985 	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
986 	if (!subscriptions || !subscriptions->has_itree) {
987 		ret = mmu_notifier_register(NULL, mm);
988 		if (ret)
989 			return ret;
990 		subscriptions = mm->notifier_subscriptions;
991 	}
992 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
993 					      start, length, ops);
994 }
995 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
996 
mmu_interval_notifier_insert_locked(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)997 int mmu_interval_notifier_insert_locked(
998 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
999 	unsigned long start, unsigned long length,
1000 	const struct mmu_interval_notifier_ops *ops)
1001 {
1002 	struct mmu_notifier_subscriptions *subscriptions =
1003 		mm->notifier_subscriptions;
1004 	int ret;
1005 
1006 	mmap_assert_write_locked(mm);
1007 
1008 	if (!subscriptions || !subscriptions->has_itree) {
1009 		ret = __mmu_notifier_register(NULL, mm);
1010 		if (ret)
1011 			return ret;
1012 		subscriptions = mm->notifier_subscriptions;
1013 	}
1014 	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1015 					      start, length, ops);
1016 }
1017 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1018 
1019 static bool
mmu_interval_seq_released(struct mmu_notifier_subscriptions * subscriptions,unsigned long seq)1020 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1021 			  unsigned long seq)
1022 {
1023 	bool ret;
1024 
1025 	spin_lock(&subscriptions->lock);
1026 	ret = subscriptions->invalidate_seq != seq;
1027 	spin_unlock(&subscriptions->lock);
1028 	return ret;
1029 }
1030 
1031 /**
1032  * mmu_interval_notifier_remove - Remove a interval notifier
1033  * @interval_sub: Interval subscription to unregister
1034  *
1035  * This function must be paired with mmu_interval_notifier_insert(). It cannot
1036  * be called from any ops callback.
1037  *
1038  * Once this returns ops callbacks are no longer running on other CPUs and
1039  * will not be called in future.
1040  */
mmu_interval_notifier_remove(struct mmu_interval_notifier * interval_sub)1041 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1042 {
1043 	struct mm_struct *mm = interval_sub->mm;
1044 	struct mmu_notifier_subscriptions *subscriptions =
1045 		mm->notifier_subscriptions;
1046 	unsigned long seq = 0;
1047 
1048 	might_sleep();
1049 
1050 	spin_lock(&subscriptions->lock);
1051 	if (mn_itree_is_invalidating(subscriptions)) {
1052 		/*
1053 		 * remove is being called after insert put this on the
1054 		 * deferred list, but before the deferred list was processed.
1055 		 */
1056 		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1057 			hlist_del(&interval_sub->deferred_item);
1058 		} else {
1059 			hlist_add_head(&interval_sub->deferred_item,
1060 				       &subscriptions->deferred_list);
1061 			seq = subscriptions->invalidate_seq;
1062 		}
1063 	} else {
1064 		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1065 		interval_tree_remove(&interval_sub->interval_tree,
1066 				     &subscriptions->itree);
1067 	}
1068 	spin_unlock(&subscriptions->lock);
1069 
1070 	/*
1071 	 * The possible sleep on progress in the invalidation requires the
1072 	 * caller not hold any locks held by invalidation callbacks.
1073 	 */
1074 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1075 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1076 	if (seq)
1077 		wait_event(subscriptions->wq,
1078 			   mmu_interval_seq_released(subscriptions, seq));
1079 
1080 	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1081 	mmdrop(mm);
1082 }
1083 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1084 
1085 /**
1086  * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1087  *
1088  * This function ensures that all outstanding async SRU work from
1089  * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1090  * associated with an unused mmu_notifier will no longer be called.
1091  *
1092  * Before using the caller must ensure that all of its mmu_notifiers have been
1093  * fully released via mmu_notifier_put().
1094  *
1095  * Modules using the mmu_notifier_put() API should call this in their __exit
1096  * function to avoid module unloading races.
1097  */
mmu_notifier_synchronize(void)1098 void mmu_notifier_synchronize(void)
1099 {
1100 	synchronize_srcu(&srcu);
1101 }
1102 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1103