1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/page_size_compat.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/uio.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
vfree(const void * addr)114 void vfree(const void *addr)
115 {
116 kfree(addr);
117 }
118 EXPORT_SYMBOL(vfree);
119
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)120 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
121 {
122 /*
123 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
124 * returns only a logical address.
125 */
126 return kmalloc_noprof(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
127 }
128 EXPORT_SYMBOL(__vmalloc_noprof);
129
vrealloc_noprof(const void * p,size_t size,gfp_t flags)130 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
131 {
132 return krealloc_noprof(p, size, (flags | __GFP_COMP) & ~__GFP_HIGHMEM);
133 }
134
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)135 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
136 unsigned long start, unsigned long end, gfp_t gfp_mask,
137 pgprot_t prot, unsigned long vm_flags, int node,
138 const void *caller)
139 {
140 return __vmalloc_noprof(size, gfp_mask);
141 }
142
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)143 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, gfp_t gfp_mask,
144 int node, const void *caller)
145 {
146 return __vmalloc_noprof(size, gfp_mask);
147 }
148
__vmalloc_user_flags(unsigned long size,gfp_t flags)149 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
150 {
151 void *ret;
152
153 ret = __vmalloc(size, flags);
154 if (ret) {
155 struct vm_area_struct *vma;
156
157 mmap_write_lock(current->mm);
158 vma = find_vma(current->mm, (unsigned long)ret);
159 if (vma)
160 vm_flags_set(vma, VM_USERMAP);
161 mmap_write_unlock(current->mm);
162 }
163
164 return ret;
165 }
166
vmalloc_user_noprof(unsigned long size)167 void *vmalloc_user_noprof(unsigned long size)
168 {
169 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
170 }
171 EXPORT_SYMBOL(vmalloc_user_noprof);
172
vmalloc_to_page(const void * addr)173 struct page *vmalloc_to_page(const void *addr)
174 {
175 return virt_to_page(addr);
176 }
177 EXPORT_SYMBOL(vmalloc_to_page);
178
vmalloc_to_pfn(const void * addr)179 unsigned long vmalloc_to_pfn(const void *addr)
180 {
181 return page_to_pfn(virt_to_page(addr));
182 }
183 EXPORT_SYMBOL(vmalloc_to_pfn);
184
vread_iter(struct iov_iter * iter,const char * addr,size_t count)185 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
186 {
187 /* Don't allow overflow */
188 if ((unsigned long) addr + count < count)
189 count = -(unsigned long) addr;
190
191 return copy_to_iter(addr, count, iter);
192 }
193
194 /*
195 * vmalloc - allocate virtually contiguous memory
196 *
197 * @size: allocation size
198 *
199 * Allocate enough pages to cover @size from the page level
200 * allocator and map them into contiguous kernel virtual space.
201 *
202 * For tight control over page level allocator and protection flags
203 * use __vmalloc() instead.
204 */
vmalloc_noprof(unsigned long size)205 void *vmalloc_noprof(unsigned long size)
206 {
207 return __vmalloc_noprof(size, GFP_KERNEL);
208 }
209 EXPORT_SYMBOL(vmalloc_noprof);
210
211 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc_noprof);
212
213 /*
214 * vzalloc - allocate virtually contiguous memory with zero fill
215 *
216 * @size: allocation size
217 *
218 * Allocate enough pages to cover @size from the page level
219 * allocator and map them into contiguous kernel virtual space.
220 * The memory allocated is set to zero.
221 *
222 * For tight control over page level allocator and protection flags
223 * use __vmalloc() instead.
224 */
vzalloc_noprof(unsigned long size)225 void *vzalloc_noprof(unsigned long size)
226 {
227 return __vmalloc_noprof(size, GFP_KERNEL | __GFP_ZERO);
228 }
229 EXPORT_SYMBOL(vzalloc_noprof);
230
231 /**
232 * vmalloc_node - allocate memory on a specific node
233 * @size: allocation size
234 * @node: numa node
235 *
236 * Allocate enough pages to cover @size from the page level
237 * allocator and map them into contiguous kernel virtual space.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
vmalloc_node_noprof(unsigned long size,int node)242 void *vmalloc_node_noprof(unsigned long size, int node)
243 {
244 return vmalloc_noprof(size);
245 }
246 EXPORT_SYMBOL(vmalloc_node_noprof);
247
248 /**
249 * vzalloc_node - allocate memory on a specific node with zero fill
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 * The memory allocated is set to zero.
256 *
257 * For tight control over page level allocator and protection flags
258 * use __vmalloc() instead.
259 */
vzalloc_node_noprof(unsigned long size,int node)260 void *vzalloc_node_noprof(unsigned long size, int node)
261 {
262 return vzalloc_noprof(size);
263 }
264 EXPORT_SYMBOL(vzalloc_node_noprof);
265
266 /**
267 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
268 * @size: allocation size
269 *
270 * Allocate enough 32bit PA addressable pages to cover @size from the
271 * page level allocator and map them into contiguous kernel virtual space.
272 */
vmalloc_32_noprof(unsigned long size)273 void *vmalloc_32_noprof(unsigned long size)
274 {
275 return __vmalloc_noprof(size, GFP_KERNEL);
276 }
277 EXPORT_SYMBOL(vmalloc_32_noprof);
278
279 /**
280 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
281 * @size: allocation size
282 *
283 * The resulting memory area is 32bit addressable and zeroed so it can be
284 * mapped to userspace without leaking data.
285 *
286 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
287 * remap_vmalloc_range() are permissible.
288 */
vmalloc_32_user_noprof(unsigned long size)289 void *vmalloc_32_user_noprof(unsigned long size)
290 {
291 /*
292 * We'll have to sort out the ZONE_DMA bits for 64-bit,
293 * but for now this can simply use vmalloc_user() directly.
294 */
295 return vmalloc_user_noprof(size);
296 }
297 EXPORT_SYMBOL(vmalloc_32_user_noprof);
298
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)299 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
300 {
301 BUG();
302 return NULL;
303 }
304 EXPORT_SYMBOL(vmap);
305
vunmap(const void * addr)306 void vunmap(const void *addr)
307 {
308 BUG();
309 }
310 EXPORT_SYMBOL(vunmap);
311
vm_map_ram(struct page ** pages,unsigned int count,int node)312 void *vm_map_ram(struct page **pages, unsigned int count, int node)
313 {
314 BUG();
315 return NULL;
316 }
317 EXPORT_SYMBOL(vm_map_ram);
318
vm_unmap_ram(const void * mem,unsigned int count)319 void vm_unmap_ram(const void *mem, unsigned int count)
320 {
321 BUG();
322 }
323 EXPORT_SYMBOL(vm_unmap_ram);
324
vm_unmap_aliases(void)325 void vm_unmap_aliases(void)
326 {
327 }
328 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
329
free_vm_area(struct vm_struct * area)330 void free_vm_area(struct vm_struct *area)
331 {
332 BUG();
333 }
334 EXPORT_SYMBOL_GPL(free_vm_area);
335
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)336 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
337 struct page *page)
338 {
339 return -EINVAL;
340 }
341 EXPORT_SYMBOL(vm_insert_page);
342
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)343 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
344 struct page **pages, unsigned long *num)
345 {
346 return -EINVAL;
347 }
348 EXPORT_SYMBOL(vm_insert_pages);
349
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)350 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
351 unsigned long num)
352 {
353 return -EINVAL;
354 }
355 EXPORT_SYMBOL(vm_map_pages);
356
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)357 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
358 unsigned long num)
359 {
360 return -EINVAL;
361 }
362 EXPORT_SYMBOL(vm_map_pages_zero);
363
364 /*
365 * sys_brk() for the most part doesn't need the global kernel
366 * lock, except when an application is doing something nasty
367 * like trying to un-brk an area that has already been mapped
368 * to a regular file. in this case, the unmapping will need
369 * to invoke file system routines that need the global lock.
370 */
SYSCALL_DEFINE1(brk,unsigned long,brk)371 SYSCALL_DEFINE1(brk, unsigned long, brk)
372 {
373 struct mm_struct *mm = current->mm;
374
375 if (brk < mm->start_brk || brk > mm->context.end_brk)
376 return mm->brk;
377
378 if (mm->brk == brk)
379 return mm->brk;
380
381 /*
382 * Always allow shrinking brk
383 */
384 if (brk <= mm->brk) {
385 mm->brk = brk;
386 return brk;
387 }
388
389 /*
390 * Ok, looks good - let it rip.
391 */
392 flush_icache_user_range(mm->brk, brk);
393 return mm->brk = brk;
394 }
395
396 /*
397 * initialise the percpu counter for VM and region record slabs
398 */
mmap_init(void)399 void __init mmap_init(void)
400 {
401 int ret;
402
403 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
404 VM_BUG_ON(ret);
405 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
406 }
407
408 /*
409 * validate the region tree
410 * - the caller must hold the region lock
411 */
412 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)413 static noinline void validate_nommu_regions(void)
414 {
415 struct vm_region *region, *last;
416 struct rb_node *p, *lastp;
417
418 lastp = rb_first(&nommu_region_tree);
419 if (!lastp)
420 return;
421
422 last = rb_entry(lastp, struct vm_region, vm_rb);
423 BUG_ON(last->vm_end <= last->vm_start);
424 BUG_ON(last->vm_top < last->vm_end);
425
426 while ((p = rb_next(lastp))) {
427 region = rb_entry(p, struct vm_region, vm_rb);
428 last = rb_entry(lastp, struct vm_region, vm_rb);
429
430 BUG_ON(region->vm_end <= region->vm_start);
431 BUG_ON(region->vm_top < region->vm_end);
432 BUG_ON(region->vm_start < last->vm_top);
433
434 lastp = p;
435 }
436 }
437 #else
validate_nommu_regions(void)438 static void validate_nommu_regions(void)
439 {
440 }
441 #endif
442
443 /*
444 * add a region into the global tree
445 */
add_nommu_region(struct vm_region * region)446 static void add_nommu_region(struct vm_region *region)
447 {
448 struct vm_region *pregion;
449 struct rb_node **p, *parent;
450
451 validate_nommu_regions();
452
453 parent = NULL;
454 p = &nommu_region_tree.rb_node;
455 while (*p) {
456 parent = *p;
457 pregion = rb_entry(parent, struct vm_region, vm_rb);
458 if (region->vm_start < pregion->vm_start)
459 p = &(*p)->rb_left;
460 else if (region->vm_start > pregion->vm_start)
461 p = &(*p)->rb_right;
462 else if (pregion == region)
463 return;
464 else
465 BUG();
466 }
467
468 rb_link_node(®ion->vm_rb, parent, p);
469 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
470
471 validate_nommu_regions();
472 }
473
474 /*
475 * delete a region from the global tree
476 */
delete_nommu_region(struct vm_region * region)477 static void delete_nommu_region(struct vm_region *region)
478 {
479 BUG_ON(!nommu_region_tree.rb_node);
480
481 validate_nommu_regions();
482 rb_erase(®ion->vm_rb, &nommu_region_tree);
483 validate_nommu_regions();
484 }
485
486 /*
487 * free a contiguous series of pages
488 */
free_page_series(unsigned long from,unsigned long to)489 static void free_page_series(unsigned long from, unsigned long to)
490 {
491 for (; from < to; from += PAGE_SIZE) {
492 struct page *page = virt_to_page((void *)from);
493
494 atomic_long_dec(&mmap_pages_allocated);
495 put_page(page);
496 }
497 }
498
499 /*
500 * release a reference to a region
501 * - the caller must hold the region semaphore for writing, which this releases
502 * - the region may not have been added to the tree yet, in which case vm_top
503 * will equal vm_start
504 */
__put_nommu_region(struct vm_region * region)505 static void __put_nommu_region(struct vm_region *region)
506 __releases(nommu_region_sem)
507 {
508 BUG_ON(!nommu_region_tree.rb_node);
509
510 if (--region->vm_usage == 0) {
511 if (region->vm_top > region->vm_start)
512 delete_nommu_region(region);
513 up_write(&nommu_region_sem);
514
515 if (region->vm_file)
516 fput(region->vm_file);
517
518 /* IO memory and memory shared directly out of the pagecache
519 * from ramfs/tmpfs mustn't be released here */
520 if (region->vm_flags & VM_MAPPED_COPY)
521 free_page_series(region->vm_start, region->vm_top);
522 kmem_cache_free(vm_region_jar, region);
523 } else {
524 up_write(&nommu_region_sem);
525 }
526 }
527
528 /*
529 * release a reference to a region
530 */
put_nommu_region(struct vm_region * region)531 static void put_nommu_region(struct vm_region *region)
532 {
533 down_write(&nommu_region_sem);
534 __put_nommu_region(region);
535 }
536
setup_vma_to_mm(struct vm_area_struct * vma,struct mm_struct * mm)537 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
538 {
539 vma->vm_mm = mm;
540
541 /* add the VMA to the mapping */
542 if (vma->vm_file) {
543 struct address_space *mapping = vma->vm_file->f_mapping;
544
545 i_mmap_lock_write(mapping);
546 flush_dcache_mmap_lock(mapping);
547 vma_interval_tree_insert(vma, &mapping->i_mmap);
548 flush_dcache_mmap_unlock(mapping);
549 i_mmap_unlock_write(mapping);
550 }
551 }
552
cleanup_vma_from_mm(struct vm_area_struct * vma)553 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
554 {
555 vma->vm_mm->map_count--;
556 /* remove the VMA from the mapping */
557 if (vma->vm_file) {
558 struct address_space *mapping;
559 mapping = vma->vm_file->f_mapping;
560
561 i_mmap_lock_write(mapping);
562 flush_dcache_mmap_lock(mapping);
563 vma_interval_tree_remove(vma, &mapping->i_mmap);
564 flush_dcache_mmap_unlock(mapping);
565 i_mmap_unlock_write(mapping);
566 }
567 }
568
569 /*
570 * delete a VMA from its owning mm_struct and address space
571 */
delete_vma_from_mm(struct vm_area_struct * vma)572 static int delete_vma_from_mm(struct vm_area_struct *vma)
573 {
574 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
575
576 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
577 if (vma_iter_prealloc(&vmi, NULL)) {
578 pr_warn("Allocation of vma tree for process %d failed\n",
579 current->pid);
580 return -ENOMEM;
581 }
582 cleanup_vma_from_mm(vma);
583
584 /* remove from the MM's tree and list */
585 vma_iter_clear(&vmi);
586 return 0;
587 }
588 /*
589 * destroy a VMA record
590 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)591 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
592 {
593 vma_close(vma);
594 if (vma->vm_file)
595 fput(vma->vm_file);
596 put_nommu_region(vma->vm_region);
597 vm_area_free(vma);
598 }
599
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)600 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
601 unsigned long start_addr,
602 unsigned long end_addr)
603 {
604 unsigned long index = start_addr;
605
606 mmap_assert_locked(mm);
607 return mt_find(&mm->mm_mt, &index, end_addr - 1);
608 }
609 EXPORT_SYMBOL(find_vma_intersection);
610
611 /*
612 * look up the first VMA in which addr resides, NULL if none
613 * - should be called with mm->mmap_lock at least held readlocked
614 */
find_vma(struct mm_struct * mm,unsigned long addr)615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
616 {
617 VMA_ITERATOR(vmi, mm, addr);
618
619 return vma_iter_load(&vmi);
620 }
621 EXPORT_SYMBOL(find_vma);
622
623 /*
624 * At least xtensa ends up having protection faults even with no
625 * MMU.. No stack expansion, at least.
626 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)627 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
628 unsigned long addr, struct pt_regs *regs)
629 {
630 struct vm_area_struct *vma;
631
632 mmap_read_lock(mm);
633 vma = vma_lookup(mm, addr);
634 if (!vma)
635 mmap_read_unlock(mm);
636 return vma;
637 }
638
639 /*
640 * expand a stack to a given address
641 * - not supported under NOMMU conditions
642 */
expand_stack_locked(struct vm_area_struct * vma,unsigned long addr)643 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
644 {
645 return -ENOMEM;
646 }
647
expand_stack(struct mm_struct * mm,unsigned long addr)648 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
649 {
650 mmap_read_unlock(mm);
651 return NULL;
652 }
653
654 /*
655 * look up the first VMA exactly that exactly matches addr
656 * - should be called with mm->mmap_lock at least held readlocked
657 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)658 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
659 unsigned long addr,
660 unsigned long len)
661 {
662 struct vm_area_struct *vma;
663 unsigned long end = addr + len;
664 VMA_ITERATOR(vmi, mm, addr);
665
666 vma = vma_iter_load(&vmi);
667 if (!vma)
668 return NULL;
669 if (vma->vm_start != addr)
670 return NULL;
671 if (vma->vm_end != end)
672 return NULL;
673
674 return vma;
675 }
676
677 /*
678 * determine whether a mapping should be permitted and, if so, what sort of
679 * mapping we're capable of supporting
680 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)681 static int validate_mmap_request(struct file *file,
682 unsigned long addr,
683 unsigned long len,
684 unsigned long prot,
685 unsigned long flags,
686 unsigned long pgoff,
687 unsigned long *_capabilities)
688 {
689 unsigned long capabilities, rlen;
690 int ret;
691
692 /* do the simple checks first */
693 if (flags & MAP_FIXED)
694 return -EINVAL;
695
696 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
697 (flags & MAP_TYPE) != MAP_SHARED)
698 return -EINVAL;
699
700 if (!len)
701 return -EINVAL;
702
703 /* Careful about overflows.. */
704 rlen = PAGE_ALIGN(len);
705 if (!rlen || rlen > TASK_SIZE)
706 return -ENOMEM;
707
708 /* offset overflow? */
709 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
710 return -EOVERFLOW;
711
712 if (file) {
713 /* files must support mmap */
714 if (!file->f_op->mmap)
715 return -ENODEV;
716
717 /* work out if what we've got could possibly be shared
718 * - we support chardevs that provide their own "memory"
719 * - we support files/blockdevs that are memory backed
720 */
721 if (file->f_op->mmap_capabilities) {
722 capabilities = file->f_op->mmap_capabilities(file);
723 } else {
724 /* no explicit capabilities set, so assume some
725 * defaults */
726 switch (file_inode(file)->i_mode & S_IFMT) {
727 case S_IFREG:
728 case S_IFBLK:
729 capabilities = NOMMU_MAP_COPY;
730 break;
731
732 case S_IFCHR:
733 capabilities =
734 NOMMU_MAP_DIRECT |
735 NOMMU_MAP_READ |
736 NOMMU_MAP_WRITE;
737 break;
738
739 default:
740 return -EINVAL;
741 }
742 }
743
744 /* eliminate any capabilities that we can't support on this
745 * device */
746 if (!file->f_op->get_unmapped_area)
747 capabilities &= ~NOMMU_MAP_DIRECT;
748 if (!(file->f_mode & FMODE_CAN_READ))
749 capabilities &= ~NOMMU_MAP_COPY;
750
751 /* The file shall have been opened with read permission. */
752 if (!(file->f_mode & FMODE_READ))
753 return -EACCES;
754
755 if (flags & MAP_SHARED) {
756 /* do checks for writing, appending and locking */
757 if ((prot & PROT_WRITE) &&
758 !(file->f_mode & FMODE_WRITE))
759 return -EACCES;
760
761 if (IS_APPEND(file_inode(file)) &&
762 (file->f_mode & FMODE_WRITE))
763 return -EACCES;
764
765 if (!(capabilities & NOMMU_MAP_DIRECT))
766 return -ENODEV;
767
768 /* we mustn't privatise shared mappings */
769 capabilities &= ~NOMMU_MAP_COPY;
770 } else {
771 /* we're going to read the file into private memory we
772 * allocate */
773 if (!(capabilities & NOMMU_MAP_COPY))
774 return -ENODEV;
775
776 /* we don't permit a private writable mapping to be
777 * shared with the backing device */
778 if (prot & PROT_WRITE)
779 capabilities &= ~NOMMU_MAP_DIRECT;
780 }
781
782 if (capabilities & NOMMU_MAP_DIRECT) {
783 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
784 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
785 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
786 ) {
787 capabilities &= ~NOMMU_MAP_DIRECT;
788 if (flags & MAP_SHARED) {
789 pr_warn("MAP_SHARED not completely supported on !MMU\n");
790 return -EINVAL;
791 }
792 }
793 }
794
795 /* handle executable mappings and implied executable
796 * mappings */
797 if (path_noexec(&file->f_path)) {
798 if (prot & PROT_EXEC)
799 return -EPERM;
800 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
801 /* handle implication of PROT_EXEC by PROT_READ */
802 if (current->personality & READ_IMPLIES_EXEC) {
803 if (capabilities & NOMMU_MAP_EXEC)
804 prot |= PROT_EXEC;
805 }
806 } else if ((prot & PROT_READ) &&
807 (prot & PROT_EXEC) &&
808 !(capabilities & NOMMU_MAP_EXEC)
809 ) {
810 /* backing file is not executable, try to copy */
811 capabilities &= ~NOMMU_MAP_DIRECT;
812 }
813 } else {
814 /* anonymous mappings are always memory backed and can be
815 * privately mapped
816 */
817 capabilities = NOMMU_MAP_COPY;
818
819 /* handle PROT_EXEC implication by PROT_READ */
820 if ((prot & PROT_READ) &&
821 (current->personality & READ_IMPLIES_EXEC))
822 prot |= PROT_EXEC;
823 }
824
825 /* allow the security API to have its say */
826 ret = security_mmap_addr(addr);
827 if (ret < 0)
828 return ret;
829
830 /* looks okay */
831 *_capabilities = capabilities;
832 return 0;
833 }
834
835 /*
836 * we've determined that we can make the mapping, now translate what we
837 * now know into VMA flags
838 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)839 static unsigned long determine_vm_flags(struct file *file,
840 unsigned long prot,
841 unsigned long flags,
842 unsigned long capabilities)
843 {
844 unsigned long vm_flags;
845
846 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(file, flags);
847
848 if (!file) {
849 /*
850 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
851 * there is no fork().
852 */
853 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
854 } else if (flags & MAP_PRIVATE) {
855 /* MAP_PRIVATE file mapping */
856 if (capabilities & NOMMU_MAP_DIRECT)
857 vm_flags |= (capabilities & NOMMU_VMFLAGS);
858 else
859 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
860
861 if (!(prot & PROT_WRITE) && !current->ptrace)
862 /*
863 * R/O private file mapping which cannot be used to
864 * modify memory, especially also not via active ptrace
865 * (e.g., set breakpoints) or later by upgrading
866 * permissions (no mprotect()). We can try overlaying
867 * the file mapping, which will work e.g., on chardevs,
868 * ramfs/tmpfs/shmfs and romfs/cramf.
869 */
870 vm_flags |= VM_MAYOVERLAY;
871 } else {
872 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
873 vm_flags |= VM_SHARED | VM_MAYSHARE |
874 (capabilities & NOMMU_VMFLAGS);
875 }
876
877 return vm_flags;
878 }
879
880 /*
881 * set up a shared mapping on a file (the driver or filesystem provides and
882 * pins the storage)
883 */
do_mmap_shared_file(struct vm_area_struct * vma)884 static int do_mmap_shared_file(struct vm_area_struct *vma)
885 {
886 int ret;
887
888 ret = mmap_file(vma->vm_file, vma);
889 if (ret == 0) {
890 vma->vm_region->vm_top = vma->vm_region->vm_end;
891 return 0;
892 }
893 if (ret != -ENOSYS)
894 return ret;
895
896 /* getting -ENOSYS indicates that direct mmap isn't possible (as
897 * opposed to tried but failed) so we can only give a suitable error as
898 * it's not possible to make a private copy if MAP_SHARED was given */
899 return -ENODEV;
900 }
901
902 /*
903 * set up a private mapping or an anonymous shared mapping
904 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)905 static int do_mmap_private(struct vm_area_struct *vma,
906 struct vm_region *region,
907 unsigned long len,
908 unsigned long capabilities)
909 {
910 unsigned long total, point;
911 void *base;
912 int ret, order;
913
914 /*
915 * Invoke the file's mapping function so that it can keep track of
916 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
917 * it may attempt to share, which will make is_nommu_shared_mapping()
918 * happy.
919 */
920 if (capabilities & NOMMU_MAP_DIRECT) {
921 ret = mmap_file(vma->vm_file, vma);
922 /* shouldn't return success if we're not sharing */
923 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
924 ret = -ENOSYS;
925 if (ret == 0) {
926 vma->vm_region->vm_top = vma->vm_region->vm_end;
927 return 0;
928 }
929 if (ret != -ENOSYS)
930 return ret;
931
932 /* getting an ENOSYS error indicates that direct mmap isn't
933 * possible (as opposed to tried but failed) so we'll try to
934 * make a private copy of the data and map that instead */
935 }
936
937
938 /* allocate some memory to hold the mapping
939 * - note that this may not return a page-aligned address if the object
940 * we're allocating is smaller than a page
941 */
942 order = get_order(len);
943 total = 1 << order;
944 point = len >> PAGE_SHIFT;
945
946 /* we don't want to allocate a power-of-2 sized page set */
947 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
948 total = point;
949
950 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
951 if (!base)
952 goto enomem;
953
954 atomic_long_add(total, &mmap_pages_allocated);
955
956 vm_flags_set(vma, VM_MAPPED_COPY);
957 region->vm_flags = vma->vm_flags;
958 region->vm_start = (unsigned long) base;
959 region->vm_end = region->vm_start + len;
960 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
961
962 vma->vm_start = region->vm_start;
963 vma->vm_end = region->vm_start + len;
964
965 if (vma->vm_file) {
966 /* read the contents of a file into the copy */
967 loff_t fpos;
968
969 fpos = vma->vm_pgoff;
970 fpos <<= PAGE_SHIFT;
971
972 ret = kernel_read(vma->vm_file, base, len, &fpos);
973 if (ret < 0)
974 goto error_free;
975
976 /* clear the last little bit */
977 if (ret < len)
978 memset(base + ret, 0, len - ret);
979
980 } else {
981 vma_set_anonymous(vma);
982 }
983
984 return 0;
985
986 error_free:
987 free_page_series(region->vm_start, region->vm_top);
988 region->vm_start = vma->vm_start = 0;
989 region->vm_end = vma->vm_end = 0;
990 region->vm_top = 0;
991 return ret;
992
993 enomem:
994 pr_err("Allocation of length %lu from process %d (%s) failed\n",
995 len, current->pid, current->comm);
996 show_mem();
997 return -ENOMEM;
998 }
999
1000 /*
1001 * handle mapping creation for uClinux
1002 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1003 unsigned long do_mmap(struct file *file,
1004 unsigned long addr,
1005 unsigned long len,
1006 unsigned long prot,
1007 unsigned long flags,
1008 vm_flags_t vm_flags,
1009 unsigned long pgoff,
1010 unsigned long *populate,
1011 struct list_head *uf)
1012 {
1013 struct vm_area_struct *vma;
1014 struct vm_region *region;
1015 struct rb_node *rb;
1016 unsigned long capabilities, result;
1017 int ret;
1018 VMA_ITERATOR(vmi, current->mm, 0);
1019
1020 *populate = 0;
1021
1022 /* decide whether we should attempt the mapping, and if so what sort of
1023 * mapping */
1024 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1025 &capabilities);
1026 if (ret < 0)
1027 return ret;
1028
1029 /* we ignore the address hint */
1030 addr = 0;
1031 len = PAGE_ALIGN(len);
1032
1033 /* we've determined that we can make the mapping, now translate what we
1034 * now know into VMA flags */
1035 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1036
1037
1038 /* we're going to need to record the mapping */
1039 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1040 if (!region)
1041 goto error_getting_region;
1042
1043 vma = vm_area_alloc(current->mm);
1044 if (!vma)
1045 goto error_getting_vma;
1046
1047 region->vm_usage = 1;
1048 region->vm_flags = vm_flags;
1049 region->vm_pgoff = pgoff;
1050
1051 vm_flags_init(vma, vm_flags);
1052 vma->vm_pgoff = pgoff;
1053
1054 if (file) {
1055 region->vm_file = get_file(file);
1056 vma->vm_file = get_file(file);
1057 }
1058
1059 down_write(&nommu_region_sem);
1060
1061 /* if we want to share, we need to check for regions created by other
1062 * mmap() calls that overlap with our proposed mapping
1063 * - we can only share with a superset match on most regular files
1064 * - shared mappings on character devices and memory backed files are
1065 * permitted to overlap inexactly as far as we are concerned for in
1066 * these cases, sharing is handled in the driver or filesystem rather
1067 * than here
1068 */
1069 if (is_nommu_shared_mapping(vm_flags)) {
1070 struct vm_region *pregion;
1071 unsigned long pglen, rpglen, pgend, rpgend, start;
1072
1073 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1074 pgend = pgoff + pglen;
1075
1076 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1077 pregion = rb_entry(rb, struct vm_region, vm_rb);
1078
1079 if (!is_nommu_shared_mapping(pregion->vm_flags))
1080 continue;
1081
1082 /* search for overlapping mappings on the same file */
1083 if (file_inode(pregion->vm_file) !=
1084 file_inode(file))
1085 continue;
1086
1087 if (pregion->vm_pgoff >= pgend)
1088 continue;
1089
1090 rpglen = pregion->vm_end - pregion->vm_start;
1091 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 rpgend = pregion->vm_pgoff + rpglen;
1093 if (pgoff >= rpgend)
1094 continue;
1095
1096 /* handle inexactly overlapping matches between
1097 * mappings */
1098 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1099 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1100 /* new mapping is not a subset of the region */
1101 if (!(capabilities & NOMMU_MAP_DIRECT))
1102 goto sharing_violation;
1103 continue;
1104 }
1105
1106 /* we've found a region we can share */
1107 pregion->vm_usage++;
1108 vma->vm_region = pregion;
1109 start = pregion->vm_start;
1110 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1111 vma->vm_start = start;
1112 vma->vm_end = start + len;
1113
1114 if (pregion->vm_flags & VM_MAPPED_COPY)
1115 vm_flags_set(vma, VM_MAPPED_COPY);
1116 else {
1117 ret = do_mmap_shared_file(vma);
1118 if (ret < 0) {
1119 vma->vm_region = NULL;
1120 vma->vm_start = 0;
1121 vma->vm_end = 0;
1122 pregion->vm_usage--;
1123 pregion = NULL;
1124 goto error_just_free;
1125 }
1126 }
1127 fput(region->vm_file);
1128 kmem_cache_free(vm_region_jar, region);
1129 region = pregion;
1130 result = start;
1131 goto share;
1132 }
1133
1134 /* obtain the address at which to make a shared mapping
1135 * - this is the hook for quasi-memory character devices to
1136 * tell us the location of a shared mapping
1137 */
1138 if (capabilities & NOMMU_MAP_DIRECT) {
1139 addr = file->f_op->get_unmapped_area(file, addr, len,
1140 pgoff, flags);
1141 if (IS_ERR_VALUE(addr)) {
1142 ret = addr;
1143 if (ret != -ENOSYS)
1144 goto error_just_free;
1145
1146 /* the driver refused to tell us where to site
1147 * the mapping so we'll have to attempt to copy
1148 * it */
1149 ret = -ENODEV;
1150 if (!(capabilities & NOMMU_MAP_COPY))
1151 goto error_just_free;
1152
1153 capabilities &= ~NOMMU_MAP_DIRECT;
1154 } else {
1155 vma->vm_start = region->vm_start = addr;
1156 vma->vm_end = region->vm_end = addr + len;
1157 }
1158 }
1159 }
1160
1161 vma->vm_region = region;
1162
1163 /* set up the mapping
1164 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1165 */
1166 if (file && vma->vm_flags & VM_SHARED)
1167 ret = do_mmap_shared_file(vma);
1168 else
1169 ret = do_mmap_private(vma, region, len, capabilities);
1170 if (ret < 0)
1171 goto error_just_free;
1172 add_nommu_region(region);
1173
1174 /* clear anonymous mappings that don't ask for uninitialized data */
1175 if (!vma->vm_file &&
1176 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1177 !(flags & MAP_UNINITIALIZED)))
1178 memset((void *)region->vm_start, 0,
1179 region->vm_end - region->vm_start);
1180
1181 /* okay... we have a mapping; now we have to register it */
1182 result = vma->vm_start;
1183
1184 current->mm->total_vm += len >> PAGE_SHIFT;
1185
1186 share:
1187 BUG_ON(!vma->vm_region);
1188 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1189 if (vma_iter_prealloc(&vmi, vma))
1190 goto error_just_free;
1191
1192 setup_vma_to_mm(vma, current->mm);
1193 current->mm->map_count++;
1194 /* add the VMA to the tree */
1195 vma_iter_store_new(&vmi, vma);
1196
1197 /* we flush the region from the icache only when the first executable
1198 * mapping of it is made */
1199 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1200 flush_icache_user_range(region->vm_start, region->vm_end);
1201 region->vm_icache_flushed = true;
1202 }
1203
1204 up_write(&nommu_region_sem);
1205
1206 return result;
1207
1208 error_just_free:
1209 up_write(&nommu_region_sem);
1210 error:
1211 vma_iter_free(&vmi);
1212 if (region->vm_file)
1213 fput(region->vm_file);
1214 kmem_cache_free(vm_region_jar, region);
1215 if (vma->vm_file)
1216 fput(vma->vm_file);
1217 vm_area_free(vma);
1218 return ret;
1219
1220 sharing_violation:
1221 up_write(&nommu_region_sem);
1222 pr_warn("Attempt to share mismatched mappings\n");
1223 ret = -EINVAL;
1224 goto error;
1225
1226 error_getting_vma:
1227 kmem_cache_free(vm_region_jar, region);
1228 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1229 len, current->pid);
1230 show_mem();
1231 return -ENOMEM;
1232
1233 error_getting_region:
1234 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1235 len, current->pid);
1236 show_mem();
1237 return -ENOMEM;
1238 }
1239
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1240 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1241 unsigned long prot, unsigned long flags,
1242 unsigned long fd, unsigned long pgoff)
1243 {
1244 struct file *file = NULL;
1245 unsigned long retval = -EBADF;
1246
1247 audit_mmap_fd(fd, flags);
1248 if (!(flags & MAP_ANONYMOUS)) {
1249 file = fget(fd);
1250 if (!file)
1251 goto out;
1252 }
1253
1254 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1255
1256 if (file)
1257 fput(file);
1258 out:
1259 return retval;
1260 }
1261
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1262 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1263 unsigned long, prot, unsigned long, flags,
1264 unsigned long, fd, unsigned long, pgoff)
1265 {
1266 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1267 }
1268
1269 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1270 struct mmap_arg_struct {
1271 unsigned long addr;
1272 unsigned long len;
1273 unsigned long prot;
1274 unsigned long flags;
1275 unsigned long fd;
1276 unsigned long offset;
1277 };
1278
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1279 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1280 {
1281 struct mmap_arg_struct a;
1282
1283 if (copy_from_user(&a, arg, sizeof(a)))
1284 return -EFAULT;
1285 if (offset_in_page(a.offset))
1286 return -EINVAL;
1287
1288 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1289 a.offset >> PAGE_SHIFT);
1290 }
1291 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1292
1293 /*
1294 * split a vma into two pieces at address 'addr', a new vma is allocated either
1295 * for the first part or the tail.
1296 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)1297 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1298 unsigned long addr, int new_below)
1299 {
1300 struct vm_area_struct *new;
1301 struct vm_region *region;
1302 unsigned long npages;
1303 struct mm_struct *mm;
1304
1305 /* we're only permitted to split anonymous regions (these should have
1306 * only a single usage on the region) */
1307 if (vma->vm_file)
1308 return -ENOMEM;
1309
1310 mm = vma->vm_mm;
1311 if (mm->map_count >= sysctl_max_map_count)
1312 return -ENOMEM;
1313
1314 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1315 if (!region)
1316 return -ENOMEM;
1317
1318 new = vm_area_dup(vma);
1319 if (!new)
1320 goto err_vma_dup;
1321
1322 /* most fields are the same, copy all, and then fixup */
1323 *region = *vma->vm_region;
1324 new->vm_region = region;
1325
1326 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1327
1328 if (new_below) {
1329 region->vm_top = region->vm_end = new->vm_end = addr;
1330 } else {
1331 region->vm_start = new->vm_start = addr;
1332 region->vm_pgoff = new->vm_pgoff += npages;
1333 }
1334
1335 vma_iter_config(vmi, new->vm_start, new->vm_end);
1336 if (vma_iter_prealloc(vmi, vma)) {
1337 pr_warn("Allocation of vma tree for process %d failed\n",
1338 current->pid);
1339 goto err_vmi_preallocate;
1340 }
1341
1342 if (new->vm_ops && new->vm_ops->open)
1343 new->vm_ops->open(new);
1344
1345 down_write(&nommu_region_sem);
1346 delete_nommu_region(vma->vm_region);
1347 if (new_below) {
1348 vma->vm_region->vm_start = vma->vm_start = addr;
1349 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1350 } else {
1351 vma->vm_region->vm_end = vma->vm_end = addr;
1352 vma->vm_region->vm_top = addr;
1353 }
1354 add_nommu_region(vma->vm_region);
1355 add_nommu_region(new->vm_region);
1356 up_write(&nommu_region_sem);
1357
1358 setup_vma_to_mm(vma, mm);
1359 setup_vma_to_mm(new, mm);
1360 vma_iter_store_new(vmi, new);
1361 mm->map_count++;
1362 return 0;
1363
1364 err_vmi_preallocate:
1365 vm_area_free(new);
1366 err_vma_dup:
1367 kmem_cache_free(vm_region_jar, region);
1368 return -ENOMEM;
1369 }
1370
1371 /*
1372 * shrink a VMA by removing the specified chunk from either the beginning or
1373 * the end
1374 */
vmi_shrink_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long from,unsigned long to)1375 static int vmi_shrink_vma(struct vma_iterator *vmi,
1376 struct vm_area_struct *vma,
1377 unsigned long from, unsigned long to)
1378 {
1379 struct vm_region *region;
1380
1381 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1382 * and list */
1383 if (from > vma->vm_start) {
1384 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1385 return -ENOMEM;
1386 vma->vm_end = from;
1387 } else {
1388 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1389 return -ENOMEM;
1390 vma->vm_start = to;
1391 }
1392
1393 /* cut the backing region down to size */
1394 region = vma->vm_region;
1395 BUG_ON(region->vm_usage != 1);
1396
1397 down_write(&nommu_region_sem);
1398 delete_nommu_region(region);
1399 if (from > region->vm_start) {
1400 to = region->vm_top;
1401 region->vm_top = region->vm_end = from;
1402 } else {
1403 region->vm_start = to;
1404 }
1405 add_nommu_region(region);
1406 up_write(&nommu_region_sem);
1407
1408 free_page_series(from, to);
1409 return 0;
1410 }
1411
1412 /*
1413 * release a mapping
1414 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1415 * VMA, though it need not cover the whole VMA
1416 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1417 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1418 {
1419 VMA_ITERATOR(vmi, mm, start);
1420 struct vm_area_struct *vma;
1421 unsigned long end;
1422 int ret = 0;
1423
1424 len = PAGE_ALIGN(len);
1425 if (len == 0)
1426 return -EINVAL;
1427
1428 end = start + len;
1429
1430 /* find the first potentially overlapping VMA */
1431 vma = vma_find(&vmi, end);
1432 if (!vma) {
1433 static int limit;
1434 if (limit < 5) {
1435 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1436 current->pid, current->comm,
1437 start, start + len - 1);
1438 limit++;
1439 }
1440 return -EINVAL;
1441 }
1442
1443 /* we're allowed to split an anonymous VMA but not a file-backed one */
1444 if (vma->vm_file) {
1445 do {
1446 if (start > vma->vm_start)
1447 return -EINVAL;
1448 if (end == vma->vm_end)
1449 goto erase_whole_vma;
1450 vma = vma_find(&vmi, end);
1451 } while (vma);
1452 return -EINVAL;
1453 } else {
1454 /* the chunk must be a subset of the VMA found */
1455 if (start == vma->vm_start && end == vma->vm_end)
1456 goto erase_whole_vma;
1457 if (start < vma->vm_start || end > vma->vm_end)
1458 return -EINVAL;
1459 if (offset_in_page(start))
1460 return -EINVAL;
1461 if (end != vma->vm_end && offset_in_page(end))
1462 return -EINVAL;
1463 if (start != vma->vm_start && end != vma->vm_end) {
1464 ret = split_vma(&vmi, vma, start, 1);
1465 if (ret < 0)
1466 return ret;
1467 }
1468 return vmi_shrink_vma(&vmi, vma, start, end);
1469 }
1470
1471 erase_whole_vma:
1472 if (delete_vma_from_mm(vma))
1473 ret = -ENOMEM;
1474 else
1475 delete_vma(mm, vma);
1476 return ret;
1477 }
1478
vm_munmap(unsigned long addr,size_t len)1479 int vm_munmap(unsigned long addr, size_t len)
1480 {
1481 struct mm_struct *mm = current->mm;
1482 int ret;
1483
1484 mmap_write_lock(mm);
1485 ret = do_munmap(mm, addr, len, NULL);
1486 mmap_write_unlock(mm);
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(vm_munmap);
1490
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1491 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1492 {
1493 return vm_munmap(addr, len);
1494 }
1495
1496 /*
1497 * release all the mappings made in a process's VM space
1498 */
exit_mmap(struct mm_struct * mm)1499 void exit_mmap(struct mm_struct *mm)
1500 {
1501 VMA_ITERATOR(vmi, mm, 0);
1502 struct vm_area_struct *vma;
1503
1504 if (!mm)
1505 return;
1506
1507 mm->total_vm = 0;
1508
1509 /*
1510 * Lock the mm to avoid assert complaining even though this is the only
1511 * user of the mm
1512 */
1513 mmap_write_lock(mm);
1514 for_each_vma(vmi, vma) {
1515 cleanup_vma_from_mm(vma);
1516 delete_vma(mm, vma);
1517 cond_resched();
1518 }
1519 __mt_destroy(&mm->mm_mt);
1520 mmap_write_unlock(mm);
1521 }
1522
1523 /*
1524 * expand (or shrink) an existing mapping, potentially moving it at the same
1525 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1526 *
1527 * under NOMMU conditions, we only permit changing a mapping's size, and only
1528 * as long as it stays within the region allocated by do_mmap_private() and the
1529 * block is not shareable
1530 *
1531 * MREMAP_FIXED is not supported under NOMMU conditions
1532 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1533 static unsigned long do_mremap(unsigned long addr,
1534 unsigned long old_len, unsigned long new_len,
1535 unsigned long flags, unsigned long new_addr)
1536 {
1537 struct vm_area_struct *vma;
1538
1539 /* insanity checks first */
1540 old_len = PAGE_ALIGN(old_len);
1541 new_len = PAGE_ALIGN(new_len);
1542 if (old_len == 0 || new_len == 0)
1543 return (unsigned long) -EINVAL;
1544
1545 if (offset_in_page(addr))
1546 return -EINVAL;
1547
1548 if (flags & MREMAP_FIXED && new_addr != addr)
1549 return (unsigned long) -EINVAL;
1550
1551 vma = find_vma_exact(current->mm, addr, old_len);
1552 if (!vma)
1553 return (unsigned long) -EINVAL;
1554
1555 if (vma->vm_end != vma->vm_start + old_len)
1556 return (unsigned long) -EFAULT;
1557
1558 if (is_nommu_shared_mapping(vma->vm_flags))
1559 return (unsigned long) -EPERM;
1560
1561 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1562 return (unsigned long) -ENOMEM;
1563
1564 /* all checks complete - do it */
1565 vma->vm_end = vma->vm_start + new_len;
1566 return vma->vm_start;
1567 }
1568
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1569 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1570 unsigned long, new_len, unsigned long, flags,
1571 unsigned long, new_addr)
1572 {
1573 unsigned long ret;
1574
1575 mmap_write_lock(current->mm);
1576 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1577 mmap_write_unlock(current->mm);
1578 return ret;
1579 }
1580
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1581 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1582 unsigned long pfn, unsigned long size, pgprot_t prot)
1583 {
1584 if (addr != (pfn << PAGE_SHIFT))
1585 return -EINVAL;
1586
1587 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1588 return 0;
1589 }
1590 EXPORT_SYMBOL(remap_pfn_range);
1591
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1592 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1593 {
1594 unsigned long pfn = start >> PAGE_SHIFT;
1595 unsigned long vm_len = vma->vm_end - vma->vm_start;
1596
1597 pfn += vma->vm_pgoff;
1598 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1599 }
1600 EXPORT_SYMBOL(vm_iomap_memory);
1601
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1602 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1603 unsigned long pgoff)
1604 {
1605 unsigned int size = vma->vm_end - vma->vm_start;
1606
1607 if (!(vma->vm_flags & VM_USERMAP))
1608 return -EINVAL;
1609
1610 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1611 vma->vm_end = vma->vm_start + size;
1612
1613 return 0;
1614 }
1615 EXPORT_SYMBOL(remap_vmalloc_range);
1616
filemap_fault(struct vm_fault * vmf)1617 vm_fault_t filemap_fault(struct vm_fault *vmf)
1618 {
1619 BUG();
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(filemap_fault);
1623
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1624 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1625 pgoff_t start_pgoff, pgoff_t end_pgoff)
1626 {
1627 BUG();
1628 return 0;
1629 }
1630 EXPORT_SYMBOL(filemap_map_pages);
1631
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1632 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1633 void *buf, int len, unsigned int gup_flags)
1634 {
1635 struct vm_area_struct *vma;
1636 int write = gup_flags & FOLL_WRITE;
1637
1638 if (mmap_read_lock_killable(mm))
1639 return 0;
1640
1641 /* the access must start within one of the target process's mappings */
1642 vma = find_vma(mm, addr);
1643 if (vma) {
1644 /* don't overrun this mapping */
1645 if (addr + len >= vma->vm_end)
1646 len = vma->vm_end - addr;
1647
1648 /* only read or write mappings where it is permitted */
1649 if (write && vma->vm_flags & VM_MAYWRITE)
1650 copy_to_user_page(vma, NULL, addr,
1651 (void *) addr, buf, len);
1652 else if (!write && vma->vm_flags & VM_MAYREAD)
1653 copy_from_user_page(vma, NULL, addr,
1654 buf, (void *) addr, len);
1655 else
1656 len = 0;
1657 } else {
1658 len = 0;
1659 }
1660
1661 mmap_read_unlock(mm);
1662
1663 return len;
1664 }
1665
1666 /**
1667 * access_remote_vm - access another process' address space
1668 * @mm: the mm_struct of the target address space
1669 * @addr: start address to access
1670 * @buf: source or destination buffer
1671 * @len: number of bytes to transfer
1672 * @gup_flags: flags modifying lookup behaviour
1673 *
1674 * The caller must hold a reference on @mm.
1675 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1676 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1677 void *buf, int len, unsigned int gup_flags)
1678 {
1679 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1680 }
1681
1682 /*
1683 * Access another process' address space.
1684 * - source/target buffer must be kernel space
1685 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1686 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1687 unsigned int gup_flags)
1688 {
1689 struct mm_struct *mm;
1690
1691 if (addr + len < addr)
1692 return 0;
1693
1694 mm = get_task_mm(tsk);
1695 if (!mm)
1696 return 0;
1697
1698 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1699
1700 mmput(mm);
1701 return len;
1702 }
1703 EXPORT_SYMBOL_GPL(access_process_vm);
1704
1705 /**
1706 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1707 * @inode: The inode to check
1708 * @size: The current filesize of the inode
1709 * @newsize: The proposed filesize of the inode
1710 *
1711 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1712 * make sure that any outstanding VMAs aren't broken and then shrink the
1713 * vm_regions that extend beyond so that do_mmap() doesn't
1714 * automatically grant mappings that are too large.
1715 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1716 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1717 size_t newsize)
1718 {
1719 struct vm_area_struct *vma;
1720 struct vm_region *region;
1721 pgoff_t low, high;
1722 size_t r_size, r_top;
1723
1724 low = newsize >> PAGE_SHIFT;
1725 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1726
1727 down_write(&nommu_region_sem);
1728 i_mmap_lock_read(inode->i_mapping);
1729
1730 /* search for VMAs that fall within the dead zone */
1731 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1732 /* found one - only interested if it's shared out of the page
1733 * cache */
1734 if (vma->vm_flags & VM_SHARED) {
1735 i_mmap_unlock_read(inode->i_mapping);
1736 up_write(&nommu_region_sem);
1737 return -ETXTBSY; /* not quite true, but near enough */
1738 }
1739 }
1740
1741 /* reduce any regions that overlap the dead zone - if in existence,
1742 * these will be pointed to by VMAs that don't overlap the dead zone
1743 *
1744 * we don't check for any regions that start beyond the EOF as there
1745 * shouldn't be any
1746 */
1747 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1748 if (!(vma->vm_flags & VM_SHARED))
1749 continue;
1750
1751 region = vma->vm_region;
1752 r_size = region->vm_top - region->vm_start;
1753 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1754
1755 if (r_top > newsize) {
1756 region->vm_top -= r_top - newsize;
1757 if (region->vm_end > region->vm_top)
1758 region->vm_end = region->vm_top;
1759 }
1760 }
1761
1762 i_mmap_unlock_read(inode->i_mapping);
1763 up_write(&nommu_region_sem);
1764 return 0;
1765 }
1766
1767 /*
1768 * Initialise sysctl_user_reserve_kbytes.
1769 *
1770 * This is intended to prevent a user from starting a single memory hogging
1771 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1772 * mode.
1773 *
1774 * The default value is min(3% of free memory, 128MB)
1775 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1776 */
init_user_reserve(void)1777 static int __meminit init_user_reserve(void)
1778 {
1779 unsigned long free_kbytes;
1780
1781 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1782
1783 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1784 return 0;
1785 }
1786 subsys_initcall(init_user_reserve);
1787
1788 /*
1789 * Initialise sysctl_admin_reserve_kbytes.
1790 *
1791 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1792 * to log in and kill a memory hogging process.
1793 *
1794 * Systems with more than 256MB will reserve 8MB, enough to recover
1795 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1796 * only reserve 3% of free pages by default.
1797 */
init_admin_reserve(void)1798 static int __meminit init_admin_reserve(void)
1799 {
1800 unsigned long free_kbytes;
1801
1802 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1803
1804 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1805 return 0;
1806 }
1807 subsys_initcall(init_admin_reserve);
1808