• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/cred.h>
48 #include <linux/nmi.h>
49 
50 #include <asm/tlb.h>
51 #include "internal.h"
52 #include "slab.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/oom.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/mm.h>
58 
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61 
62 static int sysctl_panic_on_oom;
63 static int sysctl_oom_kill_allocating_task;
64 static int sysctl_oom_dump_tasks = 1;
65 
66 /*
67  * Serializes oom killer invocations (out_of_memory()) from all contexts to
68  * prevent from over eager oom killing (e.g. when the oom killer is invoked
69  * from different domains).
70  *
71  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
72  * and mark_oom_victim
73  */
74 DEFINE_MUTEX(oom_lock);
75 /* Serializes oom_score_adj and oom_score_adj_min updates */
76 DEFINE_MUTEX(oom_adj_mutex);
77 
is_memcg_oom(struct oom_control * oc)78 static inline bool is_memcg_oom(struct oom_control *oc)
79 {
80 	return oc->memcg != NULL;
81 }
82 
83 #ifdef CONFIG_NUMA
84 /**
85  * oom_cpuset_eligible() - check task eligibility for kill
86  * @start: task struct of which task to consider
87  * @oc: pointer to struct oom_control
88  *
89  * Task eligibility is determined by whether or not a candidate task, @tsk,
90  * shares the same mempolicy nodes as current if it is bound by such a policy
91  * and whether or not it has the same set of allowed cpuset nodes.
92  *
93  * This function is assuming oom-killer context and 'current' has triggered
94  * the oom-killer.
95  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)96 static bool oom_cpuset_eligible(struct task_struct *start,
97 				struct oom_control *oc)
98 {
99 	struct task_struct *tsk;
100 	bool ret = false;
101 	const nodemask_t *mask = oc->nodemask;
102 
103 	rcu_read_lock();
104 	for_each_thread(start, tsk) {
105 		if (mask) {
106 			/*
107 			 * If this is a mempolicy constrained oom, tsk's
108 			 * cpuset is irrelevant.  Only return true if its
109 			 * mempolicy intersects current, otherwise it may be
110 			 * needlessly killed.
111 			 */
112 			ret = mempolicy_in_oom_domain(tsk, mask);
113 		} else {
114 			/*
115 			 * This is not a mempolicy constrained oom, so only
116 			 * check the mems of tsk's cpuset.
117 			 */
118 			ret = cpuset_mems_allowed_intersects(current, tsk);
119 		}
120 		if (ret)
121 			break;
122 	}
123 	rcu_read_unlock();
124 
125 	return ret;
126 }
127 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)128 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
129 {
130 	return true;
131 }
132 #endif /* CONFIG_NUMA */
133 
134 /*
135  * The process p may have detached its own ->mm while exiting or through
136  * kthread_use_mm(), but one or more of its subthreads may still have a valid
137  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
138  * task_lock() held.
139  */
find_lock_task_mm(struct task_struct * p)140 struct task_struct *find_lock_task_mm(struct task_struct *p)
141 {
142 	struct task_struct *t;
143 
144 	rcu_read_lock();
145 
146 	for_each_thread(p, t) {
147 		task_lock(t);
148 		if (likely(t->mm))
149 			goto found;
150 		task_unlock(t);
151 	}
152 	t = NULL;
153 found:
154 	rcu_read_unlock();
155 
156 	return t;
157 }
158 
159 /*
160  * order == -1 means the oom kill is required by sysrq, otherwise only
161  * for display purposes.
162  */
is_sysrq_oom(struct oom_control * oc)163 static inline bool is_sysrq_oom(struct oom_control *oc)
164 {
165 	return oc->order == -1;
166 }
167 
168 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)169 static bool oom_unkillable_task(struct task_struct *p)
170 {
171 	if (is_global_init(p))
172 		return true;
173 	if (p->flags & PF_KTHREAD)
174 		return true;
175 	return false;
176 }
177 
178 /*
179  * Check whether unreclaimable slab amount is greater than
180  * all user memory(LRU pages).
181  * dump_unreclaimable_slab() could help in the case that
182  * oom due to too much unreclaimable slab used by kernel.
183 */
should_dump_unreclaim_slab(void)184 static bool should_dump_unreclaim_slab(void)
185 {
186 	unsigned long nr_lru;
187 
188 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
189 		 global_node_page_state(NR_INACTIVE_ANON) +
190 		 global_node_page_state(NR_ACTIVE_FILE) +
191 		 global_node_page_state(NR_INACTIVE_FILE) +
192 		 global_node_page_state(NR_ISOLATED_ANON) +
193 		 global_node_page_state(NR_ISOLATED_FILE) +
194 		 global_node_page_state(NR_UNEVICTABLE);
195 
196 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
197 }
198 
199 /**
200  * oom_badness - heuristic function to determine which candidate task to kill
201  * @p: task struct of which task we should calculate
202  * @totalpages: total present RAM allowed for page allocation
203  *
204  * The heuristic for determining which task to kill is made to be as simple and
205  * predictable as possible.  The goal is to return the highest value for the
206  * task consuming the most memory to avoid subsequent oom failures.
207  */
oom_badness(struct task_struct * p,unsigned long totalpages)208 long oom_badness(struct task_struct *p, unsigned long totalpages)
209 {
210 	long points;
211 	long adj;
212 
213 	if (oom_unkillable_task(p))
214 		return LONG_MIN;
215 
216 	p = find_lock_task_mm(p);
217 	if (!p)
218 		return LONG_MIN;
219 
220 	/*
221 	 * Do not even consider tasks which are explicitly marked oom
222 	 * unkillable or have been already oom reaped or the are in
223 	 * the middle of vfork
224 	 */
225 	adj = (long)p->signal->oom_score_adj;
226 	if (adj == OOM_SCORE_ADJ_MIN ||
227 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
228 			in_vfork(p)) {
229 		task_unlock(p);
230 		return LONG_MIN;
231 	}
232 
233 	/*
234 	 * The baseline for the badness score is the proportion of RAM that each
235 	 * task's rss, pagetable and swap space use.
236 	 */
237 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
238 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
239 	task_unlock(p);
240 
241 	/* Normalize to oom_score_adj units */
242 	adj *= totalpages / 1000;
243 	points += adj;
244 
245 	return points;
246 }
247 
248 static const char * const oom_constraint_text[] = {
249 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
250 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
251 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
252 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
253 };
254 
255 /*
256  * Determine the type of allocation constraint.
257  */
constrained_alloc(struct oom_control * oc)258 static enum oom_constraint constrained_alloc(struct oom_control *oc)
259 {
260 	struct zone *zone;
261 	struct zoneref *z;
262 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
263 	bool cpuset_limited = false;
264 	int nid;
265 
266 	if (is_memcg_oom(oc)) {
267 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
268 		return CONSTRAINT_MEMCG;
269 	}
270 
271 	/* Default to all available memory */
272 	oc->totalpages = totalram_pages() + total_swap_pages;
273 
274 	if (!IS_ENABLED(CONFIG_NUMA))
275 		return CONSTRAINT_NONE;
276 
277 	if (!oc->zonelist)
278 		return CONSTRAINT_NONE;
279 	/*
280 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 	 * to kill current.We have to random task kill in this case.
282 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
283 	 */
284 	if (oc->gfp_mask & __GFP_THISNODE)
285 		return CONSTRAINT_NONE;
286 
287 	/*
288 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
290 	 * is enforced in get_page_from_freelist().
291 	 */
292 	if (oc->nodemask &&
293 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
294 		oc->totalpages = total_swap_pages;
295 		for_each_node_mask(nid, *oc->nodemask)
296 			oc->totalpages += node_present_pages(nid);
297 		return CONSTRAINT_MEMORY_POLICY;
298 	}
299 
300 	/* Check this allocation failure is caused by cpuset's wall function */
301 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
302 			highest_zoneidx, oc->nodemask)
303 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
304 			cpuset_limited = true;
305 
306 	if (cpuset_limited) {
307 		oc->totalpages = total_swap_pages;
308 		for_each_node_mask(nid, cpuset_current_mems_allowed)
309 			oc->totalpages += node_present_pages(nid);
310 		return CONSTRAINT_CPUSET;
311 	}
312 	return CONSTRAINT_NONE;
313 }
314 
oom_evaluate_task(struct task_struct * task,void * arg)315 static int oom_evaluate_task(struct task_struct *task, void *arg)
316 {
317 	struct oom_control *oc = arg;
318 	long points;
319 
320 	if (oom_unkillable_task(task))
321 		goto next;
322 
323 	/* p may not have freeable memory in nodemask */
324 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
325 		goto next;
326 
327 	/*
328 	 * This task already has access to memory reserves and is being killed.
329 	 * Don't allow any other task to have access to the reserves unless
330 	 * the task has MMF_OOM_SKIP because chances that it would release
331 	 * any memory is quite low.
332 	 */
333 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
334 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
335 			goto next;
336 		goto abort;
337 	}
338 
339 	/*
340 	 * If task is allocating a lot of memory and has been marked to be
341 	 * killed first if it triggers an oom, then select it.
342 	 */
343 	if (oom_task_origin(task)) {
344 		points = LONG_MAX;
345 		goto select;
346 	}
347 
348 	points = oom_badness(task, oc->totalpages);
349 	if (points == LONG_MIN || points < oc->chosen_points)
350 		goto next;
351 
352 select:
353 	if (oc->chosen)
354 		put_task_struct(oc->chosen);
355 	get_task_struct(task);
356 	oc->chosen = task;
357 	oc->chosen_points = points;
358 next:
359 	return 0;
360 abort:
361 	if (oc->chosen)
362 		put_task_struct(oc->chosen);
363 	oc->chosen = (void *)-1UL;
364 	return 1;
365 }
366 
367 /*
368  * Simple selection loop. We choose the process with the highest number of
369  * 'points'. In case scan was aborted, oc->chosen is set to -1.
370  */
select_bad_process(struct oom_control * oc)371 static void select_bad_process(struct oom_control *oc)
372 {
373 	oc->chosen_points = LONG_MIN;
374 
375 	if (is_memcg_oom(oc))
376 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
377 	else {
378 		struct task_struct *p;
379 
380 		rcu_read_lock();
381 		for_each_process(p)
382 			if (oom_evaluate_task(p, oc))
383 				break;
384 		rcu_read_unlock();
385 	}
386 }
387 
dump_task(struct task_struct * p,void * arg)388 static int dump_task(struct task_struct *p, void *arg)
389 {
390 	struct oom_control *oc = arg;
391 	struct task_struct *task;
392 
393 	if (oom_unkillable_task(p))
394 		return 0;
395 
396 	/* p may not have freeable memory in nodemask */
397 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
398 		return 0;
399 
400 	task = find_lock_task_mm(p);
401 	if (!task) {
402 		/*
403 		 * All of p's threads have already detached their mm's. There's
404 		 * no need to report them; they can't be oom killed anyway.
405 		 */
406 		return 0;
407 	}
408 
409 	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
410 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
411 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
412 		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
413 		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
414 		get_mm_counter(task->mm, MM_SWAPENTS),
415 		task->signal->oom_score_adj, task->comm);
416 	task_unlock(task);
417 
418 	return 0;
419 }
420 
421 /**
422  * dump_tasks - dump current memory state of all system tasks
423  * @oc: pointer to struct oom_control
424  *
425  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
426  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
427  * are not shown.
428  * State information includes task's pid, uid, tgid, vm size, rss,
429  * pgtables_bytes, swapents, oom_score_adj value, and name.
430  */
dump_tasks(struct oom_control * oc)431 void dump_tasks(struct oom_control *oc)
432 {
433 	pr_info("Tasks state (memory values in pages):\n");
434 	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
435 
436 	if (is_memcg_oom(oc))
437 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
438 	else {
439 		struct task_struct *p;
440 		int i = 0;
441 
442 		rcu_read_lock();
443 		for_each_process(p) {
444 			/* Avoid potential softlockup warning */
445 			if ((++i & 1023) == 0)
446 				touch_softlockup_watchdog();
447 			dump_task(p, oc);
448 		}
449 		rcu_read_unlock();
450 	}
451 }
452 EXPORT_SYMBOL_GPL(dump_tasks);
453 
dump_oom_victim(struct oom_control * oc,struct task_struct * victim)454 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
455 {
456 	/* one line summary of the oom killer context. */
457 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
458 			oom_constraint_text[oc->constraint],
459 			nodemask_pr_args(oc->nodemask));
460 	cpuset_print_current_mems_allowed();
461 	mem_cgroup_print_oom_context(oc->memcg, victim);
462 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
463 		from_kuid(&init_user_ns, task_uid(victim)));
464 }
465 
dump_header(struct oom_control * oc)466 static void dump_header(struct oom_control *oc)
467 {
468 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
469 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
470 			current->signal->oom_score_adj);
471 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
472 		pr_warn("COMPACTION is disabled!!!\n");
473 
474 	dump_stack();
475 	if (is_memcg_oom(oc))
476 		mem_cgroup_print_oom_meminfo(oc->memcg);
477 	else {
478 		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
479 		if (should_dump_unreclaim_slab())
480 			dump_unreclaimable_slab();
481 	}
482 	if (sysctl_oom_dump_tasks)
483 		dump_tasks(oc);
484 }
485 
486 /*
487  * Number of OOM victims in flight
488  */
489 static atomic_t oom_victims = ATOMIC_INIT(0);
490 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
491 
492 static bool oom_killer_disabled __read_mostly;
493 
494 /*
495  * task->mm can be NULL if the task is the exited group leader.  So to
496  * determine whether the task is using a particular mm, we examine all the
497  * task's threads: if one of those is using this mm then this task was also
498  * using it.
499  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)500 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
501 {
502 	struct task_struct *t;
503 
504 	for_each_thread(p, t) {
505 		struct mm_struct *t_mm = READ_ONCE(t->mm);
506 		if (t_mm)
507 			return t_mm == mm;
508 	}
509 	return false;
510 }
511 
512 #ifdef CONFIG_MMU
513 /*
514  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
515  * victim (if that is possible) to help the OOM killer to move on.
516  */
517 static struct task_struct *oom_reaper_th;
518 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
519 static struct task_struct *oom_reaper_list;
520 static DEFINE_SPINLOCK(oom_reaper_lock);
521 
__oom_reap_task_mm(struct mm_struct * mm)522 bool __oom_reap_task_mm(struct mm_struct *mm)
523 {
524 	struct vm_area_struct *vma;
525 	bool ret = true;
526 	VMA_ITERATOR(vmi, mm, 0);
527 
528 	/*
529 	 * Tell all users of get_user/copy_from_user etc... that the content
530 	 * is no longer stable. No barriers really needed because unmapping
531 	 * should imply barriers already and the reader would hit a page fault
532 	 * if it stumbled over a reaped memory.
533 	 */
534 	set_bit(MMF_UNSTABLE, &mm->flags);
535 
536 	trace_android_vh_oom_swapmem_gather_init(mm);
537 	for_each_vma(vmi, vma) {
538 		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
539 			continue;
540 
541 		/*
542 		 * Only anonymous pages have a good chance to be dropped
543 		 * without additional steps which we cannot afford as we
544 		 * are OOM already.
545 		 *
546 		 * We do not even care about fs backed pages because all
547 		 * which are reclaimable have already been reclaimed and
548 		 * we do not want to block exit_mmap by keeping mm ref
549 		 * count elevated without a good reason.
550 		 */
551 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
552 			struct mmu_notifier_range range;
553 			struct mmu_gather tlb;
554 
555 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
556 						mm, vma->vm_start,
557 						vma->vm_end);
558 			tlb_gather_mmu(&tlb, mm);
559 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
560 				tlb_finish_mmu(&tlb);
561 				ret = false;
562 				continue;
563 			}
564 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
565 			mmu_notifier_invalidate_range_end(&range);
566 			tlb_finish_mmu(&tlb);
567 		}
568 	}
569 	trace_android_vh_oom_swapmem_gather_finish(mm);
570 
571 	return ret;
572 }
573 EXPORT_SYMBOL_GPL(__oom_reap_task_mm);
574 
575 /*
576  * Reaps the address space of the give task.
577  *
578  * Returns true on success and false if none or part of the address space
579  * has been reclaimed and the caller should retry later.
580  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)581 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
582 {
583 	bool ret = true;
584 
585 	if (!mmap_read_trylock(mm)) {
586 		trace_skip_task_reaping(tsk->pid);
587 		return false;
588 	}
589 
590 	/*
591 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
592 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
593 	 * under mmap_lock for reading because it serializes against the
594 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
595 	 */
596 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
597 		trace_skip_task_reaping(tsk->pid);
598 		goto out_unlock;
599 	}
600 
601 	trace_start_task_reaping(tsk->pid);
602 
603 	/* failed to reap part of the address space. Try again later */
604 	ret = __oom_reap_task_mm(mm);
605 	if (!ret)
606 		goto out_finish;
607 
608 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
609 			task_pid_nr(tsk), tsk->comm,
610 			K(get_mm_counter(mm, MM_ANONPAGES)),
611 			K(get_mm_counter(mm, MM_FILEPAGES)),
612 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
613 out_finish:
614 	trace_finish_task_reaping(tsk->pid);
615 out_unlock:
616 	mmap_read_unlock(mm);
617 
618 	return ret;
619 }
620 
621 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)622 static void oom_reap_task(struct task_struct *tsk)
623 {
624 	int attempts = 0;
625 	struct mm_struct *mm = tsk->signal->oom_mm;
626 
627 	/* Retry the mmap_read_trylock(mm) a few times */
628 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
629 		schedule_timeout_idle(HZ/10);
630 
631 	if (attempts <= MAX_OOM_REAP_RETRIES ||
632 	    test_bit(MMF_OOM_SKIP, &mm->flags))
633 		goto done;
634 
635 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
636 		task_pid_nr(tsk), tsk->comm);
637 	sched_show_task(tsk);
638 	debug_show_all_locks();
639 
640 done:
641 	tsk->oom_reaper_list = NULL;
642 
643 	/*
644 	 * Hide this mm from OOM killer because it has been either reaped or
645 	 * somebody can't call mmap_write_unlock(mm).
646 	 */
647 	set_bit(MMF_OOM_SKIP, &mm->flags);
648 
649 	/* Drop a reference taken by queue_oom_reaper */
650 	put_task_struct(tsk);
651 }
652 
oom_reaper(void * unused)653 static int oom_reaper(void *unused)
654 {
655 	set_freezable();
656 
657 	while (true) {
658 		struct task_struct *tsk = NULL;
659 
660 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
661 		spin_lock_irq(&oom_reaper_lock);
662 		if (oom_reaper_list != NULL) {
663 			tsk = oom_reaper_list;
664 			oom_reaper_list = tsk->oom_reaper_list;
665 		}
666 		spin_unlock_irq(&oom_reaper_lock);
667 
668 		if (tsk)
669 			oom_reap_task(tsk);
670 	}
671 
672 	return 0;
673 }
674 
wake_oom_reaper(struct timer_list * timer)675 static void wake_oom_reaper(struct timer_list *timer)
676 {
677 	struct task_struct *tsk = container_of(timer, struct task_struct,
678 			oom_reaper_timer);
679 	struct mm_struct *mm = tsk->signal->oom_mm;
680 	unsigned long flags;
681 
682 	/* The victim managed to terminate on its own - see exit_mmap */
683 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
684 		put_task_struct(tsk);
685 		return;
686 	}
687 
688 	spin_lock_irqsave(&oom_reaper_lock, flags);
689 	tsk->oom_reaper_list = oom_reaper_list;
690 	oom_reaper_list = tsk;
691 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
692 	trace_wake_reaper(tsk->pid);
693 	wake_up(&oom_reaper_wait);
694 }
695 
696 /*
697  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
698  * The timers timeout is arbitrary... the longer it is, the longer the worst
699  * case scenario for the OOM can take. If it is too small, the oom_reaper can
700  * get in the way and release resources needed by the process exit path.
701  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
702  * before the exit path is able to wake the futex waiters.
703  */
704 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)705 static void queue_oom_reaper(struct task_struct *tsk)
706 {
707 	bool bypass = false;
708 
709 	/* mm is already queued? */
710 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
711 		return;
712 
713 	get_task_struct(tsk);
714 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
715 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
716 	trace_android_vh_oom_reaper_delay_bypass(tsk, &bypass);
717 	if (bypass)
718 		tsk->oom_reaper_timer.expires = jiffies;
719 	add_timer(&tsk->oom_reaper_timer);
720 }
721 
722 #ifdef CONFIG_SYSCTL
723 static struct ctl_table vm_oom_kill_table[] = {
724 	{
725 		.procname	= "panic_on_oom",
726 		.data		= &sysctl_panic_on_oom,
727 		.maxlen		= sizeof(sysctl_panic_on_oom),
728 		.mode		= 0644,
729 		.proc_handler	= proc_dointvec_minmax,
730 		.extra1		= SYSCTL_ZERO,
731 		.extra2		= SYSCTL_TWO,
732 	},
733 	{
734 		.procname	= "oom_kill_allocating_task",
735 		.data		= &sysctl_oom_kill_allocating_task,
736 		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
737 		.mode		= 0644,
738 		.proc_handler	= proc_dointvec,
739 	},
740 	{
741 		.procname	= "oom_dump_tasks",
742 		.data		= &sysctl_oom_dump_tasks,
743 		.maxlen		= sizeof(sysctl_oom_dump_tasks),
744 		.mode		= 0644,
745 		.proc_handler	= proc_dointvec,
746 	},
747 };
748 #endif
749 
oom_init(void)750 static int __init oom_init(void)
751 {
752 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
753 #ifdef CONFIG_SYSCTL
754 	register_sysctl_init("vm", vm_oom_kill_table);
755 #endif
756 	return 0;
757 }
subsys_initcall(oom_init)758 subsys_initcall(oom_init)
759 #else
760 static inline void queue_oom_reaper(struct task_struct *tsk)
761 {
762 }
763 #endif /* CONFIG_MMU */
764 
765 /**
766  * mark_oom_victim - mark the given task as OOM victim
767  * @tsk: task to mark
768  *
769  * Has to be called with oom_lock held and never after
770  * oom has been disabled already.
771  *
772  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
773  * under task_lock or operate on the current).
774  */
775 static void mark_oom_victim(struct task_struct *tsk)
776 {
777 	const struct cred *cred;
778 	struct mm_struct *mm = tsk->mm;
779 
780 	WARN_ON(oom_killer_disabled);
781 	/* OOM killer might race with memcg OOM */
782 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
783 		return;
784 
785 	/* oom_mm is bound to the signal struct life time. */
786 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
787 		mmgrab(tsk->signal->oom_mm);
788 
789 	/*
790 	 * Make sure that the task is woken up from uninterruptible sleep
791 	 * if it is frozen because OOM killer wouldn't be able to free
792 	 * any memory and livelock. freezing_slow_path will tell the freezer
793 	 * that TIF_MEMDIE tasks should be ignored.
794 	 */
795 	__thaw_task(tsk);
796 	atomic_inc(&oom_victims);
797 	cred = get_task_cred(tsk);
798 	trace_mark_victim(tsk, cred->uid.val);
799 	put_cred(cred);
800 }
801 
802 /**
803  * exit_oom_victim - note the exit of an OOM victim
804  */
exit_oom_victim(void)805 void exit_oom_victim(void)
806 {
807 	clear_thread_flag(TIF_MEMDIE);
808 
809 	if (!atomic_dec_return(&oom_victims))
810 		wake_up_all(&oom_victims_wait);
811 }
812 
813 /**
814  * oom_killer_enable - enable OOM killer
815  */
oom_killer_enable(void)816 void oom_killer_enable(void)
817 {
818 	oom_killer_disabled = false;
819 	pr_info("OOM killer enabled.\n");
820 }
821 
822 /**
823  * oom_killer_disable - disable OOM killer
824  * @timeout: maximum timeout to wait for oom victims in jiffies
825  *
826  * Forces all page allocations to fail rather than trigger OOM killer.
827  * Will block and wait until all OOM victims are killed or the given
828  * timeout expires.
829  *
830  * The function cannot be called when there are runnable user tasks because
831  * the userspace would see unexpected allocation failures as a result. Any
832  * new usage of this function should be consulted with MM people.
833  *
834  * Returns true if successful and false if the OOM killer cannot be
835  * disabled.
836  */
oom_killer_disable(signed long timeout)837 bool oom_killer_disable(signed long timeout)
838 {
839 	signed long ret;
840 
841 	/*
842 	 * Make sure to not race with an ongoing OOM killer. Check that the
843 	 * current is not killed (possibly due to sharing the victim's memory).
844 	 */
845 	if (mutex_lock_killable(&oom_lock))
846 		return false;
847 	oom_killer_disabled = true;
848 	mutex_unlock(&oom_lock);
849 
850 	ret = wait_event_interruptible_timeout(oom_victims_wait,
851 			!atomic_read(&oom_victims), timeout);
852 	if (ret <= 0) {
853 		oom_killer_enable();
854 		return false;
855 	}
856 	pr_info("OOM killer disabled.\n");
857 
858 	return true;
859 }
860 
__task_will_free_mem(struct task_struct * task)861 static inline bool __task_will_free_mem(struct task_struct *task)
862 {
863 	struct signal_struct *sig = task->signal;
864 
865 	/*
866 	 * A coredumping process may sleep for an extended period in
867 	 * coredump_task_exit(), so the oom killer cannot assume that
868 	 * the process will promptly exit and release memory.
869 	 */
870 	if (sig->core_state)
871 		return false;
872 
873 	if (sig->flags & SIGNAL_GROUP_EXIT)
874 		return true;
875 
876 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
877 		return true;
878 
879 	return false;
880 }
881 
882 /*
883  * Checks whether the given task is dying or exiting and likely to
884  * release its address space. This means that all threads and processes
885  * sharing the same mm have to be killed or exiting.
886  * Caller has to make sure that task->mm is stable (hold task_lock or
887  * it operates on the current).
888  */
task_will_free_mem(struct task_struct * task)889 static bool task_will_free_mem(struct task_struct *task)
890 {
891 	struct mm_struct *mm = task->mm;
892 	struct task_struct *p;
893 	bool ret = true;
894 
895 	/*
896 	 * Skip tasks without mm because it might have passed its exit_mm and
897 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
898 	 * on that for now. We can consider find_lock_task_mm in future.
899 	 */
900 	if (!mm)
901 		return false;
902 
903 	if (!__task_will_free_mem(task))
904 		return false;
905 
906 	/*
907 	 * This task has already been drained by the oom reaper so there are
908 	 * only small chances it will free some more
909 	 */
910 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
911 		return false;
912 
913 	if (atomic_read(&mm->mm_users) <= 1)
914 		return true;
915 
916 	/*
917 	 * Make sure that all tasks which share the mm with the given tasks
918 	 * are dying as well to make sure that a) nobody pins its mm and
919 	 * b) the task is also reapable by the oom reaper.
920 	 */
921 	rcu_read_lock();
922 	for_each_process(p) {
923 		if (!process_shares_mm(p, mm))
924 			continue;
925 		if (same_thread_group(task, p))
926 			continue;
927 		ret = __task_will_free_mem(p);
928 		if (!ret)
929 			break;
930 	}
931 	rcu_read_unlock();
932 
933 	return ret;
934 }
935 
936 /* Adds a killed process to the reaper. @p->mm has to be non NULL. */
add_to_oom_reaper(struct task_struct * p)937 void add_to_oom_reaper(struct task_struct *p)
938 {
939 	p = find_lock_task_mm(p);
940 	if (!p)
941 		return;
942 
943 	if (task_will_free_mem(p)) {
944 		if (!cmpxchg(&p->signal->oom_mm, NULL, p->mm))
945 			mmgrab(p->signal->oom_mm);
946 		queue_oom_reaper(p);
947 	}
948 	task_unlock(p);
949 }
950 
__oom_kill_process(struct task_struct * victim,const char * message)951 static void __oom_kill_process(struct task_struct *victim, const char *message)
952 {
953 	struct task_struct *p;
954 	struct mm_struct *mm;
955 	bool can_oom_reap = true;
956 
957 	p = find_lock_task_mm(victim);
958 	if (!p) {
959 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
960 			message, task_pid_nr(victim), victim->comm);
961 		put_task_struct(victim);
962 		return;
963 	} else if (victim != p) {
964 		get_task_struct(p);
965 		put_task_struct(victim);
966 		victim = p;
967 	}
968 
969 	/* Get a reference to safely compare mm after task_unlock(victim) */
970 	mm = victim->mm;
971 	mmgrab(mm);
972 
973 	/* Raise event before sending signal: task reaper must see this */
974 	count_vm_event(OOM_KILL);
975 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
976 
977 	/*
978 	 * We should send SIGKILL before granting access to memory reserves
979 	 * in order to prevent the OOM victim from depleting the memory
980 	 * reserves from the user space under its control.
981 	 */
982 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
983 	mark_oom_victim(victim);
984 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
985 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
986 		K(get_mm_counter(mm, MM_ANONPAGES)),
987 		K(get_mm_counter(mm, MM_FILEPAGES)),
988 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
989 		from_kuid(&init_user_ns, task_uid(victim)),
990 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
991 	task_unlock(victim);
992 
993 	/*
994 	 * Kill all user processes sharing victim->mm in other thread groups, if
995 	 * any.  They don't get access to memory reserves, though, to avoid
996 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
997 	 * oom killed thread cannot exit because it requires the semaphore and
998 	 * its contended by another thread trying to allocate memory itself.
999 	 * That thread will now get access to memory reserves since it has a
1000 	 * pending fatal signal.
1001 	 */
1002 	rcu_read_lock();
1003 	for_each_process(p) {
1004 		if (!process_shares_mm(p, mm))
1005 			continue;
1006 		if (same_thread_group(p, victim))
1007 			continue;
1008 		if (is_global_init(p)) {
1009 			can_oom_reap = false;
1010 			set_bit(MMF_OOM_SKIP, &mm->flags);
1011 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
1012 					task_pid_nr(victim), victim->comm,
1013 					task_pid_nr(p), p->comm);
1014 			continue;
1015 		}
1016 		/*
1017 		 * No kthread_use_mm() user needs to read from the userspace so
1018 		 * we are ok to reap it.
1019 		 */
1020 		if (unlikely(p->flags & PF_KTHREAD))
1021 			continue;
1022 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
1023 	}
1024 	rcu_read_unlock();
1025 
1026 	if (can_oom_reap)
1027 		queue_oom_reaper(victim);
1028 
1029 	mmdrop(mm);
1030 	put_task_struct(victim);
1031 }
1032 
1033 /*
1034  * Kill provided task unless it's secured by setting
1035  * oom_score_adj to OOM_SCORE_ADJ_MIN.
1036  */
oom_kill_memcg_member(struct task_struct * task,void * message)1037 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1038 {
1039 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1040 	    !is_global_init(task)) {
1041 		get_task_struct(task);
1042 		__oom_kill_process(task, message);
1043 	}
1044 	return 0;
1045 }
1046 
oom_kill_process(struct oom_control * oc,const char * message)1047 static void oom_kill_process(struct oom_control *oc, const char *message)
1048 {
1049 	struct task_struct *victim = oc->chosen;
1050 	struct mem_cgroup *oom_group;
1051 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1052 					      DEFAULT_RATELIMIT_BURST);
1053 
1054 	/*
1055 	 * If the task is already exiting, don't alarm the sysadmin or kill
1056 	 * its children or threads, just give it access to memory reserves
1057 	 * so it can die quickly
1058 	 */
1059 	task_lock(victim);
1060 	if (task_will_free_mem(victim)) {
1061 		mark_oom_victim(victim);
1062 		queue_oom_reaper(victim);
1063 		task_unlock(victim);
1064 		put_task_struct(victim);
1065 		return;
1066 	}
1067 	task_unlock(victim);
1068 
1069 	if (__ratelimit(&oom_rs)) {
1070 		dump_header(oc);
1071 		dump_oom_victim(oc, victim);
1072 	}
1073 
1074 	/*
1075 	 * Do we need to kill the entire memory cgroup?
1076 	 * Or even one of the ancestor memory cgroups?
1077 	 * Check this out before killing the victim task.
1078 	 */
1079 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1080 
1081 	__oom_kill_process(victim, message);
1082 
1083 	/*
1084 	 * If necessary, kill all tasks in the selected memory cgroup.
1085 	 */
1086 	if (oom_group) {
1087 		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1088 		mem_cgroup_print_oom_group(oom_group);
1089 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1090 				      (void *)message);
1091 		mem_cgroup_put(oom_group);
1092 	}
1093 }
1094 
1095 /*
1096  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1097  */
check_panic_on_oom(struct oom_control * oc)1098 static void check_panic_on_oom(struct oom_control *oc)
1099 {
1100 	if (likely(!sysctl_panic_on_oom))
1101 		return;
1102 	if (sysctl_panic_on_oom != 2) {
1103 		/*
1104 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1105 		 * does not panic for cpuset, mempolicy, or memcg allocation
1106 		 * failures.
1107 		 */
1108 		if (oc->constraint != CONSTRAINT_NONE)
1109 			return;
1110 	}
1111 	/* Do not panic for oom kills triggered by sysrq */
1112 	if (is_sysrq_oom(oc))
1113 		return;
1114 	dump_header(oc);
1115 	panic("Out of memory: %s panic_on_oom is enabled\n",
1116 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1117 }
1118 
1119 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1120 
register_oom_notifier(struct notifier_block * nb)1121 int register_oom_notifier(struct notifier_block *nb)
1122 {
1123 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1124 }
1125 EXPORT_SYMBOL_GPL(register_oom_notifier);
1126 
unregister_oom_notifier(struct notifier_block * nb)1127 int unregister_oom_notifier(struct notifier_block *nb)
1128 {
1129 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1130 }
1131 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1132 
1133 /**
1134  * out_of_memory - kill the "best" process when we run out of memory
1135  * @oc: pointer to struct oom_control
1136  *
1137  * If we run out of memory, we have the choice between either
1138  * killing a random task (bad), letting the system crash (worse)
1139  * OR try to be smart about which process to kill. Note that we
1140  * don't have to be perfect here, we just have to be good.
1141  */
out_of_memory(struct oom_control * oc)1142 bool out_of_memory(struct oom_control *oc)
1143 {
1144 	unsigned long freed = 0;
1145 
1146 	if (oom_killer_disabled)
1147 		return false;
1148 
1149 	if (!is_memcg_oom(oc)) {
1150 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1151 		if (freed > 0 && !is_sysrq_oom(oc))
1152 			/* Got some memory back in the last second. */
1153 			return true;
1154 	}
1155 
1156 	/*
1157 	 * If current has a pending SIGKILL or is exiting, then automatically
1158 	 * select it.  The goal is to allow it to allocate so that it may
1159 	 * quickly exit and free its memory.
1160 	 */
1161 	if (task_will_free_mem(current)) {
1162 		mark_oom_victim(current);
1163 		queue_oom_reaper(current);
1164 		return true;
1165 	}
1166 
1167 	/*
1168 	 * The OOM killer does not compensate for IO-less reclaim.
1169 	 * But mem_cgroup_oom() has to invoke the OOM killer even
1170 	 * if it is a GFP_NOFS allocation.
1171 	 */
1172 	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1173 		return true;
1174 
1175 	/*
1176 	 * Check if there were limitations on the allocation (only relevant for
1177 	 * NUMA and memcg) that may require different handling.
1178 	 */
1179 	oc->constraint = constrained_alloc(oc);
1180 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1181 		oc->nodemask = NULL;
1182 	check_panic_on_oom(oc);
1183 
1184 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1185 	    current->mm && !oom_unkillable_task(current) &&
1186 	    oom_cpuset_eligible(current, oc) &&
1187 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1188 		get_task_struct(current);
1189 		oc->chosen = current;
1190 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1191 		return true;
1192 	}
1193 
1194 	select_bad_process(oc);
1195 	/* Found nothing?!?! */
1196 	if (!oc->chosen) {
1197 		int ret = false;
1198 
1199 		trace_android_vh_oom_check_panic(oc, &ret);
1200 		if (ret)
1201 			return true;
1202 
1203 		dump_header(oc);
1204 		pr_warn("Out of memory and no killable processes...\n");
1205 		/*
1206 		 * If we got here due to an actual allocation at the
1207 		 * system level, we cannot survive this and will enter
1208 		 * an endless loop in the allocator. Bail out now.
1209 		 */
1210 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1211 			panic("System is deadlocked on memory\n");
1212 	}
1213 	if (oc->chosen && oc->chosen != (void *)-1UL)
1214 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1215 				 "Memory cgroup out of memory");
1216 	return !!oc->chosen;
1217 }
1218 
1219 /*
1220  * The pagefault handler calls here because some allocation has failed. We have
1221  * to take care of the memcg OOM here because this is the only safe context without
1222  * any locks held but let the oom killer triggered from the allocation context care
1223  * about the global OOM.
1224  */
pagefault_out_of_memory(void)1225 void pagefault_out_of_memory(void)
1226 {
1227 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1228 				      DEFAULT_RATELIMIT_BURST);
1229 
1230 	if (mem_cgroup_oom_synchronize(true))
1231 		return;
1232 
1233 	if (fatal_signal_pending(current))
1234 		return;
1235 
1236 	if (__ratelimit(&pfoom_rs))
1237 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1238 }
1239 
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1240 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1241 {
1242 #ifdef CONFIG_MMU
1243 	struct mm_struct *mm = NULL;
1244 	struct task_struct *task;
1245 	struct task_struct *p;
1246 	unsigned int f_flags;
1247 	bool reap = false;
1248 	long ret = 0;
1249 
1250 	if (flags)
1251 		return -EINVAL;
1252 
1253 	task = pidfd_get_task(pidfd, &f_flags);
1254 	if (IS_ERR(task))
1255 		return PTR_ERR(task);
1256 
1257 	/*
1258 	 * Make sure to choose a thread which still has a reference to mm
1259 	 * during the group exit
1260 	 */
1261 	p = find_lock_task_mm(task);
1262 	if (!p) {
1263 		ret = -ESRCH;
1264 		goto put_task;
1265 	}
1266 
1267 	mm = p->mm;
1268 	mmgrab(mm);
1269 
1270 	if (task_will_free_mem(p))
1271 		reap = true;
1272 	else {
1273 		/* Error only if the work has not been done already */
1274 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1275 			ret = -EINVAL;
1276 	}
1277 	task_unlock(p);
1278 
1279 	if (!reap)
1280 		goto drop_mm;
1281 
1282 	if (mmap_read_lock_killable(mm)) {
1283 		ret = -EINTR;
1284 		goto drop_mm;
1285 	}
1286 	/*
1287 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1288 	 * possible change in exit_mmap is seen
1289 	 */
1290 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1291 		ret = -EAGAIN;
1292 	mmap_read_unlock(mm);
1293 
1294 drop_mm:
1295 	mmdrop(mm);
1296 put_task:
1297 	put_task_struct(task);
1298 	return ret;
1299 #else
1300 	return -ENOSYS;
1301 #endif /* CONFIG_MMU */
1302 }
1303