1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/cred.h>
48 #include <linux/nmi.h>
49
50 #include <asm/tlb.h>
51 #include "internal.h"
52 #include "slab.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/oom.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/mm.h>
58
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61
62 static int sysctl_panic_on_oom;
63 static int sysctl_oom_kill_allocating_task;
64 static int sysctl_oom_dump_tasks = 1;
65
66 /*
67 * Serializes oom killer invocations (out_of_memory()) from all contexts to
68 * prevent from over eager oom killing (e.g. when the oom killer is invoked
69 * from different domains).
70 *
71 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
72 * and mark_oom_victim
73 */
74 DEFINE_MUTEX(oom_lock);
75 /* Serializes oom_score_adj and oom_score_adj_min updates */
76 DEFINE_MUTEX(oom_adj_mutex);
77
is_memcg_oom(struct oom_control * oc)78 static inline bool is_memcg_oom(struct oom_control *oc)
79 {
80 return oc->memcg != NULL;
81 }
82
83 #ifdef CONFIG_NUMA
84 /**
85 * oom_cpuset_eligible() - check task eligibility for kill
86 * @start: task struct of which task to consider
87 * @oc: pointer to struct oom_control
88 *
89 * Task eligibility is determined by whether or not a candidate task, @tsk,
90 * shares the same mempolicy nodes as current if it is bound by such a policy
91 * and whether or not it has the same set of allowed cpuset nodes.
92 *
93 * This function is assuming oom-killer context and 'current' has triggered
94 * the oom-killer.
95 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)96 static bool oom_cpuset_eligible(struct task_struct *start,
97 struct oom_control *oc)
98 {
99 struct task_struct *tsk;
100 bool ret = false;
101 const nodemask_t *mask = oc->nodemask;
102
103 rcu_read_lock();
104 for_each_thread(start, tsk) {
105 if (mask) {
106 /*
107 * If this is a mempolicy constrained oom, tsk's
108 * cpuset is irrelevant. Only return true if its
109 * mempolicy intersects current, otherwise it may be
110 * needlessly killed.
111 */
112 ret = mempolicy_in_oom_domain(tsk, mask);
113 } else {
114 /*
115 * This is not a mempolicy constrained oom, so only
116 * check the mems of tsk's cpuset.
117 */
118 ret = cpuset_mems_allowed_intersects(current, tsk);
119 }
120 if (ret)
121 break;
122 }
123 rcu_read_unlock();
124
125 return ret;
126 }
127 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)128 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
129 {
130 return true;
131 }
132 #endif /* CONFIG_NUMA */
133
134 /*
135 * The process p may have detached its own ->mm while exiting or through
136 * kthread_use_mm(), but one or more of its subthreads may still have a valid
137 * pointer. Return p, or any of its subthreads with a valid ->mm, with
138 * task_lock() held.
139 */
find_lock_task_mm(struct task_struct * p)140 struct task_struct *find_lock_task_mm(struct task_struct *p)
141 {
142 struct task_struct *t;
143
144 rcu_read_lock();
145
146 for_each_thread(p, t) {
147 task_lock(t);
148 if (likely(t->mm))
149 goto found;
150 task_unlock(t);
151 }
152 t = NULL;
153 found:
154 rcu_read_unlock();
155
156 return t;
157 }
158
159 /*
160 * order == -1 means the oom kill is required by sysrq, otherwise only
161 * for display purposes.
162 */
is_sysrq_oom(struct oom_control * oc)163 static inline bool is_sysrq_oom(struct oom_control *oc)
164 {
165 return oc->order == -1;
166 }
167
168 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)169 static bool oom_unkillable_task(struct task_struct *p)
170 {
171 if (is_global_init(p))
172 return true;
173 if (p->flags & PF_KTHREAD)
174 return true;
175 return false;
176 }
177
178 /*
179 * Check whether unreclaimable slab amount is greater than
180 * all user memory(LRU pages).
181 * dump_unreclaimable_slab() could help in the case that
182 * oom due to too much unreclaimable slab used by kernel.
183 */
should_dump_unreclaim_slab(void)184 static bool should_dump_unreclaim_slab(void)
185 {
186 unsigned long nr_lru;
187
188 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
189 global_node_page_state(NR_INACTIVE_ANON) +
190 global_node_page_state(NR_ACTIVE_FILE) +
191 global_node_page_state(NR_INACTIVE_FILE) +
192 global_node_page_state(NR_ISOLATED_ANON) +
193 global_node_page_state(NR_ISOLATED_FILE) +
194 global_node_page_state(NR_UNEVICTABLE);
195
196 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
197 }
198
199 /**
200 * oom_badness - heuristic function to determine which candidate task to kill
201 * @p: task struct of which task we should calculate
202 * @totalpages: total present RAM allowed for page allocation
203 *
204 * The heuristic for determining which task to kill is made to be as simple and
205 * predictable as possible. The goal is to return the highest value for the
206 * task consuming the most memory to avoid subsequent oom failures.
207 */
oom_badness(struct task_struct * p,unsigned long totalpages)208 long oom_badness(struct task_struct *p, unsigned long totalpages)
209 {
210 long points;
211 long adj;
212
213 if (oom_unkillable_task(p))
214 return LONG_MIN;
215
216 p = find_lock_task_mm(p);
217 if (!p)
218 return LONG_MIN;
219
220 /*
221 * Do not even consider tasks which are explicitly marked oom
222 * unkillable or have been already oom reaped or the are in
223 * the middle of vfork
224 */
225 adj = (long)p->signal->oom_score_adj;
226 if (adj == OOM_SCORE_ADJ_MIN ||
227 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
228 in_vfork(p)) {
229 task_unlock(p);
230 return LONG_MIN;
231 }
232
233 /*
234 * The baseline for the badness score is the proportion of RAM that each
235 * task's rss, pagetable and swap space use.
236 */
237 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
238 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
239 task_unlock(p);
240
241 /* Normalize to oom_score_adj units */
242 adj *= totalpages / 1000;
243 points += adj;
244
245 return points;
246 }
247
248 static const char * const oom_constraint_text[] = {
249 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
250 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
251 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
252 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
253 };
254
255 /*
256 * Determine the type of allocation constraint.
257 */
constrained_alloc(struct oom_control * oc)258 static enum oom_constraint constrained_alloc(struct oom_control *oc)
259 {
260 struct zone *zone;
261 struct zoneref *z;
262 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
263 bool cpuset_limited = false;
264 int nid;
265
266 if (is_memcg_oom(oc)) {
267 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
268 return CONSTRAINT_MEMCG;
269 }
270
271 /* Default to all available memory */
272 oc->totalpages = totalram_pages() + total_swap_pages;
273
274 if (!IS_ENABLED(CONFIG_NUMA))
275 return CONSTRAINT_NONE;
276
277 if (!oc->zonelist)
278 return CONSTRAINT_NONE;
279 /*
280 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 * to kill current.We have to random task kill in this case.
282 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
283 */
284 if (oc->gfp_mask & __GFP_THISNODE)
285 return CONSTRAINT_NONE;
286
287 /*
288 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 * the page allocator means a mempolicy is in effect. Cpuset policy
290 * is enforced in get_page_from_freelist().
291 */
292 if (oc->nodemask &&
293 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
294 oc->totalpages = total_swap_pages;
295 for_each_node_mask(nid, *oc->nodemask)
296 oc->totalpages += node_present_pages(nid);
297 return CONSTRAINT_MEMORY_POLICY;
298 }
299
300 /* Check this allocation failure is caused by cpuset's wall function */
301 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
302 highest_zoneidx, oc->nodemask)
303 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
304 cpuset_limited = true;
305
306 if (cpuset_limited) {
307 oc->totalpages = total_swap_pages;
308 for_each_node_mask(nid, cpuset_current_mems_allowed)
309 oc->totalpages += node_present_pages(nid);
310 return CONSTRAINT_CPUSET;
311 }
312 return CONSTRAINT_NONE;
313 }
314
oom_evaluate_task(struct task_struct * task,void * arg)315 static int oom_evaluate_task(struct task_struct *task, void *arg)
316 {
317 struct oom_control *oc = arg;
318 long points;
319
320 if (oom_unkillable_task(task))
321 goto next;
322
323 /* p may not have freeable memory in nodemask */
324 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
325 goto next;
326
327 /*
328 * This task already has access to memory reserves and is being killed.
329 * Don't allow any other task to have access to the reserves unless
330 * the task has MMF_OOM_SKIP because chances that it would release
331 * any memory is quite low.
332 */
333 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
334 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
335 goto next;
336 goto abort;
337 }
338
339 /*
340 * If task is allocating a lot of memory and has been marked to be
341 * killed first if it triggers an oom, then select it.
342 */
343 if (oom_task_origin(task)) {
344 points = LONG_MAX;
345 goto select;
346 }
347
348 points = oom_badness(task, oc->totalpages);
349 if (points == LONG_MIN || points < oc->chosen_points)
350 goto next;
351
352 select:
353 if (oc->chosen)
354 put_task_struct(oc->chosen);
355 get_task_struct(task);
356 oc->chosen = task;
357 oc->chosen_points = points;
358 next:
359 return 0;
360 abort:
361 if (oc->chosen)
362 put_task_struct(oc->chosen);
363 oc->chosen = (void *)-1UL;
364 return 1;
365 }
366
367 /*
368 * Simple selection loop. We choose the process with the highest number of
369 * 'points'. In case scan was aborted, oc->chosen is set to -1.
370 */
select_bad_process(struct oom_control * oc)371 static void select_bad_process(struct oom_control *oc)
372 {
373 oc->chosen_points = LONG_MIN;
374
375 if (is_memcg_oom(oc))
376 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
377 else {
378 struct task_struct *p;
379
380 rcu_read_lock();
381 for_each_process(p)
382 if (oom_evaluate_task(p, oc))
383 break;
384 rcu_read_unlock();
385 }
386 }
387
dump_task(struct task_struct * p,void * arg)388 static int dump_task(struct task_struct *p, void *arg)
389 {
390 struct oom_control *oc = arg;
391 struct task_struct *task;
392
393 if (oom_unkillable_task(p))
394 return 0;
395
396 /* p may not have freeable memory in nodemask */
397 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
398 return 0;
399
400 task = find_lock_task_mm(p);
401 if (!task) {
402 /*
403 * All of p's threads have already detached their mm's. There's
404 * no need to report them; they can't be oom killed anyway.
405 */
406 return 0;
407 }
408
409 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
410 task->pid, from_kuid(&init_user_ns, task_uid(task)),
411 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
412 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
413 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
414 get_mm_counter(task->mm, MM_SWAPENTS),
415 task->signal->oom_score_adj, task->comm);
416 task_unlock(task);
417
418 return 0;
419 }
420
421 /**
422 * dump_tasks - dump current memory state of all system tasks
423 * @oc: pointer to struct oom_control
424 *
425 * Dumps the current memory state of all eligible tasks. Tasks not in the same
426 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
427 * are not shown.
428 * State information includes task's pid, uid, tgid, vm size, rss,
429 * pgtables_bytes, swapents, oom_score_adj value, and name.
430 */
dump_tasks(struct oom_control * oc)431 void dump_tasks(struct oom_control *oc)
432 {
433 pr_info("Tasks state (memory values in pages):\n");
434 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
435
436 if (is_memcg_oom(oc))
437 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
438 else {
439 struct task_struct *p;
440 int i = 0;
441
442 rcu_read_lock();
443 for_each_process(p) {
444 /* Avoid potential softlockup warning */
445 if ((++i & 1023) == 0)
446 touch_softlockup_watchdog();
447 dump_task(p, oc);
448 }
449 rcu_read_unlock();
450 }
451 }
452 EXPORT_SYMBOL_GPL(dump_tasks);
453
dump_oom_victim(struct oom_control * oc,struct task_struct * victim)454 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
455 {
456 /* one line summary of the oom killer context. */
457 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
458 oom_constraint_text[oc->constraint],
459 nodemask_pr_args(oc->nodemask));
460 cpuset_print_current_mems_allowed();
461 mem_cgroup_print_oom_context(oc->memcg, victim);
462 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
463 from_kuid(&init_user_ns, task_uid(victim)));
464 }
465
dump_header(struct oom_control * oc)466 static void dump_header(struct oom_control *oc)
467 {
468 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
469 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
470 current->signal->oom_score_adj);
471 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
472 pr_warn("COMPACTION is disabled!!!\n");
473
474 dump_stack();
475 if (is_memcg_oom(oc))
476 mem_cgroup_print_oom_meminfo(oc->memcg);
477 else {
478 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
479 if (should_dump_unreclaim_slab())
480 dump_unreclaimable_slab();
481 }
482 if (sysctl_oom_dump_tasks)
483 dump_tasks(oc);
484 }
485
486 /*
487 * Number of OOM victims in flight
488 */
489 static atomic_t oom_victims = ATOMIC_INIT(0);
490 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
491
492 static bool oom_killer_disabled __read_mostly;
493
494 /*
495 * task->mm can be NULL if the task is the exited group leader. So to
496 * determine whether the task is using a particular mm, we examine all the
497 * task's threads: if one of those is using this mm then this task was also
498 * using it.
499 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)500 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
501 {
502 struct task_struct *t;
503
504 for_each_thread(p, t) {
505 struct mm_struct *t_mm = READ_ONCE(t->mm);
506 if (t_mm)
507 return t_mm == mm;
508 }
509 return false;
510 }
511
512 #ifdef CONFIG_MMU
513 /*
514 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
515 * victim (if that is possible) to help the OOM killer to move on.
516 */
517 static struct task_struct *oom_reaper_th;
518 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
519 static struct task_struct *oom_reaper_list;
520 static DEFINE_SPINLOCK(oom_reaper_lock);
521
__oom_reap_task_mm(struct mm_struct * mm)522 bool __oom_reap_task_mm(struct mm_struct *mm)
523 {
524 struct vm_area_struct *vma;
525 bool ret = true;
526 VMA_ITERATOR(vmi, mm, 0);
527
528 /*
529 * Tell all users of get_user/copy_from_user etc... that the content
530 * is no longer stable. No barriers really needed because unmapping
531 * should imply barriers already and the reader would hit a page fault
532 * if it stumbled over a reaped memory.
533 */
534 set_bit(MMF_UNSTABLE, &mm->flags);
535
536 trace_android_vh_oom_swapmem_gather_init(mm);
537 for_each_vma(vmi, vma) {
538 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
539 continue;
540
541 /*
542 * Only anonymous pages have a good chance to be dropped
543 * without additional steps which we cannot afford as we
544 * are OOM already.
545 *
546 * We do not even care about fs backed pages because all
547 * which are reclaimable have already been reclaimed and
548 * we do not want to block exit_mmap by keeping mm ref
549 * count elevated without a good reason.
550 */
551 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
552 struct mmu_notifier_range range;
553 struct mmu_gather tlb;
554
555 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
556 mm, vma->vm_start,
557 vma->vm_end);
558 tlb_gather_mmu(&tlb, mm);
559 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
560 tlb_finish_mmu(&tlb);
561 ret = false;
562 continue;
563 }
564 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
565 mmu_notifier_invalidate_range_end(&range);
566 tlb_finish_mmu(&tlb);
567 }
568 }
569 trace_android_vh_oom_swapmem_gather_finish(mm);
570
571 return ret;
572 }
573 EXPORT_SYMBOL_GPL(__oom_reap_task_mm);
574
575 /*
576 * Reaps the address space of the give task.
577 *
578 * Returns true on success and false if none or part of the address space
579 * has been reclaimed and the caller should retry later.
580 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)581 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
582 {
583 bool ret = true;
584
585 if (!mmap_read_trylock(mm)) {
586 trace_skip_task_reaping(tsk->pid);
587 return false;
588 }
589
590 /*
591 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
592 * work on the mm anymore. The check for MMF_OOM_SKIP must run
593 * under mmap_lock for reading because it serializes against the
594 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
595 */
596 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
597 trace_skip_task_reaping(tsk->pid);
598 goto out_unlock;
599 }
600
601 trace_start_task_reaping(tsk->pid);
602
603 /* failed to reap part of the address space. Try again later */
604 ret = __oom_reap_task_mm(mm);
605 if (!ret)
606 goto out_finish;
607
608 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
609 task_pid_nr(tsk), tsk->comm,
610 K(get_mm_counter(mm, MM_ANONPAGES)),
611 K(get_mm_counter(mm, MM_FILEPAGES)),
612 K(get_mm_counter(mm, MM_SHMEMPAGES)));
613 out_finish:
614 trace_finish_task_reaping(tsk->pid);
615 out_unlock:
616 mmap_read_unlock(mm);
617
618 return ret;
619 }
620
621 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)622 static void oom_reap_task(struct task_struct *tsk)
623 {
624 int attempts = 0;
625 struct mm_struct *mm = tsk->signal->oom_mm;
626
627 /* Retry the mmap_read_trylock(mm) a few times */
628 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
629 schedule_timeout_idle(HZ/10);
630
631 if (attempts <= MAX_OOM_REAP_RETRIES ||
632 test_bit(MMF_OOM_SKIP, &mm->flags))
633 goto done;
634
635 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
636 task_pid_nr(tsk), tsk->comm);
637 sched_show_task(tsk);
638 debug_show_all_locks();
639
640 done:
641 tsk->oom_reaper_list = NULL;
642
643 /*
644 * Hide this mm from OOM killer because it has been either reaped or
645 * somebody can't call mmap_write_unlock(mm).
646 */
647 set_bit(MMF_OOM_SKIP, &mm->flags);
648
649 /* Drop a reference taken by queue_oom_reaper */
650 put_task_struct(tsk);
651 }
652
oom_reaper(void * unused)653 static int oom_reaper(void *unused)
654 {
655 set_freezable();
656
657 while (true) {
658 struct task_struct *tsk = NULL;
659
660 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
661 spin_lock_irq(&oom_reaper_lock);
662 if (oom_reaper_list != NULL) {
663 tsk = oom_reaper_list;
664 oom_reaper_list = tsk->oom_reaper_list;
665 }
666 spin_unlock_irq(&oom_reaper_lock);
667
668 if (tsk)
669 oom_reap_task(tsk);
670 }
671
672 return 0;
673 }
674
wake_oom_reaper(struct timer_list * timer)675 static void wake_oom_reaper(struct timer_list *timer)
676 {
677 struct task_struct *tsk = container_of(timer, struct task_struct,
678 oom_reaper_timer);
679 struct mm_struct *mm = tsk->signal->oom_mm;
680 unsigned long flags;
681
682 /* The victim managed to terminate on its own - see exit_mmap */
683 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
684 put_task_struct(tsk);
685 return;
686 }
687
688 spin_lock_irqsave(&oom_reaper_lock, flags);
689 tsk->oom_reaper_list = oom_reaper_list;
690 oom_reaper_list = tsk;
691 spin_unlock_irqrestore(&oom_reaper_lock, flags);
692 trace_wake_reaper(tsk->pid);
693 wake_up(&oom_reaper_wait);
694 }
695
696 /*
697 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
698 * The timers timeout is arbitrary... the longer it is, the longer the worst
699 * case scenario for the OOM can take. If it is too small, the oom_reaper can
700 * get in the way and release resources needed by the process exit path.
701 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
702 * before the exit path is able to wake the futex waiters.
703 */
704 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)705 static void queue_oom_reaper(struct task_struct *tsk)
706 {
707 bool bypass = false;
708
709 /* mm is already queued? */
710 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
711 return;
712
713 get_task_struct(tsk);
714 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
715 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
716 trace_android_vh_oom_reaper_delay_bypass(tsk, &bypass);
717 if (bypass)
718 tsk->oom_reaper_timer.expires = jiffies;
719 add_timer(&tsk->oom_reaper_timer);
720 }
721
722 #ifdef CONFIG_SYSCTL
723 static struct ctl_table vm_oom_kill_table[] = {
724 {
725 .procname = "panic_on_oom",
726 .data = &sysctl_panic_on_oom,
727 .maxlen = sizeof(sysctl_panic_on_oom),
728 .mode = 0644,
729 .proc_handler = proc_dointvec_minmax,
730 .extra1 = SYSCTL_ZERO,
731 .extra2 = SYSCTL_TWO,
732 },
733 {
734 .procname = "oom_kill_allocating_task",
735 .data = &sysctl_oom_kill_allocating_task,
736 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
737 .mode = 0644,
738 .proc_handler = proc_dointvec,
739 },
740 {
741 .procname = "oom_dump_tasks",
742 .data = &sysctl_oom_dump_tasks,
743 .maxlen = sizeof(sysctl_oom_dump_tasks),
744 .mode = 0644,
745 .proc_handler = proc_dointvec,
746 },
747 };
748 #endif
749
oom_init(void)750 static int __init oom_init(void)
751 {
752 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
753 #ifdef CONFIG_SYSCTL
754 register_sysctl_init("vm", vm_oom_kill_table);
755 #endif
756 return 0;
757 }
subsys_initcall(oom_init)758 subsys_initcall(oom_init)
759 #else
760 static inline void queue_oom_reaper(struct task_struct *tsk)
761 {
762 }
763 #endif /* CONFIG_MMU */
764
765 /**
766 * mark_oom_victim - mark the given task as OOM victim
767 * @tsk: task to mark
768 *
769 * Has to be called with oom_lock held and never after
770 * oom has been disabled already.
771 *
772 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
773 * under task_lock or operate on the current).
774 */
775 static void mark_oom_victim(struct task_struct *tsk)
776 {
777 const struct cred *cred;
778 struct mm_struct *mm = tsk->mm;
779
780 WARN_ON(oom_killer_disabled);
781 /* OOM killer might race with memcg OOM */
782 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
783 return;
784
785 /* oom_mm is bound to the signal struct life time. */
786 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
787 mmgrab(tsk->signal->oom_mm);
788
789 /*
790 * Make sure that the task is woken up from uninterruptible sleep
791 * if it is frozen because OOM killer wouldn't be able to free
792 * any memory and livelock. freezing_slow_path will tell the freezer
793 * that TIF_MEMDIE tasks should be ignored.
794 */
795 __thaw_task(tsk);
796 atomic_inc(&oom_victims);
797 cred = get_task_cred(tsk);
798 trace_mark_victim(tsk, cred->uid.val);
799 put_cred(cred);
800 }
801
802 /**
803 * exit_oom_victim - note the exit of an OOM victim
804 */
exit_oom_victim(void)805 void exit_oom_victim(void)
806 {
807 clear_thread_flag(TIF_MEMDIE);
808
809 if (!atomic_dec_return(&oom_victims))
810 wake_up_all(&oom_victims_wait);
811 }
812
813 /**
814 * oom_killer_enable - enable OOM killer
815 */
oom_killer_enable(void)816 void oom_killer_enable(void)
817 {
818 oom_killer_disabled = false;
819 pr_info("OOM killer enabled.\n");
820 }
821
822 /**
823 * oom_killer_disable - disable OOM killer
824 * @timeout: maximum timeout to wait for oom victims in jiffies
825 *
826 * Forces all page allocations to fail rather than trigger OOM killer.
827 * Will block and wait until all OOM victims are killed or the given
828 * timeout expires.
829 *
830 * The function cannot be called when there are runnable user tasks because
831 * the userspace would see unexpected allocation failures as a result. Any
832 * new usage of this function should be consulted with MM people.
833 *
834 * Returns true if successful and false if the OOM killer cannot be
835 * disabled.
836 */
oom_killer_disable(signed long timeout)837 bool oom_killer_disable(signed long timeout)
838 {
839 signed long ret;
840
841 /*
842 * Make sure to not race with an ongoing OOM killer. Check that the
843 * current is not killed (possibly due to sharing the victim's memory).
844 */
845 if (mutex_lock_killable(&oom_lock))
846 return false;
847 oom_killer_disabled = true;
848 mutex_unlock(&oom_lock);
849
850 ret = wait_event_interruptible_timeout(oom_victims_wait,
851 !atomic_read(&oom_victims), timeout);
852 if (ret <= 0) {
853 oom_killer_enable();
854 return false;
855 }
856 pr_info("OOM killer disabled.\n");
857
858 return true;
859 }
860
__task_will_free_mem(struct task_struct * task)861 static inline bool __task_will_free_mem(struct task_struct *task)
862 {
863 struct signal_struct *sig = task->signal;
864
865 /*
866 * A coredumping process may sleep for an extended period in
867 * coredump_task_exit(), so the oom killer cannot assume that
868 * the process will promptly exit and release memory.
869 */
870 if (sig->core_state)
871 return false;
872
873 if (sig->flags & SIGNAL_GROUP_EXIT)
874 return true;
875
876 if (thread_group_empty(task) && (task->flags & PF_EXITING))
877 return true;
878
879 return false;
880 }
881
882 /*
883 * Checks whether the given task is dying or exiting and likely to
884 * release its address space. This means that all threads and processes
885 * sharing the same mm have to be killed or exiting.
886 * Caller has to make sure that task->mm is stable (hold task_lock or
887 * it operates on the current).
888 */
task_will_free_mem(struct task_struct * task)889 static bool task_will_free_mem(struct task_struct *task)
890 {
891 struct mm_struct *mm = task->mm;
892 struct task_struct *p;
893 bool ret = true;
894
895 /*
896 * Skip tasks without mm because it might have passed its exit_mm and
897 * exit_oom_victim. oom_reaper could have rescued that but do not rely
898 * on that for now. We can consider find_lock_task_mm in future.
899 */
900 if (!mm)
901 return false;
902
903 if (!__task_will_free_mem(task))
904 return false;
905
906 /*
907 * This task has already been drained by the oom reaper so there are
908 * only small chances it will free some more
909 */
910 if (test_bit(MMF_OOM_SKIP, &mm->flags))
911 return false;
912
913 if (atomic_read(&mm->mm_users) <= 1)
914 return true;
915
916 /*
917 * Make sure that all tasks which share the mm with the given tasks
918 * are dying as well to make sure that a) nobody pins its mm and
919 * b) the task is also reapable by the oom reaper.
920 */
921 rcu_read_lock();
922 for_each_process(p) {
923 if (!process_shares_mm(p, mm))
924 continue;
925 if (same_thread_group(task, p))
926 continue;
927 ret = __task_will_free_mem(p);
928 if (!ret)
929 break;
930 }
931 rcu_read_unlock();
932
933 return ret;
934 }
935
936 /* Adds a killed process to the reaper. @p->mm has to be non NULL. */
add_to_oom_reaper(struct task_struct * p)937 void add_to_oom_reaper(struct task_struct *p)
938 {
939 p = find_lock_task_mm(p);
940 if (!p)
941 return;
942
943 if (task_will_free_mem(p)) {
944 if (!cmpxchg(&p->signal->oom_mm, NULL, p->mm))
945 mmgrab(p->signal->oom_mm);
946 queue_oom_reaper(p);
947 }
948 task_unlock(p);
949 }
950
__oom_kill_process(struct task_struct * victim,const char * message)951 static void __oom_kill_process(struct task_struct *victim, const char *message)
952 {
953 struct task_struct *p;
954 struct mm_struct *mm;
955 bool can_oom_reap = true;
956
957 p = find_lock_task_mm(victim);
958 if (!p) {
959 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
960 message, task_pid_nr(victim), victim->comm);
961 put_task_struct(victim);
962 return;
963 } else if (victim != p) {
964 get_task_struct(p);
965 put_task_struct(victim);
966 victim = p;
967 }
968
969 /* Get a reference to safely compare mm after task_unlock(victim) */
970 mm = victim->mm;
971 mmgrab(mm);
972
973 /* Raise event before sending signal: task reaper must see this */
974 count_vm_event(OOM_KILL);
975 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
976
977 /*
978 * We should send SIGKILL before granting access to memory reserves
979 * in order to prevent the OOM victim from depleting the memory
980 * reserves from the user space under its control.
981 */
982 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
983 mark_oom_victim(victim);
984 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
985 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
986 K(get_mm_counter(mm, MM_ANONPAGES)),
987 K(get_mm_counter(mm, MM_FILEPAGES)),
988 K(get_mm_counter(mm, MM_SHMEMPAGES)),
989 from_kuid(&init_user_ns, task_uid(victim)),
990 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
991 task_unlock(victim);
992
993 /*
994 * Kill all user processes sharing victim->mm in other thread groups, if
995 * any. They don't get access to memory reserves, though, to avoid
996 * depletion of all memory. This prevents mm->mmap_lock livelock when an
997 * oom killed thread cannot exit because it requires the semaphore and
998 * its contended by another thread trying to allocate memory itself.
999 * That thread will now get access to memory reserves since it has a
1000 * pending fatal signal.
1001 */
1002 rcu_read_lock();
1003 for_each_process(p) {
1004 if (!process_shares_mm(p, mm))
1005 continue;
1006 if (same_thread_group(p, victim))
1007 continue;
1008 if (is_global_init(p)) {
1009 can_oom_reap = false;
1010 set_bit(MMF_OOM_SKIP, &mm->flags);
1011 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
1012 task_pid_nr(victim), victim->comm,
1013 task_pid_nr(p), p->comm);
1014 continue;
1015 }
1016 /*
1017 * No kthread_use_mm() user needs to read from the userspace so
1018 * we are ok to reap it.
1019 */
1020 if (unlikely(p->flags & PF_KTHREAD))
1021 continue;
1022 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
1023 }
1024 rcu_read_unlock();
1025
1026 if (can_oom_reap)
1027 queue_oom_reaper(victim);
1028
1029 mmdrop(mm);
1030 put_task_struct(victim);
1031 }
1032
1033 /*
1034 * Kill provided task unless it's secured by setting
1035 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1036 */
oom_kill_memcg_member(struct task_struct * task,void * message)1037 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1038 {
1039 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1040 !is_global_init(task)) {
1041 get_task_struct(task);
1042 __oom_kill_process(task, message);
1043 }
1044 return 0;
1045 }
1046
oom_kill_process(struct oom_control * oc,const char * message)1047 static void oom_kill_process(struct oom_control *oc, const char *message)
1048 {
1049 struct task_struct *victim = oc->chosen;
1050 struct mem_cgroup *oom_group;
1051 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1052 DEFAULT_RATELIMIT_BURST);
1053
1054 /*
1055 * If the task is already exiting, don't alarm the sysadmin or kill
1056 * its children or threads, just give it access to memory reserves
1057 * so it can die quickly
1058 */
1059 task_lock(victim);
1060 if (task_will_free_mem(victim)) {
1061 mark_oom_victim(victim);
1062 queue_oom_reaper(victim);
1063 task_unlock(victim);
1064 put_task_struct(victim);
1065 return;
1066 }
1067 task_unlock(victim);
1068
1069 if (__ratelimit(&oom_rs)) {
1070 dump_header(oc);
1071 dump_oom_victim(oc, victim);
1072 }
1073
1074 /*
1075 * Do we need to kill the entire memory cgroup?
1076 * Or even one of the ancestor memory cgroups?
1077 * Check this out before killing the victim task.
1078 */
1079 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1080
1081 __oom_kill_process(victim, message);
1082
1083 /*
1084 * If necessary, kill all tasks in the selected memory cgroup.
1085 */
1086 if (oom_group) {
1087 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1088 mem_cgroup_print_oom_group(oom_group);
1089 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1090 (void *)message);
1091 mem_cgroup_put(oom_group);
1092 }
1093 }
1094
1095 /*
1096 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1097 */
check_panic_on_oom(struct oom_control * oc)1098 static void check_panic_on_oom(struct oom_control *oc)
1099 {
1100 if (likely(!sysctl_panic_on_oom))
1101 return;
1102 if (sysctl_panic_on_oom != 2) {
1103 /*
1104 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1105 * does not panic for cpuset, mempolicy, or memcg allocation
1106 * failures.
1107 */
1108 if (oc->constraint != CONSTRAINT_NONE)
1109 return;
1110 }
1111 /* Do not panic for oom kills triggered by sysrq */
1112 if (is_sysrq_oom(oc))
1113 return;
1114 dump_header(oc);
1115 panic("Out of memory: %s panic_on_oom is enabled\n",
1116 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1117 }
1118
1119 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1120
register_oom_notifier(struct notifier_block * nb)1121 int register_oom_notifier(struct notifier_block *nb)
1122 {
1123 return blocking_notifier_chain_register(&oom_notify_list, nb);
1124 }
1125 EXPORT_SYMBOL_GPL(register_oom_notifier);
1126
unregister_oom_notifier(struct notifier_block * nb)1127 int unregister_oom_notifier(struct notifier_block *nb)
1128 {
1129 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1130 }
1131 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1132
1133 /**
1134 * out_of_memory - kill the "best" process when we run out of memory
1135 * @oc: pointer to struct oom_control
1136 *
1137 * If we run out of memory, we have the choice between either
1138 * killing a random task (bad), letting the system crash (worse)
1139 * OR try to be smart about which process to kill. Note that we
1140 * don't have to be perfect here, we just have to be good.
1141 */
out_of_memory(struct oom_control * oc)1142 bool out_of_memory(struct oom_control *oc)
1143 {
1144 unsigned long freed = 0;
1145
1146 if (oom_killer_disabled)
1147 return false;
1148
1149 if (!is_memcg_oom(oc)) {
1150 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1151 if (freed > 0 && !is_sysrq_oom(oc))
1152 /* Got some memory back in the last second. */
1153 return true;
1154 }
1155
1156 /*
1157 * If current has a pending SIGKILL or is exiting, then automatically
1158 * select it. The goal is to allow it to allocate so that it may
1159 * quickly exit and free its memory.
1160 */
1161 if (task_will_free_mem(current)) {
1162 mark_oom_victim(current);
1163 queue_oom_reaper(current);
1164 return true;
1165 }
1166
1167 /*
1168 * The OOM killer does not compensate for IO-less reclaim.
1169 * But mem_cgroup_oom() has to invoke the OOM killer even
1170 * if it is a GFP_NOFS allocation.
1171 */
1172 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1173 return true;
1174
1175 /*
1176 * Check if there were limitations on the allocation (only relevant for
1177 * NUMA and memcg) that may require different handling.
1178 */
1179 oc->constraint = constrained_alloc(oc);
1180 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1181 oc->nodemask = NULL;
1182 check_panic_on_oom(oc);
1183
1184 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1185 current->mm && !oom_unkillable_task(current) &&
1186 oom_cpuset_eligible(current, oc) &&
1187 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1188 get_task_struct(current);
1189 oc->chosen = current;
1190 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1191 return true;
1192 }
1193
1194 select_bad_process(oc);
1195 /* Found nothing?!?! */
1196 if (!oc->chosen) {
1197 int ret = false;
1198
1199 trace_android_vh_oom_check_panic(oc, &ret);
1200 if (ret)
1201 return true;
1202
1203 dump_header(oc);
1204 pr_warn("Out of memory and no killable processes...\n");
1205 /*
1206 * If we got here due to an actual allocation at the
1207 * system level, we cannot survive this and will enter
1208 * an endless loop in the allocator. Bail out now.
1209 */
1210 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1211 panic("System is deadlocked on memory\n");
1212 }
1213 if (oc->chosen && oc->chosen != (void *)-1UL)
1214 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1215 "Memory cgroup out of memory");
1216 return !!oc->chosen;
1217 }
1218
1219 /*
1220 * The pagefault handler calls here because some allocation has failed. We have
1221 * to take care of the memcg OOM here because this is the only safe context without
1222 * any locks held but let the oom killer triggered from the allocation context care
1223 * about the global OOM.
1224 */
pagefault_out_of_memory(void)1225 void pagefault_out_of_memory(void)
1226 {
1227 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1228 DEFAULT_RATELIMIT_BURST);
1229
1230 if (mem_cgroup_oom_synchronize(true))
1231 return;
1232
1233 if (fatal_signal_pending(current))
1234 return;
1235
1236 if (__ratelimit(&pfoom_rs))
1237 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1238 }
1239
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1240 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1241 {
1242 #ifdef CONFIG_MMU
1243 struct mm_struct *mm = NULL;
1244 struct task_struct *task;
1245 struct task_struct *p;
1246 unsigned int f_flags;
1247 bool reap = false;
1248 long ret = 0;
1249
1250 if (flags)
1251 return -EINVAL;
1252
1253 task = pidfd_get_task(pidfd, &f_flags);
1254 if (IS_ERR(task))
1255 return PTR_ERR(task);
1256
1257 /*
1258 * Make sure to choose a thread which still has a reference to mm
1259 * during the group exit
1260 */
1261 p = find_lock_task_mm(task);
1262 if (!p) {
1263 ret = -ESRCH;
1264 goto put_task;
1265 }
1266
1267 mm = p->mm;
1268 mmgrab(mm);
1269
1270 if (task_will_free_mem(p))
1271 reap = true;
1272 else {
1273 /* Error only if the work has not been done already */
1274 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1275 ret = -EINVAL;
1276 }
1277 task_unlock(p);
1278
1279 if (!reap)
1280 goto drop_mm;
1281
1282 if (mmap_read_lock_killable(mm)) {
1283 ret = -EINTR;
1284 goto drop_mm;
1285 }
1286 /*
1287 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1288 * possible change in exit_mmap is seen
1289 */
1290 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1291 ret = -EAGAIN;
1292 mmap_read_unlock(mm);
1293
1294 drop_mm:
1295 mmdrop(mm);
1296 put_task:
1297 put_task_struct(task);
1298 return ret;
1299 #else
1300 return -ENOSYS;
1301 #endif /* CONFIG_MMU */
1302 }
1303