• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/mm_inline.h>
44 #include "swap.h"
45 
46 #undef CREATE_TRACE_POINTS
47 #include <trace/hooks/mm.h>
48 
49 static struct vfsmount *shm_mnt __ro_after_init;
50 
51 #ifdef CONFIG_SHMEM
52 /*
53  * This virtual memory filesystem is heavily based on the ramfs. It
54  * extends ramfs by the ability to use swap and honor resource limits
55  * which makes it a completely usable filesystem.
56  */
57 
58 #include <linux/xattr.h>
59 #include <linux/exportfs.h>
60 #include <linux/posix_acl.h>
61 #include <linux/posix_acl_xattr.h>
62 #include <linux/mman.h>
63 #include <linux/string.h>
64 #include <linux/slab.h>
65 #include <linux/backing-dev.h>
66 #include <linux/writeback.h>
67 #include <linux/pagevec.h>
68 #include <linux/percpu_counter.h>
69 #include <linux/falloc.h>
70 #include <linux/splice.h>
71 #include <linux/security.h>
72 #include <linux/swapops.h>
73 #include <linux/mempolicy.h>
74 #include <linux/namei.h>
75 #include <linux/ctype.h>
76 #include <linux/migrate.h>
77 #include <linux/highmem.h>
78 #include <linux/seq_file.h>
79 #include <linux/magic.h>
80 #include <linux/syscalls.h>
81 #include <linux/fcntl.h>
82 #include <uapi/linux/memfd.h>
83 #include <linux/rmap.h>
84 #include <linux/uuid.h>
85 #include <linux/quotaops.h>
86 #include <linux/rcupdate_wait.h>
87 #include <linux/android_vendor.h>
88 
89 #include <linux/uaccess.h>
90 
91 #include "internal.h"
92 
93 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
94 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
95 
96 /* Pretend that each entry is of this size in directory's i_size */
97 #define BOGO_DIRENT_SIZE 20
98 
99 /* Pretend that one inode + its dentry occupy this much memory */
100 #define BOGO_INODE_SIZE 1024
101 
102 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
103 #define SHORT_SYMLINK_LEN 128
104 
105 /*
106  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
107  * inode->i_private (with i_rwsem making sure that it has only one user at
108  * a time): we would prefer not to enlarge the shmem inode just for that.
109  */
110 struct shmem_falloc {
111 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
112 	pgoff_t start;		/* start of range currently being fallocated */
113 	pgoff_t next;		/* the next page offset to be fallocated */
114 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
115 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
116 };
117 
118 struct shmem_options {
119 	unsigned long long blocks;
120 	unsigned long long inodes;
121 	struct mempolicy *mpol;
122 	kuid_t uid;
123 	kgid_t gid;
124 	umode_t mode;
125 	bool full_inums;
126 	int huge;
127 	int seen;
128 	bool noswap;
129 	unsigned short quota_types;
130 	struct shmem_quota_limits qlimits;
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138 
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 #endif
145 
146 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)147 static unsigned long shmem_default_max_blocks(void)
148 {
149 	return totalram_pages() / 2;
150 }
151 
shmem_default_max_inodes(void)152 static unsigned long shmem_default_max_inodes(void)
153 {
154 	unsigned long nr_pages = totalram_pages();
155 
156 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 			ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160 
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 			struct vm_area_struct *vma, vm_fault_t *fault_type);
164 
SHMEM_SB(struct super_block * sb)165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 	return sb->s_fs_info;
168 }
169 
170 /*
171  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172  * for shared memory and for shared anonymous (/dev/zero) mappings
173  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174  * consistent with the pre-accounting of private mappings ...
175  */
shmem_acct_size(unsigned long flags,loff_t size)176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181 
shmem_unacct_size(unsigned long flags,loff_t size)182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 	if (!(flags & VM_NORESERVE))
185 		vm_unacct_memory(VM_ACCT(size));
186 }
187 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)188 static inline int shmem_reacct_size(unsigned long flags,
189 		loff_t oldsize, loff_t newsize)
190 {
191 	if (!(flags & VM_NORESERVE)) {
192 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 			return security_vm_enough_memory_mm(current->mm,
194 					VM_ACCT(newsize) - VM_ACCT(oldsize));
195 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 	}
198 	return 0;
199 }
200 
201 /*
202  * ... whereas tmpfs objects are accounted incrementally as
203  * pages are allocated, in order to allow large sparse files.
204  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206  */
shmem_acct_blocks(unsigned long flags,long pages)207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 	if (!(flags & VM_NORESERVE))
210 		return 0;
211 
212 	return security_vm_enough_memory_mm(current->mm,
213 			pages * VM_ACCT(PAGE_SIZE));
214 }
215 
shmem_unacct_blocks(unsigned long flags,long pages)216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 	if (flags & VM_NORESERVE)
219 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221 
shmem_inode_acct_blocks(struct inode * inode,long pages)222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 	int err = -ENOSPC;
227 
228 	if (shmem_acct_blocks(info->flags, pages))
229 		return err;
230 
231 	might_sleep();	/* when quotas */
232 	if (sbinfo->max_blocks) {
233 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 						sbinfo->max_blocks, pages))
235 			goto unacct;
236 
237 		err = dquot_alloc_block_nodirty(inode, pages);
238 		if (err) {
239 			percpu_counter_sub(&sbinfo->used_blocks, pages);
240 			goto unacct;
241 		}
242 	} else {
243 		err = dquot_alloc_block_nodirty(inode, pages);
244 		if (err)
245 			goto unacct;
246 	}
247 
248 	return 0;
249 
250 unacct:
251 	shmem_unacct_blocks(info->flags, pages);
252 	return err;
253 }
254 
shmem_inode_unacct_blocks(struct inode * inode,long pages)255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 	struct shmem_inode_info *info = SHMEM_I(inode);
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259 
260 	might_sleep();	/* when quotas */
261 	dquot_free_block_nodirty(inode, pages);
262 
263 	if (sbinfo->max_blocks)
264 		percpu_counter_sub(&sbinfo->used_blocks, pages);
265 	shmem_unacct_blocks(info->flags, pages);
266 }
267 
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277 
shmem_mapping(struct address_space * mapping)278 bool shmem_mapping(struct address_space *mapping)
279 {
280 	return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283 
vma_is_anon_shmem(struct vm_area_struct * vma)284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 	return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288 
vma_is_shmem(struct vm_area_struct * vma)289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293 
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296 
297 #ifdef CONFIG_TMPFS_QUOTA
298 
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)299 static int shmem_enable_quotas(struct super_block *sb,
300 			       unsigned short quota_types)
301 {
302 	int type, err = 0;
303 
304 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 		if (!(quota_types & (1 << type)))
307 			continue;
308 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 					  DQUOT_USAGE_ENABLED |
310 					  DQUOT_LIMITS_ENABLED);
311 		if (err)
312 			goto out_err;
313 	}
314 	return 0;
315 
316 out_err:
317 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 		type, err);
319 	for (type--; type >= 0; type--)
320 		dquot_quota_off(sb, type);
321 	return err;
322 }
323 
shmem_disable_quotas(struct super_block * sb)324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 	int type;
327 
328 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 		dquot_quota_off(sb, type);
330 }
331 
shmem_get_dquots(struct inode * inode)332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 	return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337 
338 /*
339  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340  * produces a novel ino for the newly allocated inode.
341  *
342  * It may also be called when making a hard link to permit the space needed by
343  * each dentry. However, in that case, no new inode number is needed since that
344  * internally draws from another pool of inode numbers (currently global
345  * get_next_ino()). This case is indicated by passing NULL as inop.
346  */
347 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 	ino_t ino;
352 
353 	if (!(sb->s_flags & SB_KERNMOUNT)) {
354 		raw_spin_lock(&sbinfo->stat_lock);
355 		if (sbinfo->max_inodes) {
356 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 				raw_spin_unlock(&sbinfo->stat_lock);
358 				return -ENOSPC;
359 			}
360 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 		}
362 		if (inop) {
363 			ino = sbinfo->next_ino++;
364 			if (unlikely(is_zero_ino(ino)))
365 				ino = sbinfo->next_ino++;
366 			if (unlikely(!sbinfo->full_inums &&
367 				     ino > UINT_MAX)) {
368 				/*
369 				 * Emulate get_next_ino uint wraparound for
370 				 * compatibility
371 				 */
372 				if (IS_ENABLED(CONFIG_64BIT))
373 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 						__func__, MINOR(sb->s_dev));
375 				sbinfo->next_ino = 1;
376 				ino = sbinfo->next_ino++;
377 			}
378 			*inop = ino;
379 		}
380 		raw_spin_unlock(&sbinfo->stat_lock);
381 	} else if (inop) {
382 		/*
383 		 * __shmem_file_setup, one of our callers, is lock-free: it
384 		 * doesn't hold stat_lock in shmem_reserve_inode since
385 		 * max_inodes is always 0, and is called from potentially
386 		 * unknown contexts. As such, use a per-cpu batched allocator
387 		 * which doesn't require the per-sb stat_lock unless we are at
388 		 * the batch boundary.
389 		 *
390 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 		 * shmem mounts are not exposed to userspace, so we don't need
392 		 * to worry about things like glibc compatibility.
393 		 */
394 		ino_t *next_ino;
395 
396 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 		ino = *next_ino;
398 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 			raw_spin_lock(&sbinfo->stat_lock);
400 			ino = sbinfo->next_ino;
401 			sbinfo->next_ino += SHMEM_INO_BATCH;
402 			raw_spin_unlock(&sbinfo->stat_lock);
403 			if (unlikely(is_zero_ino(ino)))
404 				ino++;
405 		}
406 		*inop = ino;
407 		*next_ino = ++ino;
408 		put_cpu();
409 	}
410 
411 	return 0;
412 }
413 
shmem_free_inode(struct super_block * sb,size_t freed_ispace)414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 	if (sbinfo->max_inodes) {
418 		raw_spin_lock(&sbinfo->stat_lock);
419 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 		raw_spin_unlock(&sbinfo->stat_lock);
421 	}
422 }
423 
424 /**
425  * shmem_recalc_inode - recalculate the block usage of an inode
426  * @inode: inode to recalc
427  * @alloced: the change in number of pages allocated to inode
428  * @swapped: the change in number of pages swapped from inode
429  *
430  * We have to calculate the free blocks since the mm can drop
431  * undirtied hole pages behind our back.
432  *
433  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
434  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435  */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 	struct shmem_inode_info *info = SHMEM_I(inode);
439 	long freed;
440 
441 	spin_lock(&info->lock);
442 	info->alloced += alloced;
443 	info->swapped += swapped;
444 	freed = info->alloced - info->swapped -
445 		READ_ONCE(inode->i_mapping->nrpages);
446 	/*
447 	 * Special case: whereas normally shmem_recalc_inode() is called
448 	 * after i_mapping->nrpages has already been adjusted (up or down),
449 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
450 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 	 * been freed.  Compensate here, to avoid the need for a followup call.
452 	 */
453 	if (swapped > 0)
454 		freed += swapped;
455 	if (freed > 0)
456 		info->alloced -= freed;
457 	spin_unlock(&info->lock);
458 
459 	/* The quota case may block */
460 	if (freed > 0)
461 		shmem_inode_unacct_blocks(inode, freed);
462 }
463 
shmem_charge(struct inode * inode,long pages)464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 	struct address_space *mapping = inode->i_mapping;
467 
468 	if (shmem_inode_acct_blocks(inode, pages))
469 		return false;
470 
471 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 	xa_lock_irq(&mapping->i_pages);
473 	mapping->nrpages += pages;
474 	xa_unlock_irq(&mapping->i_pages);
475 
476 	shmem_recalc_inode(inode, pages, 0);
477 	return true;
478 }
479 
shmem_uncharge(struct inode * inode,long pages)480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 	/* pages argument is currently unused: keep it to help debugging */
483 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
484 
485 	shmem_recalc_inode(inode, 0, 0);
486 }
487 
488 /*
489  * Replace item expected in xarray by a new item, while holding xa_lock.
490  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)491 static int shmem_replace_entry(struct address_space *mapping,
492 			pgoff_t index, void *expected, void *replacement)
493 {
494 	XA_STATE(xas, &mapping->i_pages, index);
495 	void *item;
496 
497 	VM_BUG_ON(!expected);
498 	VM_BUG_ON(!replacement);
499 	item = xas_load(&xas);
500 	if (item != expected)
501 		return -ENOENT;
502 	xas_store(&xas, replacement);
503 	return 0;
504 }
505 
506 /*
507  * Sometimes, before we decide whether to proceed or to fail, we must check
508  * that an entry was not already brought back from swap by a racing thread.
509  *
510  * Checking folio is not enough: by the time a swapcache folio is locked, it
511  * might be reused, and again be swapcache, using the same swap as before.
512  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)513 static bool shmem_confirm_swap(struct address_space *mapping,
514 			       pgoff_t index, swp_entry_t swap)
515 {
516 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518 
519 /*
520  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521  *
522  * SHMEM_HUGE_NEVER:
523  *	disables huge pages for the mount;
524  * SHMEM_HUGE_ALWAYS:
525  *	enables huge pages for the mount;
526  * SHMEM_HUGE_WITHIN_SIZE:
527  *	only allocate huge pages if the page will be fully within i_size,
528  *	also respect fadvise()/madvise() hints;
529  * SHMEM_HUGE_ADVISE:
530  *	only allocate huge pages if requested with fadvise()/madvise();
531  */
532 
533 #define SHMEM_HUGE_NEVER	0
534 #define SHMEM_HUGE_ALWAYS	1
535 #define SHMEM_HUGE_WITHIN_SIZE	2
536 #define SHMEM_HUGE_ADVISE	3
537 
538 /*
539  * Special values.
540  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541  *
542  * SHMEM_HUGE_DENY:
543  *	disables huge on shm_mnt and all mounts, for emergency use;
544  * SHMEM_HUGE_FORCE:
545  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546  *
547  */
548 #define SHMEM_HUGE_DENY		(-1)
549 #define SHMEM_HUGE_FORCE	(-2)
550 
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553 
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 
__shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)556 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
557 					loff_t write_end, bool shmem_huge_force,
558 					struct vm_area_struct *vma,
559 					unsigned long vm_flags)
560 {
561 	struct mm_struct *mm = vma ? vma->vm_mm : NULL;
562 	loff_t i_size;
563 
564 	if (!S_ISREG(inode->i_mode))
565 		return false;
566 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
567 		return false;
568 	if (shmem_huge == SHMEM_HUGE_DENY)
569 		return false;
570 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
571 		return true;
572 
573 	switch (SHMEM_SB(inode->i_sb)->huge) {
574 	case SHMEM_HUGE_ALWAYS:
575 		return true;
576 	case SHMEM_HUGE_WITHIN_SIZE:
577 		index = round_up(index + 1, HPAGE_PMD_NR);
578 		i_size = max(write_end, i_size_read(inode));
579 		i_size = round_up(i_size, PAGE_SIZE);
580 		if (i_size >> PAGE_SHIFT >= index)
581 			return true;
582 		fallthrough;
583 	case SHMEM_HUGE_ADVISE:
584 		if (mm && (vm_flags & VM_HUGEPAGE))
585 			return true;
586 		fallthrough;
587 	default:
588 		return false;
589 	}
590 }
591 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)592 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
593 		   loff_t write_end, bool shmem_huge_force,
594 		   struct vm_area_struct *vma, unsigned long vm_flags)
595 {
596 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
597 		return false;
598 
599 	return __shmem_huge_global_enabled(inode, index, write_end,
600 					   shmem_huge_force, vma, vm_flags);
601 }
602 
603 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)604 static int shmem_parse_huge(const char *str)
605 {
606 	if (!strcmp(str, "never"))
607 		return SHMEM_HUGE_NEVER;
608 	if (!strcmp(str, "always"))
609 		return SHMEM_HUGE_ALWAYS;
610 	if (!strcmp(str, "within_size"))
611 		return SHMEM_HUGE_WITHIN_SIZE;
612 	if (!strcmp(str, "advise"))
613 		return SHMEM_HUGE_ADVISE;
614 	if (!strcmp(str, "deny"))
615 		return SHMEM_HUGE_DENY;
616 	if (!strcmp(str, "force"))
617 		return SHMEM_HUGE_FORCE;
618 	return -EINVAL;
619 }
620 #endif
621 
622 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)623 static const char *shmem_format_huge(int huge)
624 {
625 	switch (huge) {
626 	case SHMEM_HUGE_NEVER:
627 		return "never";
628 	case SHMEM_HUGE_ALWAYS:
629 		return "always";
630 	case SHMEM_HUGE_WITHIN_SIZE:
631 		return "within_size";
632 	case SHMEM_HUGE_ADVISE:
633 		return "advise";
634 	case SHMEM_HUGE_DENY:
635 		return "deny";
636 	case SHMEM_HUGE_FORCE:
637 		return "force";
638 	default:
639 		VM_BUG_ON(1);
640 		return "bad_val";
641 	}
642 }
643 #endif
644 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)645 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
646 		struct shrink_control *sc, unsigned long nr_to_free)
647 {
648 	LIST_HEAD(list), *pos, *next;
649 	struct inode *inode;
650 	struct shmem_inode_info *info;
651 	struct folio *folio;
652 	unsigned long batch = sc ? sc->nr_to_scan : 128;
653 	unsigned long split = 0, freed = 0;
654 
655 	if (list_empty(&sbinfo->shrinklist))
656 		return SHRINK_STOP;
657 
658 	spin_lock(&sbinfo->shrinklist_lock);
659 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
660 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
661 
662 		/* pin the inode */
663 		inode = igrab(&info->vfs_inode);
664 
665 		/* inode is about to be evicted */
666 		if (!inode) {
667 			list_del_init(&info->shrinklist);
668 			goto next;
669 		}
670 
671 		list_move(&info->shrinklist, &list);
672 next:
673 		sbinfo->shrinklist_len--;
674 		if (!--batch)
675 			break;
676 	}
677 	spin_unlock(&sbinfo->shrinklist_lock);
678 
679 	list_for_each_safe(pos, next, &list) {
680 		pgoff_t next, end;
681 		loff_t i_size;
682 		int ret;
683 
684 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
685 		inode = &info->vfs_inode;
686 
687 		if (nr_to_free && freed >= nr_to_free)
688 			goto move_back;
689 
690 		i_size = i_size_read(inode);
691 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
692 		if (!folio || xa_is_value(folio))
693 			goto drop;
694 
695 		/* No large folio at the end of the file: nothing to split */
696 		if (!folio_test_large(folio)) {
697 			folio_put(folio);
698 			goto drop;
699 		}
700 
701 		/* Check if there is anything to gain from splitting */
702 		next = folio_next_index(folio);
703 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
704 		if (end <= folio->index || end >= next) {
705 			folio_put(folio);
706 			goto drop;
707 		}
708 
709 		/*
710 		 * Move the inode on the list back to shrinklist if we failed
711 		 * to lock the page at this time.
712 		 *
713 		 * Waiting for the lock may lead to deadlock in the
714 		 * reclaim path.
715 		 */
716 		if (!folio_trylock(folio)) {
717 			folio_put(folio);
718 			goto move_back;
719 		}
720 
721 		ret = split_folio(folio);
722 		folio_unlock(folio);
723 		folio_put(folio);
724 
725 		/* If split failed move the inode on the list back to shrinklist */
726 		if (ret)
727 			goto move_back;
728 
729 		freed += next - end;
730 		split++;
731 drop:
732 		list_del_init(&info->shrinklist);
733 		goto put;
734 move_back:
735 		/*
736 		 * Make sure the inode is either on the global list or deleted
737 		 * from any local list before iput() since it could be deleted
738 		 * in another thread once we put the inode (then the local list
739 		 * is corrupted).
740 		 */
741 		spin_lock(&sbinfo->shrinklist_lock);
742 		list_move(&info->shrinklist, &sbinfo->shrinklist);
743 		sbinfo->shrinklist_len++;
744 		spin_unlock(&sbinfo->shrinklist_lock);
745 put:
746 		iput(inode);
747 	}
748 
749 	return split;
750 }
751 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)752 static long shmem_unused_huge_scan(struct super_block *sb,
753 		struct shrink_control *sc)
754 {
755 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
756 
757 	if (!READ_ONCE(sbinfo->shrinklist_len))
758 		return SHRINK_STOP;
759 
760 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
761 }
762 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)763 static long shmem_unused_huge_count(struct super_block *sb,
764 		struct shrink_control *sc)
765 {
766 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
767 	return READ_ONCE(sbinfo->shrinklist_len);
768 }
769 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
770 
771 #define shmem_huge SHMEM_HUGE_DENY
772 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)773 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
774 		struct shrink_control *sc, unsigned long nr_to_free)
775 {
776 	return 0;
777 }
778 
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)779 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
780 		loff_t write_end, bool shmem_huge_force,
781 		struct vm_area_struct *vma, unsigned long vm_flags)
782 {
783 	return false;
784 }
785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
786 
shmem_update_stats(struct folio * folio,int nr_pages)787 static void shmem_update_stats(struct folio *folio, int nr_pages)
788 {
789 	if (folio_test_pmd_mappable(folio))
790 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
791 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
792 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
793 }
794 
795 /*
796  * Somewhat like filemap_add_folio, but error if expected item has gone.
797  */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)798 static int shmem_add_to_page_cache(struct folio *folio,
799 				   struct address_space *mapping,
800 				   pgoff_t index, void *expected, gfp_t gfp)
801 {
802 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
803 	long nr = folio_nr_pages(folio);
804 
805 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
806 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
807 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
808 
809 	folio_ref_add(folio, nr);
810 	folio->mapping = mapping;
811 	folio->index = index;
812 
813 	gfp &= GFP_RECLAIM_MASK;
814 	folio_throttle_swaprate(folio, gfp);
815 
816 	do {
817 		xas_lock_irq(&xas);
818 		if (expected != xas_find_conflict(&xas)) {
819 			xas_set_err(&xas, -EEXIST);
820 			goto unlock;
821 		}
822 		if (expected && xas_find_conflict(&xas)) {
823 			xas_set_err(&xas, -EEXIST);
824 			goto unlock;
825 		}
826 		xas_store(&xas, folio);
827 		if (xas_error(&xas))
828 			goto unlock;
829 		shmem_update_stats(folio, nr);
830 		mapping->nrpages += nr;
831 		trace_android_vh_shmem_mod_shmem(folio->mapping, nr);
832 unlock:
833 		xas_unlock_irq(&xas);
834 	} while (xas_nomem(&xas, gfp));
835 
836 	if (xas_error(&xas)) {
837 		folio->mapping = NULL;
838 		folio_ref_sub(folio, nr);
839 		return xas_error(&xas);
840 	}
841 
842 	return 0;
843 }
844 
845 /*
846  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
847  */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)848 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
849 {
850 	struct address_space *mapping = folio->mapping;
851 	long nr = folio_nr_pages(folio);
852 	int error;
853 
854 	xa_lock_irq(&mapping->i_pages);
855 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
856 	trace_android_vh_shmem_mod_shmem(folio->mapping, -nr);
857 	folio->mapping = NULL;
858 	mapping->nrpages -= nr;
859 	shmem_update_stats(folio, -nr);
860 	xa_unlock_irq(&mapping->i_pages);
861 	folio_put_refs(folio, nr);
862 	BUG_ON(error);
863 }
864 
865 /*
866  * Remove swap entry from page cache, free the swap and its page cache. Returns
867  * the number of pages being freed. 0 means entry not found in XArray (0 pages
868  * being freed).
869  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)870 static long shmem_free_swap(struct address_space *mapping,
871 			    pgoff_t index, void *radswap)
872 {
873 	int order = xa_get_order(&mapping->i_pages, index);
874 	void *old;
875 
876 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
877 	if (old != radswap)
878 		return 0;
879 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
880 
881 	return 1 << order;
882 }
883 
884 /*
885  * Determine (in bytes) how many of the shmem object's pages mapped by the
886  * given offsets are swapped out.
887  *
888  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
889  * as long as the inode doesn't go away and racy results are not a problem.
890  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)891 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
892 						pgoff_t start, pgoff_t end)
893 {
894 	XA_STATE(xas, &mapping->i_pages, start);
895 	struct page *page;
896 	unsigned long swapped = 0;
897 	unsigned long max = end - 1;
898 
899 	rcu_read_lock();
900 	xas_for_each(&xas, page, max) {
901 		if (xas_retry(&xas, page))
902 			continue;
903 		if (xa_is_value(page))
904 			swapped += 1 << xas_get_order(&xas);
905 		if (xas.xa_index == max)
906 			break;
907 		if (need_resched()) {
908 			xas_pause(&xas);
909 			cond_resched_rcu();
910 		}
911 	}
912 	rcu_read_unlock();
913 
914 	return swapped << PAGE_SHIFT;
915 }
916 
917 /*
918  * Determine (in bytes) how many of the shmem object's pages mapped by the
919  * given vma is swapped out.
920  *
921  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
922  * as long as the inode doesn't go away and racy results are not a problem.
923  */
shmem_swap_usage(struct vm_area_struct * vma)924 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
925 {
926 	struct inode *inode = file_inode(vma->vm_file);
927 	struct shmem_inode_info *info = SHMEM_I(inode);
928 	struct address_space *mapping = inode->i_mapping;
929 	unsigned long swapped;
930 
931 	/* Be careful as we don't hold info->lock */
932 	swapped = READ_ONCE(info->swapped);
933 
934 	/*
935 	 * The easier cases are when the shmem object has nothing in swap, or
936 	 * the vma maps it whole. Then we can simply use the stats that we
937 	 * already track.
938 	 */
939 	if (!swapped)
940 		return 0;
941 
942 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
943 		return swapped << PAGE_SHIFT;
944 
945 	/* Here comes the more involved part */
946 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
947 					vma->vm_pgoff + vma_pages(vma));
948 }
949 
950 /*
951  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
952  */
shmem_unlock_mapping(struct address_space * mapping)953 void shmem_unlock_mapping(struct address_space *mapping)
954 {
955 	struct folio_batch fbatch;
956 	pgoff_t index = 0;
957 
958 	folio_batch_init(&fbatch);
959 	/*
960 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
961 	 */
962 	while (!mapping_unevictable(mapping) &&
963 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
964 		check_move_unevictable_folios(&fbatch);
965 		folio_batch_release(&fbatch);
966 		cond_resched();
967 	}
968 }
969 
shmem_get_partial_folio(struct inode * inode,pgoff_t index)970 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
971 {
972 	struct folio *folio;
973 
974 	/*
975 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
976 	 * beyond i_size, and reports fallocated folios as holes.
977 	 */
978 	folio = filemap_get_entry(inode->i_mapping, index);
979 	if (!folio)
980 		return folio;
981 	if (!xa_is_value(folio)) {
982 		folio_lock(folio);
983 		if (folio->mapping == inode->i_mapping)
984 			return folio;
985 		/* The folio has been swapped out */
986 		folio_unlock(folio);
987 		folio_put(folio);
988 	}
989 	/*
990 	 * But read a folio back from swap if any of it is within i_size
991 	 * (although in some cases this is just a waste of time).
992 	 */
993 	folio = NULL;
994 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
995 	return folio;
996 }
997 
998 /*
999  * Remove range of pages and swap entries from page cache, and free them.
1000  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1001  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1002 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1003 								 bool unfalloc)
1004 {
1005 	struct address_space *mapping = inode->i_mapping;
1006 	struct shmem_inode_info *info = SHMEM_I(inode);
1007 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1008 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1009 	struct folio_batch fbatch;
1010 	pgoff_t indices[PAGEVEC_SIZE];
1011 	struct folio *folio;
1012 	bool same_folio;
1013 	long nr_swaps_freed = 0;
1014 	pgoff_t index;
1015 	int i;
1016 
1017 	if (lend == -1)
1018 		end = -1;	/* unsigned, so actually very big */
1019 
1020 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1021 		info->fallocend = start;
1022 
1023 	folio_batch_init(&fbatch);
1024 	index = start;
1025 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1026 			&fbatch, indices)) {
1027 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1028 			folio = fbatch.folios[i];
1029 
1030 			if (xa_is_value(folio)) {
1031 				if (unfalloc)
1032 					continue;
1033 				nr_swaps_freed += shmem_free_swap(mapping,
1034 							indices[i], folio);
1035 				continue;
1036 			}
1037 
1038 			if (!unfalloc || !folio_test_uptodate(folio))
1039 				truncate_inode_folio(mapping, folio);
1040 			folio_unlock(folio);
1041 		}
1042 		folio_batch_remove_exceptionals(&fbatch);
1043 		folio_batch_release(&fbatch);
1044 		cond_resched();
1045 	}
1046 
1047 	/*
1048 	 * When undoing a failed fallocate, we want none of the partial folio
1049 	 * zeroing and splitting below, but shall want to truncate the whole
1050 	 * folio when !uptodate indicates that it was added by this fallocate,
1051 	 * even when [lstart, lend] covers only a part of the folio.
1052 	 */
1053 	if (unfalloc)
1054 		goto whole_folios;
1055 
1056 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1057 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1058 	if (folio) {
1059 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1060 		folio_mark_dirty(folio);
1061 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1062 			start = folio_next_index(folio);
1063 			if (same_folio)
1064 				end = folio->index;
1065 		}
1066 		folio_unlock(folio);
1067 		folio_put(folio);
1068 		folio = NULL;
1069 	}
1070 
1071 	if (!same_folio)
1072 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1073 	if (folio) {
1074 		folio_mark_dirty(folio);
1075 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1076 			end = folio->index;
1077 		folio_unlock(folio);
1078 		folio_put(folio);
1079 	}
1080 
1081 whole_folios:
1082 
1083 	index = start;
1084 	while (index < end) {
1085 		cond_resched();
1086 
1087 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1088 				indices)) {
1089 			/* If all gone or hole-punch or unfalloc, we're done */
1090 			if (index == start || end != -1)
1091 				break;
1092 			/* But if truncating, restart to make sure all gone */
1093 			index = start;
1094 			continue;
1095 		}
1096 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1097 			folio = fbatch.folios[i];
1098 
1099 			if (xa_is_value(folio)) {
1100 				long swaps_freed;
1101 
1102 				if (unfalloc)
1103 					continue;
1104 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1105 				if (!swaps_freed) {
1106 					/* Swap was replaced by page: retry */
1107 					index = indices[i];
1108 					break;
1109 				}
1110 				nr_swaps_freed += swaps_freed;
1111 				continue;
1112 			}
1113 
1114 			folio_lock(folio);
1115 
1116 			if (!unfalloc || !folio_test_uptodate(folio)) {
1117 				if (folio_mapping(folio) != mapping) {
1118 					/* Page was replaced by swap: retry */
1119 					folio_unlock(folio);
1120 					index = indices[i];
1121 					break;
1122 				}
1123 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1124 						folio);
1125 
1126 				if (!folio_test_large(folio)) {
1127 					truncate_inode_folio(mapping, folio);
1128 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1129 					/*
1130 					 * If we split a page, reset the loop so
1131 					 * that we pick up the new sub pages.
1132 					 * Otherwise the THP was entirely
1133 					 * dropped or the target range was
1134 					 * zeroed, so just continue the loop as
1135 					 * is.
1136 					 */
1137 					if (!folio_test_large(folio)) {
1138 						folio_unlock(folio);
1139 						index = start;
1140 						break;
1141 					}
1142 				}
1143 			}
1144 			folio_unlock(folio);
1145 		}
1146 		folio_batch_remove_exceptionals(&fbatch);
1147 		folio_batch_release(&fbatch);
1148 	}
1149 
1150 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1151 	trace_android_vh_shmem_mod_swapped(mapping, -nr_swaps_freed);
1152 }
1153 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1154 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1155 {
1156 	shmem_undo_range(inode, lstart, lend, false);
1157 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1158 	inode_inc_iversion(inode);
1159 }
1160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1161 
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1162 static int shmem_getattr(struct mnt_idmap *idmap,
1163 			 const struct path *path, struct kstat *stat,
1164 			 u32 request_mask, unsigned int query_flags)
1165 {
1166 	struct inode *inode = path->dentry->d_inode;
1167 	struct shmem_inode_info *info = SHMEM_I(inode);
1168 
1169 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1170 		shmem_recalc_inode(inode, 0, 0);
1171 
1172 	if (info->fsflags & FS_APPEND_FL)
1173 		stat->attributes |= STATX_ATTR_APPEND;
1174 	if (info->fsflags & FS_IMMUTABLE_FL)
1175 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1176 	if (info->fsflags & FS_NODUMP_FL)
1177 		stat->attributes |= STATX_ATTR_NODUMP;
1178 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1179 			STATX_ATTR_IMMUTABLE |
1180 			STATX_ATTR_NODUMP);
1181 	generic_fillattr(idmap, request_mask, inode, stat);
1182 
1183 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1184 		stat->blksize = HPAGE_PMD_SIZE;
1185 
1186 	if (request_mask & STATX_BTIME) {
1187 		stat->result_mask |= STATX_BTIME;
1188 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1189 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1195 static int shmem_setattr(struct mnt_idmap *idmap,
1196 			 struct dentry *dentry, struct iattr *attr)
1197 {
1198 	struct inode *inode = d_inode(dentry);
1199 	struct shmem_inode_info *info = SHMEM_I(inode);
1200 	int error;
1201 	bool update_mtime = false;
1202 	bool update_ctime = true;
1203 
1204 	error = setattr_prepare(idmap, dentry, attr);
1205 	if (error)
1206 		return error;
1207 
1208 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1209 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1210 			return -EPERM;
1211 		}
1212 	}
1213 
1214 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1215 		loff_t oldsize = inode->i_size;
1216 		loff_t newsize = attr->ia_size;
1217 
1218 		/* protected by i_rwsem */
1219 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1220 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1221 			return -EPERM;
1222 
1223 		if (newsize != oldsize) {
1224 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1225 					oldsize, newsize);
1226 			if (error)
1227 				return error;
1228 			i_size_write(inode, newsize);
1229 			update_mtime = true;
1230 		} else {
1231 			update_ctime = false;
1232 		}
1233 		if (newsize <= oldsize) {
1234 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1235 			if (oldsize > holebegin)
1236 				unmap_mapping_range(inode->i_mapping,
1237 							holebegin, 0, 1);
1238 			if (info->alloced)
1239 				shmem_truncate_range(inode,
1240 							newsize, (loff_t)-1);
1241 			/* unmap again to remove racily COWed private pages */
1242 			if (oldsize > holebegin)
1243 				unmap_mapping_range(inode->i_mapping,
1244 							holebegin, 0, 1);
1245 		}
1246 	}
1247 
1248 	if (is_quota_modification(idmap, inode, attr)) {
1249 		error = dquot_initialize(inode);
1250 		if (error)
1251 			return error;
1252 	}
1253 
1254 	/* Transfer quota accounting */
1255 	if (i_uid_needs_update(idmap, attr, inode) ||
1256 	    i_gid_needs_update(idmap, attr, inode)) {
1257 		error = dquot_transfer(idmap, inode, attr);
1258 		if (error)
1259 			return error;
1260 	}
1261 
1262 	setattr_copy(idmap, inode, attr);
1263 	if (attr->ia_valid & ATTR_MODE)
1264 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1265 	if (!error && update_ctime) {
1266 		inode_set_ctime_current(inode);
1267 		if (update_mtime)
1268 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1269 		inode_inc_iversion(inode);
1270 	}
1271 	return error;
1272 }
1273 
shmem_evict_inode(struct inode * inode)1274 static void shmem_evict_inode(struct inode *inode)
1275 {
1276 	struct shmem_inode_info *info = SHMEM_I(inode);
1277 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1278 	size_t freed = 0;
1279 
1280 	if (shmem_mapping(inode->i_mapping)) {
1281 		shmem_unacct_size(info->flags, inode->i_size);
1282 		inode->i_size = 0;
1283 		mapping_set_exiting(inode->i_mapping);
1284 		shmem_truncate_range(inode, 0, (loff_t)-1);
1285 		if (!list_empty(&info->shrinklist)) {
1286 			spin_lock(&sbinfo->shrinklist_lock);
1287 			if (!list_empty(&info->shrinklist)) {
1288 				list_del_init(&info->shrinklist);
1289 				sbinfo->shrinklist_len--;
1290 			}
1291 			spin_unlock(&sbinfo->shrinklist_lock);
1292 		}
1293 		while (!list_empty(&info->swaplist)) {
1294 			/* Wait while shmem_unuse() is scanning this inode... */
1295 			wait_var_event(&info->stop_eviction,
1296 				       !atomic_read(&info->stop_eviction));
1297 			mutex_lock(&shmem_swaplist_mutex);
1298 			/* ...but beware of the race if we peeked too early */
1299 			if (!atomic_read(&info->stop_eviction))
1300 				list_del_init(&info->swaplist);
1301 			mutex_unlock(&shmem_swaplist_mutex);
1302 		}
1303 	}
1304 
1305 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1306 	shmem_free_inode(inode->i_sb, freed);
1307 	WARN_ON(inode->i_blocks);
1308 	clear_inode(inode);
1309 #ifdef CONFIG_TMPFS_QUOTA
1310 	dquot_free_inode(inode);
1311 	dquot_drop(inode);
1312 #endif
1313 }
1314 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1315 static int shmem_find_swap_entries(struct address_space *mapping,
1316 				   pgoff_t start, struct folio_batch *fbatch,
1317 				   pgoff_t *indices, unsigned int type)
1318 {
1319 	XA_STATE(xas, &mapping->i_pages, start);
1320 	struct folio *folio;
1321 	swp_entry_t entry;
1322 
1323 	rcu_read_lock();
1324 	xas_for_each(&xas, folio, ULONG_MAX) {
1325 		if (xas_retry(&xas, folio))
1326 			continue;
1327 
1328 		if (!xa_is_value(folio))
1329 			continue;
1330 
1331 		entry = radix_to_swp_entry(folio);
1332 		/*
1333 		 * swapin error entries can be found in the mapping. But they're
1334 		 * deliberately ignored here as we've done everything we can do.
1335 		 */
1336 		if (swp_type(entry) != type)
1337 			continue;
1338 
1339 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1340 		if (!folio_batch_add(fbatch, folio))
1341 			break;
1342 
1343 		if (need_resched()) {
1344 			xas_pause(&xas);
1345 			cond_resched_rcu();
1346 		}
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	return xas.xa_index;
1351 }
1352 
1353 /*
1354  * Move the swapped pages for an inode to page cache. Returns the count
1355  * of pages swapped in, or the error in case of failure.
1356  */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1357 static int shmem_unuse_swap_entries(struct inode *inode,
1358 		struct folio_batch *fbatch, pgoff_t *indices)
1359 {
1360 	int i = 0;
1361 	int ret = 0;
1362 	int error = 0;
1363 	struct address_space *mapping = inode->i_mapping;
1364 
1365 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1366 		struct folio *folio = fbatch->folios[i];
1367 
1368 		if (!xa_is_value(folio))
1369 			continue;
1370 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1371 					mapping_gfp_mask(mapping), NULL, NULL);
1372 		if (error == 0) {
1373 			folio_unlock(folio);
1374 			folio_put(folio);
1375 			ret++;
1376 		}
1377 		if (error == -ENOMEM)
1378 			break;
1379 		error = 0;
1380 	}
1381 	return error ? error : ret;
1382 }
1383 
1384 /*
1385  * If swap found in inode, free it and move page from swapcache to filecache.
1386  */
shmem_unuse_inode(struct inode * inode,unsigned int type)1387 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1388 {
1389 	struct address_space *mapping = inode->i_mapping;
1390 	pgoff_t start = 0;
1391 	struct folio_batch fbatch;
1392 	pgoff_t indices[PAGEVEC_SIZE];
1393 	int ret = 0;
1394 
1395 	do {
1396 		folio_batch_init(&fbatch);
1397 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1398 		if (folio_batch_count(&fbatch) == 0) {
1399 			ret = 0;
1400 			break;
1401 		}
1402 
1403 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1404 		if (ret < 0)
1405 			break;
1406 
1407 		start = indices[folio_batch_count(&fbatch) - 1];
1408 	} while (true);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Read all the shared memory data that resides in the swap
1415  * device 'type' back into memory, so the swap device can be
1416  * unused.
1417  */
shmem_unuse(unsigned int type)1418 int shmem_unuse(unsigned int type)
1419 {
1420 	struct shmem_inode_info *info, *next;
1421 	int error = 0;
1422 
1423 	if (list_empty(&shmem_swaplist))
1424 		return 0;
1425 
1426 	mutex_lock(&shmem_swaplist_mutex);
1427 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1428 		if (!info->swapped) {
1429 			list_del_init(&info->swaplist);
1430 			continue;
1431 		}
1432 		/*
1433 		 * Drop the swaplist mutex while searching the inode for swap;
1434 		 * but before doing so, make sure shmem_evict_inode() will not
1435 		 * remove placeholder inode from swaplist, nor let it be freed
1436 		 * (igrab() would protect from unlink, but not from unmount).
1437 		 */
1438 		atomic_inc(&info->stop_eviction);
1439 		mutex_unlock(&shmem_swaplist_mutex);
1440 
1441 		error = shmem_unuse_inode(&info->vfs_inode, type);
1442 		cond_resched();
1443 
1444 		mutex_lock(&shmem_swaplist_mutex);
1445 		next = list_next_entry(info, swaplist);
1446 		if (!info->swapped)
1447 			list_del_init(&info->swaplist);
1448 		if (atomic_dec_and_test(&info->stop_eviction))
1449 			wake_up_var(&info->stop_eviction);
1450 		if (error)
1451 			break;
1452 	}
1453 	mutex_unlock(&shmem_swaplist_mutex);
1454 
1455 	return error;
1456 }
1457 
1458 /*
1459  * Move the page from the page cache to the swap cache.
1460  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1461 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1462 {
1463 	struct folio *folio = page_folio(page);
1464 	struct address_space *mapping = folio->mapping;
1465 	struct inode *inode = mapping->host;
1466 	struct shmem_inode_info *info = SHMEM_I(inode);
1467 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1468 	swp_entry_t swap;
1469 	pgoff_t index;
1470 	int nr_pages;
1471 	bool split = false;
1472 
1473 	/*
1474 	 * Our capabilities prevent regular writeback or sync from ever calling
1475 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1476 	 * its underlying filesystem, in which case tmpfs should write out to
1477 	 * swap only in response to memory pressure, and not for the writeback
1478 	 * threads or sync.
1479 	 */
1480 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1481 		goto redirty;
1482 
1483 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1484 		goto redirty;
1485 
1486 	if (!total_swap_pages)
1487 		goto redirty;
1488 
1489 	/*
1490 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1491 	 * split when swapping.
1492 	 *
1493 	 * And shrinkage of pages beyond i_size does not split swap, so
1494 	 * swapout of a large folio crossing i_size needs to split too
1495 	 * (unless fallocate has been used to preallocate beyond EOF).
1496 	 */
1497 	if (folio_test_large(folio)) {
1498 		index = shmem_fallocend(inode,
1499 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1500 		if ((index > folio->index && index < folio_next_index(folio)) ||
1501 		    !IS_ENABLED(CONFIG_THP_SWAP))
1502 			split = true;
1503 	}
1504 
1505 	if (split) {
1506 try_split:
1507 		/* Ensure the subpages are still dirty */
1508 		folio_test_set_dirty(folio);
1509 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1510 			goto redirty;
1511 		folio = page_folio(page);
1512 		folio_clear_dirty(folio);
1513 	}
1514 
1515 	index = folio->index;
1516 	nr_pages = folio_nr_pages(folio);
1517 
1518 	/*
1519 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1520 	 * value into swapfile.c, the only way we can correctly account for a
1521 	 * fallocated folio arriving here is now to initialize it and write it.
1522 	 *
1523 	 * That's okay for a folio already fallocated earlier, but if we have
1524 	 * not yet completed the fallocation, then (a) we want to keep track
1525 	 * of this folio in case we have to undo it, and (b) it may not be a
1526 	 * good idea to continue anyway, once we're pushing into swap.  So
1527 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1528 	 */
1529 	if (!folio_test_uptodate(folio)) {
1530 		if (inode->i_private) {
1531 			struct shmem_falloc *shmem_falloc;
1532 			spin_lock(&inode->i_lock);
1533 			shmem_falloc = inode->i_private;
1534 			if (shmem_falloc &&
1535 			    !shmem_falloc->waitq &&
1536 			    index >= shmem_falloc->start &&
1537 			    index < shmem_falloc->next)
1538 				shmem_falloc->nr_unswapped += nr_pages;
1539 			else
1540 				shmem_falloc = NULL;
1541 			spin_unlock(&inode->i_lock);
1542 			if (shmem_falloc)
1543 				goto redirty;
1544 		}
1545 		folio_zero_range(folio, 0, folio_size(folio));
1546 		flush_dcache_folio(folio);
1547 		folio_mark_uptodate(folio);
1548 	}
1549 
1550 	swap = folio_alloc_swap(folio);
1551 	if (!swap.val) {
1552 		if (nr_pages > 1)
1553 			goto try_split;
1554 
1555 		goto redirty;
1556 	}
1557 
1558 	/*
1559 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1560 	 * if it's not already there.  Do it now before the folio is
1561 	 * moved to swap cache, when its pagelock no longer protects
1562 	 * the inode from eviction.  But don't unlock the mutex until
1563 	 * we've incremented swapped, because shmem_unuse_inode() will
1564 	 * prune a !swapped inode from the swaplist under this mutex.
1565 	 */
1566 	mutex_lock(&shmem_swaplist_mutex);
1567 	if (list_empty(&info->swaplist))
1568 		list_add(&info->swaplist, &shmem_swaplist);
1569 
1570 	if (add_to_swap_cache(folio, swap,
1571 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1572 			NULL) == 0) {
1573 		shmem_recalc_inode(inode, 0, nr_pages);
1574 		trace_android_vh_shmem_mod_swapped(folio->mapping, nr_pages);
1575 		swap_shmem_alloc(swap, nr_pages);
1576 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1577 
1578 		mutex_unlock(&shmem_swaplist_mutex);
1579 		BUG_ON(folio_mapped(folio));
1580 		return swap_writepage(&folio->page, wbc);
1581 	}
1582 
1583 	mutex_unlock(&shmem_swaplist_mutex);
1584 	put_swap_folio(folio, swap);
1585 redirty:
1586 	folio_mark_dirty(folio);
1587 	if (wbc->for_reclaim)
1588 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1589 	folio_unlock(folio);
1590 	return 0;
1591 }
1592 
1593 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1594 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1595 {
1596 	char buffer[64];
1597 
1598 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1599 		return;		/* show nothing */
1600 
1601 	mpol_to_str(buffer, sizeof(buffer), mpol);
1602 
1603 	seq_printf(seq, ",mpol=%s", buffer);
1604 }
1605 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1606 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1607 {
1608 	struct mempolicy *mpol = NULL;
1609 	if (sbinfo->mpol) {
1610 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1611 		mpol = sbinfo->mpol;
1612 		mpol_get(mpol);
1613 		raw_spin_unlock(&sbinfo->stat_lock);
1614 	}
1615 	return mpol;
1616 }
1617 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1618 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1619 {
1620 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1621 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1622 {
1623 	return NULL;
1624 }
1625 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1626 
1627 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1628 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1629 
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1630 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1631 			struct shmem_inode_info *info, pgoff_t index)
1632 {
1633 	struct mempolicy *mpol;
1634 	pgoff_t ilx;
1635 	struct folio *folio;
1636 
1637 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1638 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1639 	mpol_cond_put(mpol);
1640 
1641 	return folio;
1642 }
1643 
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 /*
1646  * Make sure huge_gfp is always more limited than limit_gfp.
1647  * Some of the flags set permissions, while others set limitations.
1648  */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1649 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1650 {
1651 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1652 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1653 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1654 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1655 
1656 	/* Allow allocations only from the originally specified zones. */
1657 	result |= zoneflags;
1658 
1659 	/*
1660 	 * Minimize the result gfp by taking the union with the deny flags,
1661 	 * and the intersection of the allow flags.
1662 	 */
1663 	result |= (limit_gfp & denyflags);
1664 	result |= (huge_gfp & limit_gfp) & allowflags;
1665 
1666 	return result;
1667 }
1668 
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1669 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1670 				struct vm_area_struct *vma, pgoff_t index,
1671 				loff_t write_end, bool shmem_huge_force)
1672 {
1673 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1674 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1675 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1676 	pgoff_t aligned_index;
1677 	bool global_huge;
1678 	loff_t i_size;
1679 	int order;
1680 
1681 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1682 		return 0;
1683 
1684 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1685 					shmem_huge_force, vma, vm_flags);
1686 	if (!vma || !vma_is_anon_shmem(vma)) {
1687 		/*
1688 		 * For tmpfs, we now only support PMD sized THP if huge page
1689 		 * is enabled, otherwise fallback to order 0.
1690 		 */
1691 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1692 	}
1693 
1694 	/*
1695 	 * Following the 'deny' semantics of the top level, force the huge
1696 	 * option off from all mounts.
1697 	 */
1698 	if (shmem_huge == SHMEM_HUGE_DENY)
1699 		return 0;
1700 
1701 	/*
1702 	 * Only allow inherit orders if the top-level value is 'force', which
1703 	 * means non-PMD sized THP can not override 'huge' mount option now.
1704 	 */
1705 	if (shmem_huge == SHMEM_HUGE_FORCE)
1706 		return READ_ONCE(huge_shmem_orders_inherit);
1707 
1708 	/* Allow mTHP that will be fully within i_size. */
1709 	order = highest_order(within_size_orders);
1710 	while (within_size_orders) {
1711 		aligned_index = round_up(index + 1, 1 << order);
1712 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1713 		if (i_size >> PAGE_SHIFT >= aligned_index) {
1714 			mask |= within_size_orders;
1715 			break;
1716 		}
1717 
1718 		order = next_order(&within_size_orders, order);
1719 	}
1720 
1721 	if (vm_flags & VM_HUGEPAGE)
1722 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1723 
1724 	if (global_huge)
1725 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1726 
1727 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1728 }
1729 
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1730 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1731 					   struct address_space *mapping, pgoff_t index,
1732 					   unsigned long orders)
1733 {
1734 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1735 	pgoff_t aligned_index;
1736 	unsigned long pages;
1737 	int order;
1738 
1739 	if (vma) {
1740 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1741 		if (!orders)
1742 			return 0;
1743 	}
1744 
1745 	/* Find the highest order that can add into the page cache */
1746 	order = highest_order(orders);
1747 	while (orders) {
1748 		pages = 1UL << order;
1749 		aligned_index = round_down(index, pages);
1750 		/*
1751 		 * Check for conflict before waiting on a huge allocation.
1752 		 * Conflict might be that a huge page has just been allocated
1753 		 * and added to page cache by a racing thread, or that there
1754 		 * is already at least one small page in the huge extent.
1755 		 * Be careful to retry when appropriate, but not forever!
1756 		 * Elsewhere -EEXIST would be the right code, but not here.
1757 		 */
1758 		if (!xa_find(&mapping->i_pages, &aligned_index,
1759 			     aligned_index + pages - 1, XA_PRESENT))
1760 			break;
1761 		order = next_order(&orders, order);
1762 	}
1763 
1764 	return orders;
1765 }
1766 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1767 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1768 					   struct address_space *mapping, pgoff_t index,
1769 					   unsigned long orders)
1770 {
1771 	return 0;
1772 }
1773 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1774 
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1775 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1776 		struct shmem_inode_info *info, pgoff_t index)
1777 {
1778 	struct mempolicy *mpol;
1779 	pgoff_t ilx;
1780 	struct folio *folio = NULL;
1781 
1782 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1783 	trace_android_rvh_shmem_get_folio(info, &folio, order);
1784 	if (folio)
1785 		goto done;
1786 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1787 done:
1788 	mpol_cond_put(mpol);
1789 
1790 	return folio;
1791 }
1792 
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1793 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1794 		gfp_t gfp, struct inode *inode, pgoff_t index,
1795 		struct mm_struct *fault_mm, unsigned long orders)
1796 {
1797 	struct address_space *mapping = inode->i_mapping;
1798 	struct shmem_inode_info *info = SHMEM_I(inode);
1799 	unsigned long suitable_orders = 0;
1800 	struct folio *folio = NULL;
1801 	long pages;
1802 	int error, order;
1803 
1804 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1805 		orders = 0;
1806 
1807 	if (orders > 0) {
1808 		suitable_orders = shmem_suitable_orders(inode, vmf,
1809 							mapping, index, orders);
1810 
1811 		trace_android_rvh_shmem_suitable_orders(inode, index,
1812 							orders, &suitable_orders);
1813 		order = highest_order(suitable_orders);
1814 		while (suitable_orders) {
1815 			pages = 1UL << order;
1816 			index = round_down(index, pages);
1817 			folio = shmem_alloc_folio(gfp, order, info, index);
1818 			if (folio)
1819 				goto allocated;
1820 
1821 			if (pages == HPAGE_PMD_NR)
1822 				count_vm_event(THP_FILE_FALLBACK);
1823 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1824 			order = next_order(&suitable_orders, order);
1825 		}
1826 	} else {
1827 		pages = 1;
1828 		folio = shmem_alloc_folio(gfp, 0, info, index);
1829 	}
1830 	if (!folio)
1831 		return ERR_PTR(-ENOMEM);
1832 
1833 allocated:
1834 	__folio_set_locked(folio);
1835 	__folio_set_swapbacked(folio);
1836 
1837 	gfp &= GFP_RECLAIM_MASK;
1838 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1839 	if (error) {
1840 		if (xa_find(&mapping->i_pages, &index,
1841 				index + pages - 1, XA_PRESENT)) {
1842 			error = -EEXIST;
1843 		} else if (pages > 1) {
1844 			if (pages == HPAGE_PMD_NR) {
1845 				count_vm_event(THP_FILE_FALLBACK);
1846 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1847 			}
1848 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1849 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1850 		}
1851 		goto unlock;
1852 	}
1853 
1854 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1855 	if (error)
1856 		goto unlock;
1857 
1858 	error = shmem_inode_acct_blocks(inode, pages);
1859 	if (error) {
1860 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1861 		long freed;
1862 		/*
1863 		 * Try to reclaim some space by splitting a few
1864 		 * large folios beyond i_size on the filesystem.
1865 		 */
1866 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1867 		/*
1868 		 * And do a shmem_recalc_inode() to account for freed pages:
1869 		 * except our folio is there in cache, so not quite balanced.
1870 		 */
1871 		spin_lock(&info->lock);
1872 		freed = pages + info->alloced - info->swapped -
1873 			READ_ONCE(mapping->nrpages);
1874 		if (freed > 0)
1875 			info->alloced -= freed;
1876 		spin_unlock(&info->lock);
1877 		if (freed > 0)
1878 			shmem_inode_unacct_blocks(inode, freed);
1879 		error = shmem_inode_acct_blocks(inode, pages);
1880 		if (error) {
1881 			filemap_remove_folio(folio);
1882 			goto unlock;
1883 		}
1884 	}
1885 
1886 	shmem_recalc_inode(inode, pages, 0);
1887 	folio_add_lru(folio);
1888 	return folio;
1889 
1890 unlock:
1891 	folio_unlock(folio);
1892 	folio_put(folio);
1893 	return ERR_PTR(error);
1894 }
1895 
1896 /*
1897  * When a page is moved from swapcache to shmem filecache (either by the
1898  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1899  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1900  * ignorance of the mapping it belongs to.  If that mapping has special
1901  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1902  * we may need to copy to a suitable page before moving to filecache.
1903  *
1904  * In a future release, this may well be extended to respect cpuset and
1905  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1906  * but for now it is a simple matter of zone.
1907  */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1908 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1909 {
1910 	return folio_zonenum(folio) > gfp_zone(gfp);
1911 }
1912 
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)1913 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1914 				struct shmem_inode_info *info, pgoff_t index,
1915 				struct vm_area_struct *vma)
1916 {
1917 	struct folio *new, *old = *foliop;
1918 	swp_entry_t entry = old->swap;
1919 	struct address_space *swap_mapping = swap_address_space(entry);
1920 	pgoff_t swap_index = swap_cache_index(entry);
1921 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1922 	int nr_pages = folio_nr_pages(old);
1923 	int error = 0, i;
1924 
1925 	/*
1926 	 * We have arrived here because our zones are constrained, so don't
1927 	 * limit chance of success by further cpuset and node constraints.
1928 	 */
1929 	gfp &= ~GFP_CONSTRAINT_MASK;
1930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1931 	if (nr_pages > 1) {
1932 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1933 
1934 		gfp = limit_gfp_mask(huge_gfp, gfp);
1935 	}
1936 #endif
1937 
1938 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1939 	if (!new)
1940 		return -ENOMEM;
1941 
1942 	folio_ref_add(new, nr_pages);
1943 	folio_copy(new, old);
1944 	flush_dcache_folio(new);
1945 
1946 	__folio_set_locked(new);
1947 	__folio_set_swapbacked(new);
1948 	folio_mark_uptodate(new);
1949 	new->swap = entry;
1950 	folio_set_swapcache(new);
1951 
1952 	/* Swap cache still stores N entries instead of a high-order entry */
1953 	xa_lock_irq(&swap_mapping->i_pages);
1954 	for (i = 0; i < nr_pages; i++) {
1955 		void *item = xas_load(&xas);
1956 
1957 		if (item != old) {
1958 			error = -ENOENT;
1959 			break;
1960 		}
1961 
1962 		xas_store(&xas, new);
1963 		xas_next(&xas);
1964 	}
1965 	if (!error) {
1966 		mem_cgroup_replace_folio(old, new);
1967 		shmem_update_stats(new, nr_pages);
1968 		shmem_update_stats(old, -nr_pages);
1969 	}
1970 	xa_unlock_irq(&swap_mapping->i_pages);
1971 
1972 	if (unlikely(error)) {
1973 		/*
1974 		 * Is this possible?  I think not, now that our callers
1975 		 * check both the swapcache flag and folio->private
1976 		 * after getting the folio lock; but be defensive.
1977 		 * Reverse old to newpage for clear and free.
1978 		 */
1979 		old = new;
1980 	} else {
1981 		folio_add_lru(new);
1982 		*foliop = new;
1983 	}
1984 
1985 	folio_clear_swapcache(old);
1986 	old->private = NULL;
1987 
1988 	folio_unlock(old);
1989 	/*
1990 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1991 	 * reference, as well as one temporary reference getting from swap
1992 	 * cache.
1993 	 */
1994 	folio_put_refs(old, nr_pages + 1);
1995 	return error;
1996 }
1997 
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1998 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1999 					 struct folio *folio, swp_entry_t swap)
2000 {
2001 	struct address_space *mapping = inode->i_mapping;
2002 	swp_entry_t swapin_error;
2003 	void *old;
2004 	int nr_pages;
2005 
2006 	swapin_error = make_poisoned_swp_entry();
2007 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2008 			     swp_to_radix_entry(swap),
2009 			     swp_to_radix_entry(swapin_error), 0);
2010 	if (old != swp_to_radix_entry(swap))
2011 		return;
2012 
2013 	nr_pages = folio_nr_pages(folio);
2014 	folio_wait_writeback(folio);
2015 	delete_from_swap_cache(folio);
2016 	/*
2017 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2018 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2019 	 * in shmem_evict_inode().
2020 	 */
2021 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2022 	swap_free_nr(swap, nr_pages);
2023 }
2024 
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2025 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2026 				   swp_entry_t swap, gfp_t gfp)
2027 {
2028 	struct address_space *mapping = inode->i_mapping;
2029 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2030 	void *alloced_shadow = NULL;
2031 	int alloced_order = 0, i;
2032 
2033 	/* Convert user data gfp flags to xarray node gfp flags */
2034 	gfp &= GFP_RECLAIM_MASK;
2035 
2036 	for (;;) {
2037 		int order = -1, split_order = 0;
2038 		void *old = NULL;
2039 
2040 		xas_lock_irq(&xas);
2041 		old = xas_load(&xas);
2042 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2043 			xas_set_err(&xas, -EEXIST);
2044 			goto unlock;
2045 		}
2046 
2047 		order = xas_get_order(&xas);
2048 
2049 		/* Swap entry may have changed before we re-acquire the lock */
2050 		if (alloced_order &&
2051 		    (old != alloced_shadow || order != alloced_order)) {
2052 			xas_destroy(&xas);
2053 			alloced_order = 0;
2054 		}
2055 
2056 		/* Try to split large swap entry in pagecache */
2057 		if (order > 0) {
2058 			if (!alloced_order) {
2059 				split_order = order;
2060 				goto unlock;
2061 			}
2062 			xas_split(&xas, old, order);
2063 
2064 			/*
2065 			 * Re-set the swap entry after splitting, and the swap
2066 			 * offset of the original large entry must be continuous.
2067 			 */
2068 			for (i = 0; i < 1 << order; i++) {
2069 				pgoff_t aligned_index = round_down(index, 1 << order);
2070 				swp_entry_t tmp;
2071 
2072 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2073 				__xa_store(&mapping->i_pages, aligned_index + i,
2074 					   swp_to_radix_entry(tmp), 0);
2075 			}
2076 		}
2077 
2078 unlock:
2079 		xas_unlock_irq(&xas);
2080 
2081 		/* split needed, alloc here and retry. */
2082 		if (split_order) {
2083 			xas_split_alloc(&xas, old, split_order, gfp);
2084 			if (xas_error(&xas))
2085 				goto error;
2086 			alloced_shadow = old;
2087 			alloced_order = split_order;
2088 			xas_reset(&xas);
2089 			continue;
2090 		}
2091 
2092 		if (!xas_nomem(&xas, gfp))
2093 			break;
2094 	}
2095 
2096 error:
2097 	if (xas_error(&xas))
2098 		return xas_error(&xas);
2099 
2100 	return alloced_order;
2101 }
2102 
2103 /*
2104  * Swap in the folio pointed to by *foliop.
2105  * Caller has to make sure that *foliop contains a valid swapped folio.
2106  * Returns 0 and the folio in foliop if success. On failure, returns the
2107  * error code and NULL in *foliop.
2108  */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2109 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2110 			     struct folio **foliop, enum sgp_type sgp,
2111 			     gfp_t gfp, struct vm_area_struct *vma,
2112 			     vm_fault_t *fault_type)
2113 {
2114 	struct address_space *mapping = inode->i_mapping;
2115 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2116 	struct shmem_inode_info *info = SHMEM_I(inode);
2117 	struct swap_info_struct *si;
2118 	struct folio *folio = NULL;
2119 	swp_entry_t swap;
2120 	int error, nr_pages;
2121 
2122 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2123 	swap = radix_to_swp_entry(*foliop);
2124 	*foliop = NULL;
2125 
2126 	if (is_poisoned_swp_entry(swap))
2127 		return -EIO;
2128 
2129 	si = get_swap_device(swap);
2130 	if (!si) {
2131 		if (!shmem_confirm_swap(mapping, index, swap))
2132 			return -EEXIST;
2133 		else
2134 			return -EINVAL;
2135 	}
2136 
2137 	/* Look it up and read it in.. */
2138 	folio = swap_cache_get_folio(swap, NULL, 0);
2139 	if (!folio) {
2140 		int split_order;
2141 
2142 		/* Or update major stats only when swapin succeeds?? */
2143 		if (fault_type) {
2144 			*fault_type |= VM_FAULT_MAJOR;
2145 			count_vm_event(PGMAJFAULT);
2146 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2147 		}
2148 
2149 		/*
2150 		 * Now swap device can only swap in order 0 folio, then we
2151 		 * should split the large swap entry stored in the pagecache
2152 		 * if necessary.
2153 		 */
2154 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2155 		if (split_order < 0) {
2156 			error = split_order;
2157 			goto failed;
2158 		}
2159 
2160 		/*
2161 		 * If the large swap entry has already been split, it is
2162 		 * necessary to recalculate the new swap entry based on
2163 		 * the old order alignment.
2164 		 */
2165 		if (split_order > 0) {
2166 			pgoff_t offset = index - round_down(index, 1 << split_order);
2167 
2168 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2169 		}
2170 
2171 		/* Here we actually start the io */
2172 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2173 		if (!folio) {
2174 			error = -ENOMEM;
2175 			goto failed;
2176 		}
2177 	}
2178 
2179 	/* We have to do this with folio locked to prevent races */
2180 	folio_lock(folio);
2181 	trace_android_vh_shmem_swapin_folio(folio);
2182 	if (!folio_test_swapcache(folio) ||
2183 	    folio->swap.val != swap.val ||
2184 	    !shmem_confirm_swap(mapping, index, swap)) {
2185 		error = -EEXIST;
2186 		goto unlock;
2187 	}
2188 	if (!folio_test_uptodate(folio)) {
2189 		error = -EIO;
2190 		goto failed;
2191 	}
2192 	folio_wait_writeback(folio);
2193 	nr_pages = folio_nr_pages(folio);
2194 
2195 	/*
2196 	 * Some architectures may have to restore extra metadata to the
2197 	 * folio after reading from swap.
2198 	 */
2199 	arch_swap_restore(folio_swap(swap, folio), folio);
2200 
2201 	if (shmem_should_replace_folio(folio, gfp)) {
2202 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2203 		if (error)
2204 			goto failed;
2205 	}
2206 
2207 	error = shmem_add_to_page_cache(folio, mapping,
2208 					round_down(index, nr_pages),
2209 					swp_to_radix_entry(swap), gfp);
2210 	if (error)
2211 		goto failed;
2212 
2213 	shmem_recalc_inode(inode, 0, -nr_pages);
2214 	trace_android_vh_shmem_mod_swapped(folio->mapping, -nr_pages);
2215 
2216 	if (sgp == SGP_WRITE)
2217 		folio_mark_accessed(folio);
2218 
2219 	delete_from_swap_cache(folio);
2220 	folio_mark_dirty(folio);
2221 	swap_free_nr(swap, nr_pages);
2222 	put_swap_device(si);
2223 
2224 	*foliop = folio;
2225 	return 0;
2226 failed:
2227 	if (!shmem_confirm_swap(mapping, index, swap))
2228 		error = -EEXIST;
2229 	if (error == -EIO)
2230 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2231 unlock:
2232 	if (folio) {
2233 		folio_unlock(folio);
2234 		folio_put(folio);
2235 	}
2236 	put_swap_device(si);
2237 
2238 	return error;
2239 }
2240 
2241 /*
2242  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2243  *
2244  * If we allocate a new one we do not mark it dirty. That's up to the
2245  * vm. If we swap it in we mark it dirty since we also free the swap
2246  * entry since a page cannot live in both the swap and page cache.
2247  *
2248  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2249  */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2250 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2251 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2252 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2253 {
2254 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2255 	struct mm_struct *fault_mm;
2256 	struct folio *folio;
2257 	int error;
2258 	bool alloced;
2259 	unsigned long orders = 0;
2260 
2261 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2262 		return -EINVAL;
2263 
2264 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2265 		return -EFBIG;
2266 repeat:
2267 	if (sgp <= SGP_CACHE &&
2268 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2269 		return -EINVAL;
2270 
2271 	alloced = false;
2272 	fault_mm = vma ? vma->vm_mm : NULL;
2273 
2274 	folio = filemap_get_entry(inode->i_mapping, index);
2275 	if (folio && vma && userfaultfd_minor(vma)) {
2276 		if (!xa_is_value(folio))
2277 			folio_put(folio);
2278 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2279 		return 0;
2280 	}
2281 
2282 	if (xa_is_value(folio)) {
2283 		error = shmem_swapin_folio(inode, index, &folio,
2284 					   sgp, gfp, vma, fault_type);
2285 		if (error == -EEXIST)
2286 			goto repeat;
2287 
2288 		*foliop = folio;
2289 		return error;
2290 	}
2291 
2292 	if (folio) {
2293 		folio_lock(folio);
2294 
2295 		/* Has the folio been truncated or swapped out? */
2296 		if (unlikely(folio->mapping != inode->i_mapping)) {
2297 			folio_unlock(folio);
2298 			folio_put(folio);
2299 			goto repeat;
2300 		}
2301 		if (sgp == SGP_WRITE)
2302 			folio_mark_accessed(folio);
2303 		if (folio_test_uptodate(folio))
2304 			goto out;
2305 		/* fallocated folio */
2306 		if (sgp != SGP_READ)
2307 			goto clear;
2308 		folio_unlock(folio);
2309 		folio_put(folio);
2310 	}
2311 
2312 	/*
2313 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2314 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2315 	 */
2316 	*foliop = NULL;
2317 	if (sgp == SGP_READ)
2318 		return 0;
2319 	if (sgp == SGP_NOALLOC)
2320 		return -ENOENT;
2321 
2322 	/*
2323 	 * Fast cache lookup and swap lookup did not find it: allocate.
2324 	 */
2325 
2326 	if (vma && userfaultfd_missing(vma)) {
2327 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2328 		return 0;
2329 	}
2330 
2331 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2332 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2333 	trace_android_rvh_shmem_allowable_huge_orders(inode, index, vma, &orders);
2334 	/*
2335 	 * With the above hook `order` is not always 0 anymore and the following
2336 	 * if block does not get compiled out. With CONFIG_TRANSPARENT_HUGEPAGE=n
2337 	 * vma_thp_gfp_mask() becomes undefined and linker fails.
2338 	 */
2339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2340 	if (orders > 0) {
2341 		gfp_t huge_gfp;
2342 
2343 		huge_gfp = vma_thp_gfp_mask(vma);
2344 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2345 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2346 				inode, index, fault_mm, orders);
2347 		if (!IS_ERR(folio)) {
2348 			if (folio_test_pmd_mappable(folio))
2349 				count_vm_event(THP_FILE_ALLOC);
2350 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2351 			goto alloced;
2352 		}
2353 		if (PTR_ERR(folio) == -EEXIST)
2354 			goto repeat;
2355 	}
2356 #endif
2357 
2358 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2359 	if (IS_ERR(folio)) {
2360 		error = PTR_ERR(folio);
2361 		if (error == -EEXIST)
2362 			goto repeat;
2363 		folio = NULL;
2364 		goto unlock;
2365 	}
2366 
2367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2368 alloced:
2369 #endif
2370 	alloced = true;
2371 	if (folio_test_large(folio) &&
2372 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2373 					folio_next_index(folio)) {
2374 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2375 		struct shmem_inode_info *info = SHMEM_I(inode);
2376 		/*
2377 		 * Part of the large folio is beyond i_size: subject
2378 		 * to shrink under memory pressure.
2379 		 */
2380 		spin_lock(&sbinfo->shrinklist_lock);
2381 		/*
2382 		 * _careful to defend against unlocked access to
2383 		 * ->shrink_list in shmem_unused_huge_shrink()
2384 		 */
2385 		if (list_empty_careful(&info->shrinklist)) {
2386 			list_add_tail(&info->shrinklist,
2387 				      &sbinfo->shrinklist);
2388 			sbinfo->shrinklist_len++;
2389 		}
2390 		spin_unlock(&sbinfo->shrinklist_lock);
2391 	}
2392 
2393 	if (sgp == SGP_WRITE)
2394 		folio_set_referenced(folio);
2395 	/*
2396 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2397 	 */
2398 	if (sgp == SGP_FALLOC)
2399 		sgp = SGP_WRITE;
2400 clear:
2401 	/*
2402 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2403 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2404 	 * it now, lest undo on failure cancel our earlier guarantee.
2405 	 */
2406 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2407 		long i, n = folio_nr_pages(folio);
2408 
2409 		for (i = 0; i < n; i++)
2410 			clear_highpage(folio_page(folio, i));
2411 		flush_dcache_folio(folio);
2412 		folio_mark_uptodate(folio);
2413 	}
2414 
2415 	/* Perhaps the file has been truncated since we checked */
2416 	if (sgp <= SGP_CACHE &&
2417 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2418 		error = -EINVAL;
2419 		goto unlock;
2420 	}
2421 out:
2422 	*foliop = folio;
2423 	return 0;
2424 
2425 	/*
2426 	 * Error recovery.
2427 	 */
2428 unlock:
2429 	if (alloced)
2430 		filemap_remove_folio(folio);
2431 	shmem_recalc_inode(inode, 0, 0);
2432 	if (folio) {
2433 		folio_unlock(folio);
2434 		folio_put(folio);
2435 	}
2436 	return error;
2437 }
2438 
2439 /**
2440  * shmem_get_folio - find, and lock a shmem folio.
2441  * @inode:	inode to search
2442  * @index:	the page index.
2443  * @write_end:	end of a write, could extend inode size
2444  * @foliop:	pointer to the folio if found
2445  * @sgp:	SGP_* flags to control behavior
2446  *
2447  * Looks up the page cache entry at @inode & @index.  If a folio is
2448  * present, it is returned locked with an increased refcount.
2449  *
2450  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2451  * before unlocking the folio to ensure that the folio is not reclaimed.
2452  * There is no need to reserve space before calling folio_mark_dirty().
2453  *
2454  * When no folio is found, the behavior depends on @sgp:
2455  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2456  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2457  *  - for all other flags a new folio is allocated, inserted into the
2458  *    page cache and returned locked in @foliop.
2459  *
2460  * Context: May sleep.
2461  * Return: 0 if successful, else a negative error code.
2462  */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2463 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2464 		    struct folio **foliop, enum sgp_type sgp)
2465 {
2466 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2467 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2468 }
2469 EXPORT_SYMBOL_GPL(shmem_get_folio);
2470 
2471 /*
2472  * This is like autoremove_wake_function, but it removes the wait queue
2473  * entry unconditionally - even if something else had already woken the
2474  * target.
2475  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2476 static int synchronous_wake_function(wait_queue_entry_t *wait,
2477 			unsigned int mode, int sync, void *key)
2478 {
2479 	int ret = default_wake_function(wait, mode, sync, key);
2480 	list_del_init(&wait->entry);
2481 	return ret;
2482 }
2483 
2484 /*
2485  * Trinity finds that probing a hole which tmpfs is punching can
2486  * prevent the hole-punch from ever completing: which in turn
2487  * locks writers out with its hold on i_rwsem.  So refrain from
2488  * faulting pages into the hole while it's being punched.  Although
2489  * shmem_undo_range() does remove the additions, it may be unable to
2490  * keep up, as each new page needs its own unmap_mapping_range() call,
2491  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2492  *
2493  * It does not matter if we sometimes reach this check just before the
2494  * hole-punch begins, so that one fault then races with the punch:
2495  * we just need to make racing faults a rare case.
2496  *
2497  * The implementation below would be much simpler if we just used a
2498  * standard mutex or completion: but we cannot take i_rwsem in fault,
2499  * and bloating every shmem inode for this unlikely case would be sad.
2500  */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2501 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2502 {
2503 	struct shmem_falloc *shmem_falloc;
2504 	struct file *fpin = NULL;
2505 	vm_fault_t ret = 0;
2506 
2507 	spin_lock(&inode->i_lock);
2508 	shmem_falloc = inode->i_private;
2509 	if (shmem_falloc &&
2510 	    shmem_falloc->waitq &&
2511 	    vmf->pgoff >= shmem_falloc->start &&
2512 	    vmf->pgoff < shmem_falloc->next) {
2513 		wait_queue_head_t *shmem_falloc_waitq;
2514 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2515 
2516 		ret = VM_FAULT_NOPAGE;
2517 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2518 		shmem_falloc_waitq = shmem_falloc->waitq;
2519 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2520 				TASK_UNINTERRUPTIBLE);
2521 		spin_unlock(&inode->i_lock);
2522 		schedule();
2523 
2524 		/*
2525 		 * shmem_falloc_waitq points into the shmem_fallocate()
2526 		 * stack of the hole-punching task: shmem_falloc_waitq
2527 		 * is usually invalid by the time we reach here, but
2528 		 * finish_wait() does not dereference it in that case;
2529 		 * though i_lock needed lest racing with wake_up_all().
2530 		 */
2531 		spin_lock(&inode->i_lock);
2532 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2533 	}
2534 	spin_unlock(&inode->i_lock);
2535 	if (fpin) {
2536 		fput(fpin);
2537 		ret = VM_FAULT_RETRY;
2538 	}
2539 	return ret;
2540 }
2541 
shmem_fault(struct vm_fault * vmf)2542 vm_fault_t shmem_fault(struct vm_fault *vmf)
2543 {
2544 	struct inode *inode = file_inode(vmf->vma->vm_file);
2545 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2546 	struct folio *folio = NULL;
2547 	vm_fault_t ret = 0;
2548 	int err;
2549 
2550 	/*
2551 	 * Trinity finds that probing a hole which tmpfs is punching can
2552 	 * prevent the hole-punch from ever completing: noted in i_private.
2553 	 */
2554 	if (unlikely(inode->i_private)) {
2555 		ret = shmem_falloc_wait(vmf, inode);
2556 		if (ret)
2557 			return ret;
2558 	}
2559 
2560 	WARN_ON_ONCE(vmf->page != NULL);
2561 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2562 				  gfp, vmf, &ret);
2563 	if (err)
2564 		return vmf_error(err);
2565 	if (folio) {
2566 		vmf->page = folio_file_page(folio, vmf->pgoff);
2567 		ret |= VM_FAULT_LOCKED;
2568 	}
2569 	return ret;
2570 }
2571 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2572 unsigned long shmem_get_unmapped_area(struct file *file,
2573 				      unsigned long uaddr, unsigned long len,
2574 				      unsigned long pgoff, unsigned long flags)
2575 {
2576 	unsigned long addr;
2577 	unsigned long offset;
2578 	unsigned long inflated_len;
2579 	unsigned long inflated_addr;
2580 	unsigned long inflated_offset;
2581 	unsigned long hpage_size;
2582 
2583 	if (len > TASK_SIZE)
2584 		return -ENOMEM;
2585 
2586 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2587 				    flags);
2588 
2589 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2590 		return addr;
2591 	if (IS_ERR_VALUE(addr))
2592 		return addr;
2593 	if (addr & ~PAGE_MASK)
2594 		return addr;
2595 	if (addr > TASK_SIZE - len)
2596 		return addr;
2597 
2598 	if (shmem_huge == SHMEM_HUGE_DENY)
2599 		return addr;
2600 	if (flags & MAP_FIXED)
2601 		return addr;
2602 	/*
2603 	 * Our priority is to support MAP_SHARED mapped hugely;
2604 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2605 	 * But if caller specified an address hint and we allocated area there
2606 	 * successfully, respect that as before.
2607 	 */
2608 	if (uaddr == addr)
2609 		return addr;
2610 
2611 	hpage_size = HPAGE_PMD_SIZE;
2612 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2613 		struct super_block *sb;
2614 		unsigned long __maybe_unused hpage_orders;
2615 		int order = 0;
2616 
2617 		if (file) {
2618 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2619 			sb = file_inode(file)->i_sb;
2620 		} else {
2621 			/*
2622 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2623 			 * for "/dev/zero", to create a shared anonymous object.
2624 			 */
2625 			if (IS_ERR(shm_mnt))
2626 				return addr;
2627 			sb = shm_mnt->mnt_sb;
2628 
2629 			/*
2630 			 * Find the highest mTHP order used for anonymous shmem to
2631 			 * provide a suitable alignment address.
2632 			 */
2633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2634 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2635 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2636 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2637 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2638 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2639 
2640 			if (hpage_orders > 0) {
2641 				order = highest_order(hpage_orders);
2642 				hpage_size = PAGE_SIZE << order;
2643 			}
2644 #endif
2645 		}
2646 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2647 			return addr;
2648 	}
2649 
2650 	if (len < hpage_size)
2651 		return addr;
2652 
2653 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2654 	if (offset && offset + len < 2 * hpage_size)
2655 		return addr;
2656 	if ((addr & (hpage_size - 1)) == offset)
2657 		return addr;
2658 
2659 	inflated_len = len + hpage_size - PAGE_SIZE;
2660 	if (inflated_len > TASK_SIZE)
2661 		return addr;
2662 	if (inflated_len < len)
2663 		return addr;
2664 
2665 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2666 					     inflated_len, 0, flags);
2667 	if (IS_ERR_VALUE(inflated_addr))
2668 		return addr;
2669 	if (inflated_addr & ~PAGE_MASK)
2670 		return addr;
2671 
2672 	inflated_offset = inflated_addr & (hpage_size - 1);
2673 	inflated_addr += offset - inflated_offset;
2674 	if (inflated_offset > offset)
2675 		inflated_addr += hpage_size;
2676 
2677 	if (inflated_addr > TASK_SIZE - len)
2678 		return addr;
2679 	return inflated_addr;
2680 }
2681 
2682 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2683 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2684 {
2685 	struct inode *inode = file_inode(vma->vm_file);
2686 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2687 }
2688 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2689 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2690 					  unsigned long addr, pgoff_t *ilx)
2691 {
2692 	struct inode *inode = file_inode(vma->vm_file);
2693 	pgoff_t index;
2694 
2695 	/*
2696 	 * Bias interleave by inode number to distribute better across nodes;
2697 	 * but this interface is independent of which page order is used, so
2698 	 * supplies only that bias, letting caller apply the offset (adjusted
2699 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2700 	 */
2701 	*ilx = inode->i_ino;
2702 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2703 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2704 }
2705 
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2706 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2707 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2708 {
2709 	struct mempolicy *mpol;
2710 
2711 	/* Bias interleave by inode number to distribute better across nodes */
2712 	*ilx = info->vfs_inode.i_ino + (index >> order);
2713 
2714 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2715 	return mpol ? mpol : get_task_policy(current);
2716 }
2717 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2718 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2719 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2720 {
2721 	*ilx = 0;
2722 	return NULL;
2723 }
2724 #endif /* CONFIG_NUMA */
2725 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2726 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2727 {
2728 	struct inode *inode = file_inode(file);
2729 	struct shmem_inode_info *info = SHMEM_I(inode);
2730 	int retval = -ENOMEM;
2731 
2732 	/*
2733 	 * What serializes the accesses to info->flags?
2734 	 * ipc_lock_object() when called from shmctl_do_lock(),
2735 	 * no serialization needed when called from shm_destroy().
2736 	 */
2737 	if (lock && !(info->flags & VM_LOCKED)) {
2738 		if (!user_shm_lock(inode->i_size, ucounts))
2739 			goto out_nomem;
2740 		info->flags |= VM_LOCKED;
2741 		mapping_set_unevictable(file->f_mapping);
2742 	}
2743 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2744 		user_shm_unlock(inode->i_size, ucounts);
2745 		info->flags &= ~VM_LOCKED;
2746 		mapping_clear_unevictable(file->f_mapping);
2747 	}
2748 	retval = 0;
2749 
2750 out_nomem:
2751 	return retval;
2752 }
2753 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2754 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2755 {
2756 	struct inode *inode = file_inode(file);
2757 	struct shmem_inode_info *info = SHMEM_I(inode);
2758 	int ret;
2759 
2760 	ret = seal_check_write(info->seals, vma);
2761 	if (ret)
2762 		return ret;
2763 
2764 	file_accessed(file);
2765 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2766 	if (inode->i_nlink)
2767 		vma->vm_ops = &shmem_vm_ops;
2768 	else
2769 		vma->vm_ops = &shmem_anon_vm_ops;
2770 	return 0;
2771 }
2772 
shmem_file_open(struct inode * inode,struct file * file)2773 static int shmem_file_open(struct inode *inode, struct file *file)
2774 {
2775 	file->f_mode |= FMODE_CAN_ODIRECT;
2776 	return generic_file_open(inode, file);
2777 }
2778 
2779 #ifdef CONFIG_TMPFS_XATTR
2780 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2781 
2782 /*
2783  * chattr's fsflags are unrelated to extended attributes,
2784  * but tmpfs has chosen to enable them under the same config option.
2785  */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2786 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2787 {
2788 	unsigned int i_flags = 0;
2789 
2790 	if (fsflags & FS_NOATIME_FL)
2791 		i_flags |= S_NOATIME;
2792 	if (fsflags & FS_APPEND_FL)
2793 		i_flags |= S_APPEND;
2794 	if (fsflags & FS_IMMUTABLE_FL)
2795 		i_flags |= S_IMMUTABLE;
2796 	/*
2797 	 * But FS_NODUMP_FL does not require any action in i_flags.
2798 	 */
2799 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2800 }
2801 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2802 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2803 {
2804 }
2805 #define shmem_initxattrs NULL
2806 #endif
2807 
shmem_get_offset_ctx(struct inode * inode)2808 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2809 {
2810 	return &SHMEM_I(inode)->dir_offsets;
2811 }
2812 
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2813 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2814 					     struct super_block *sb,
2815 					     struct inode *dir, umode_t mode,
2816 					     dev_t dev, unsigned long flags)
2817 {
2818 	struct inode *inode;
2819 	struct shmem_inode_info *info;
2820 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2821 	ino_t ino;
2822 	int err;
2823 
2824 	err = shmem_reserve_inode(sb, &ino);
2825 	if (err)
2826 		return ERR_PTR(err);
2827 
2828 	inode = new_inode(sb);
2829 	if (!inode) {
2830 		shmem_free_inode(sb, 0);
2831 		return ERR_PTR(-ENOSPC);
2832 	}
2833 
2834 	inode->i_ino = ino;
2835 	inode_init_owner(idmap, inode, dir, mode);
2836 	inode->i_blocks = 0;
2837 	simple_inode_init_ts(inode);
2838 	inode->i_generation = get_random_u32();
2839 	info = SHMEM_I(inode);
2840 	memset(info, 0, (char *)inode - (char *)info);
2841 	android_init_vendor_data(info, 1);
2842 	spin_lock_init(&info->lock);
2843 	atomic_set(&info->stop_eviction, 0);
2844 	info->seals = F_SEAL_SEAL;
2845 	info->flags = flags & VM_NORESERVE;
2846 	info->i_crtime = inode_get_mtime(inode);
2847 	info->fsflags = (dir == NULL) ? 0 :
2848 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2849 	if (info->fsflags)
2850 		shmem_set_inode_flags(inode, info->fsflags);
2851 	INIT_LIST_HEAD(&info->shrinklist);
2852 	INIT_LIST_HEAD(&info->swaplist);
2853 	simple_xattrs_init(&info->xattrs);
2854 	cache_no_acl(inode);
2855 	if (sbinfo->noswap)
2856 		mapping_set_unevictable(inode->i_mapping);
2857 	mapping_set_large_folios(inode->i_mapping);
2858 
2859 	switch (mode & S_IFMT) {
2860 	default:
2861 		inode->i_op = &shmem_special_inode_operations;
2862 		init_special_inode(inode, mode, dev);
2863 		break;
2864 	case S_IFREG:
2865 		inode->i_mapping->a_ops = &shmem_aops;
2866 		inode->i_op = &shmem_inode_operations;
2867 		inode->i_fop = &shmem_file_operations;
2868 		mpol_shared_policy_init(&info->policy,
2869 					 shmem_get_sbmpol(sbinfo));
2870 		break;
2871 	case S_IFDIR:
2872 		inc_nlink(inode);
2873 		/* Some things misbehave if size == 0 on a directory */
2874 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2875 		inode->i_op = &shmem_dir_inode_operations;
2876 		inode->i_fop = &simple_offset_dir_operations;
2877 		simple_offset_init(shmem_get_offset_ctx(inode));
2878 		break;
2879 	case S_IFLNK:
2880 		/*
2881 		 * Must not load anything in the rbtree,
2882 		 * mpol_free_shared_policy will not be called.
2883 		 */
2884 		mpol_shared_policy_init(&info->policy, NULL);
2885 		break;
2886 	}
2887 
2888 	lockdep_annotate_inode_mutex_key(inode);
2889 	return inode;
2890 }
2891 
2892 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2893 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2894 				     struct super_block *sb, struct inode *dir,
2895 				     umode_t mode, dev_t dev, unsigned long flags)
2896 {
2897 	int err;
2898 	struct inode *inode;
2899 
2900 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2901 	if (IS_ERR(inode))
2902 		return inode;
2903 
2904 	err = dquot_initialize(inode);
2905 	if (err)
2906 		goto errout;
2907 
2908 	err = dquot_alloc_inode(inode);
2909 	if (err) {
2910 		dquot_drop(inode);
2911 		goto errout;
2912 	}
2913 	return inode;
2914 
2915 errout:
2916 	inode->i_flags |= S_NOQUOTA;
2917 	iput(inode);
2918 	return ERR_PTR(err);
2919 }
2920 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2921 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2922 				     struct super_block *sb, struct inode *dir,
2923 				     umode_t mode, dev_t dev, unsigned long flags)
2924 {
2925 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2926 }
2927 #endif /* CONFIG_TMPFS_QUOTA */
2928 
2929 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2930 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2931 			   struct vm_area_struct *dst_vma,
2932 			   unsigned long dst_addr,
2933 			   unsigned long src_addr,
2934 			   uffd_flags_t flags,
2935 			   struct folio **foliop)
2936 {
2937 	struct inode *inode = file_inode(dst_vma->vm_file);
2938 	struct shmem_inode_info *info = SHMEM_I(inode);
2939 	struct address_space *mapping = inode->i_mapping;
2940 	gfp_t gfp = mapping_gfp_mask(mapping);
2941 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2942 	void *page_kaddr;
2943 	struct folio *folio;
2944 	int ret;
2945 	pgoff_t max_off;
2946 
2947 	if (shmem_inode_acct_blocks(inode, 1)) {
2948 		/*
2949 		 * We may have got a page, returned -ENOENT triggering a retry,
2950 		 * and now we find ourselves with -ENOMEM. Release the page, to
2951 		 * avoid a BUG_ON in our caller.
2952 		 */
2953 		if (unlikely(*foliop)) {
2954 			folio_put(*foliop);
2955 			*foliop = NULL;
2956 		}
2957 		return -ENOMEM;
2958 	}
2959 
2960 	if (!*foliop) {
2961 		ret = -ENOMEM;
2962 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2963 		if (!folio)
2964 			goto out_unacct_blocks;
2965 
2966 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2967 			page_kaddr = kmap_local_folio(folio, 0);
2968 			/*
2969 			 * The read mmap_lock is held here.  Despite the
2970 			 * mmap_lock being read recursive a deadlock is still
2971 			 * possible if a writer has taken a lock.  For example:
2972 			 *
2973 			 * process A thread 1 takes read lock on own mmap_lock
2974 			 * process A thread 2 calls mmap, blocks taking write lock
2975 			 * process B thread 1 takes page fault, read lock on own mmap lock
2976 			 * process B thread 2 calls mmap, blocks taking write lock
2977 			 * process A thread 1 blocks taking read lock on process B
2978 			 * process B thread 1 blocks taking read lock on process A
2979 			 *
2980 			 * Disable page faults to prevent potential deadlock
2981 			 * and retry the copy outside the mmap_lock.
2982 			 */
2983 			pagefault_disable();
2984 			ret = copy_from_user(page_kaddr,
2985 					     (const void __user *)src_addr,
2986 					     PAGE_SIZE);
2987 			pagefault_enable();
2988 			kunmap_local(page_kaddr);
2989 
2990 			/* fallback to copy_from_user outside mmap_lock */
2991 			if (unlikely(ret)) {
2992 				*foliop = folio;
2993 				ret = -ENOENT;
2994 				/* don't free the page */
2995 				goto out_unacct_blocks;
2996 			}
2997 
2998 			flush_dcache_folio(folio);
2999 		} else {		/* ZEROPAGE */
3000 			clear_user_highpage(&folio->page, dst_addr);
3001 		}
3002 	} else {
3003 		folio = *foliop;
3004 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3005 		*foliop = NULL;
3006 	}
3007 
3008 	VM_BUG_ON(folio_test_locked(folio));
3009 	VM_BUG_ON(folio_test_swapbacked(folio));
3010 	__folio_set_locked(folio);
3011 	__folio_set_swapbacked(folio);
3012 	__folio_mark_uptodate(folio);
3013 
3014 	ret = -EFAULT;
3015 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3016 	if (unlikely(pgoff >= max_off))
3017 		goto out_release;
3018 
3019 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3020 	if (ret)
3021 		goto out_release;
3022 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3023 	if (ret)
3024 		goto out_release;
3025 
3026 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3027 				       &folio->page, true, flags);
3028 	if (ret)
3029 		goto out_delete_from_cache;
3030 
3031 	shmem_recalc_inode(inode, 1, 0);
3032 	folio_unlock(folio);
3033 	return 0;
3034 out_delete_from_cache:
3035 	filemap_remove_folio(folio);
3036 out_release:
3037 	folio_unlock(folio);
3038 	folio_put(folio);
3039 out_unacct_blocks:
3040 	shmem_inode_unacct_blocks(inode, 1);
3041 	return ret;
3042 }
3043 #endif /* CONFIG_USERFAULTFD */
3044 
3045 #ifdef CONFIG_TMPFS
3046 static const struct inode_operations shmem_symlink_inode_operations;
3047 static const struct inode_operations shmem_short_symlink_operations;
3048 
3049 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3050 shmem_write_begin(struct file *file, struct address_space *mapping,
3051 			loff_t pos, unsigned len,
3052 			struct folio **foliop, void **fsdata)
3053 {
3054 	struct inode *inode = mapping->host;
3055 	struct shmem_inode_info *info = SHMEM_I(inode);
3056 	pgoff_t index = pos >> PAGE_SHIFT;
3057 	struct folio *folio;
3058 	int ret = 0;
3059 
3060 	/* i_rwsem is held by caller */
3061 	if (unlikely(info->seals & (F_SEAL_GROW |
3062 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3063 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3064 			return -EPERM;
3065 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3066 			return -EPERM;
3067 	}
3068 
3069 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3070 	if (ret)
3071 		return ret;
3072 
3073 	if (folio_contain_hwpoisoned_page(folio)) {
3074 		folio_unlock(folio);
3075 		folio_put(folio);
3076 		return -EIO;
3077 	}
3078 
3079 	*foliop = folio;
3080 	return 0;
3081 }
3082 
3083 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3084 shmem_write_end(struct file *file, struct address_space *mapping,
3085 			loff_t pos, unsigned len, unsigned copied,
3086 			struct folio *folio, void *fsdata)
3087 {
3088 	struct inode *inode = mapping->host;
3089 
3090 	if (pos + copied > inode->i_size)
3091 		i_size_write(inode, pos + copied);
3092 
3093 	if (!folio_test_uptodate(folio)) {
3094 		if (copied < folio_size(folio)) {
3095 			size_t from = offset_in_folio(folio, pos);
3096 			folio_zero_segments(folio, 0, from,
3097 					from + copied, folio_size(folio));
3098 		}
3099 		folio_mark_uptodate(folio);
3100 	}
3101 	folio_mark_dirty(folio);
3102 	folio_unlock(folio);
3103 	folio_put(folio);
3104 
3105 	return copied;
3106 }
3107 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3108 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3109 {
3110 	struct file *file = iocb->ki_filp;
3111 	struct inode *inode = file_inode(file);
3112 	struct address_space *mapping = inode->i_mapping;
3113 	pgoff_t index;
3114 	unsigned long offset;
3115 	int error = 0;
3116 	ssize_t retval = 0;
3117 	loff_t *ppos = &iocb->ki_pos;
3118 
3119 	index = *ppos >> PAGE_SHIFT;
3120 	offset = *ppos & ~PAGE_MASK;
3121 
3122 	for (;;) {
3123 		struct folio *folio = NULL;
3124 		struct page *page = NULL;
3125 		pgoff_t end_index;
3126 		unsigned long nr, ret;
3127 		loff_t i_size = i_size_read(inode);
3128 
3129 		end_index = i_size >> PAGE_SHIFT;
3130 		if (index > end_index)
3131 			break;
3132 		if (index == end_index) {
3133 			nr = i_size & ~PAGE_MASK;
3134 			if (nr <= offset)
3135 				break;
3136 		}
3137 
3138 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3139 		if (error) {
3140 			if (error == -EINVAL)
3141 				error = 0;
3142 			break;
3143 		}
3144 		if (folio) {
3145 			folio_unlock(folio);
3146 
3147 			page = folio_file_page(folio, index);
3148 			if (PageHWPoison(page)) {
3149 				folio_put(folio);
3150 				error = -EIO;
3151 				break;
3152 			}
3153 		}
3154 
3155 		/*
3156 		 * We must evaluate after, since reads (unlike writes)
3157 		 * are called without i_rwsem protection against truncate
3158 		 */
3159 		nr = PAGE_SIZE;
3160 		i_size = i_size_read(inode);
3161 		end_index = i_size >> PAGE_SHIFT;
3162 		if (index == end_index) {
3163 			nr = i_size & ~PAGE_MASK;
3164 			if (nr <= offset) {
3165 				if (folio)
3166 					folio_put(folio);
3167 				break;
3168 			}
3169 		}
3170 		nr -= offset;
3171 
3172 		if (folio) {
3173 			/*
3174 			 * If users can be writing to this page using arbitrary
3175 			 * virtual addresses, take care about potential aliasing
3176 			 * before reading the page on the kernel side.
3177 			 */
3178 			if (mapping_writably_mapped(mapping))
3179 				flush_dcache_page(page);
3180 			/*
3181 			 * Mark the page accessed if we read the beginning.
3182 			 */
3183 			if (!offset)
3184 				folio_mark_accessed(folio);
3185 			/*
3186 			 * Ok, we have the page, and it's up-to-date, so
3187 			 * now we can copy it to user space...
3188 			 */
3189 			ret = copy_page_to_iter(page, offset, nr, to);
3190 			folio_put(folio);
3191 
3192 		} else if (user_backed_iter(to)) {
3193 			/*
3194 			 * Copy to user tends to be so well optimized, but
3195 			 * clear_user() not so much, that it is noticeably
3196 			 * faster to copy the zero page instead of clearing.
3197 			 */
3198 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3199 		} else {
3200 			/*
3201 			 * But submitting the same page twice in a row to
3202 			 * splice() - or others? - can result in confusion:
3203 			 * so don't attempt that optimization on pipes etc.
3204 			 */
3205 			ret = iov_iter_zero(nr, to);
3206 		}
3207 
3208 		retval += ret;
3209 		offset += ret;
3210 		index += offset >> PAGE_SHIFT;
3211 		offset &= ~PAGE_MASK;
3212 
3213 		if (!iov_iter_count(to))
3214 			break;
3215 		if (ret < nr) {
3216 			error = -EFAULT;
3217 			break;
3218 		}
3219 		cond_resched();
3220 	}
3221 
3222 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3223 	file_accessed(file);
3224 	return retval ? retval : error;
3225 }
3226 
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3227 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3228 {
3229 	struct file *file = iocb->ki_filp;
3230 	struct inode *inode = file->f_mapping->host;
3231 	ssize_t ret;
3232 
3233 	inode_lock(inode);
3234 	ret = generic_write_checks(iocb, from);
3235 	if (ret <= 0)
3236 		goto unlock;
3237 	ret = file_remove_privs(file);
3238 	if (ret)
3239 		goto unlock;
3240 	ret = file_update_time(file);
3241 	if (ret)
3242 		goto unlock;
3243 	ret = generic_perform_write(iocb, from);
3244 unlock:
3245 	inode_unlock(inode);
3246 	return ret;
3247 }
3248 
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3249 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3250 			      struct pipe_buffer *buf)
3251 {
3252 	return true;
3253 }
3254 
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3255 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3256 				  struct pipe_buffer *buf)
3257 {
3258 }
3259 
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3260 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3261 				    struct pipe_buffer *buf)
3262 {
3263 	return false;
3264 }
3265 
3266 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3267 	.release	= zero_pipe_buf_release,
3268 	.try_steal	= zero_pipe_buf_try_steal,
3269 	.get		= zero_pipe_buf_get,
3270 };
3271 
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3272 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3273 					loff_t fpos, size_t size)
3274 {
3275 	size_t offset = fpos & ~PAGE_MASK;
3276 
3277 	size = min_t(size_t, size, PAGE_SIZE - offset);
3278 
3279 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3280 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3281 
3282 		*buf = (struct pipe_buffer) {
3283 			.ops	= &zero_pipe_buf_ops,
3284 			.page	= ZERO_PAGE(0),
3285 			.offset	= offset,
3286 			.len	= size,
3287 		};
3288 		pipe->head++;
3289 	}
3290 
3291 	return size;
3292 }
3293 
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3294 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3295 				      struct pipe_inode_info *pipe,
3296 				      size_t len, unsigned int flags)
3297 {
3298 	struct inode *inode = file_inode(in);
3299 	struct address_space *mapping = inode->i_mapping;
3300 	struct folio *folio = NULL;
3301 	size_t total_spliced = 0, used, npages, n, part;
3302 	loff_t isize;
3303 	int error = 0;
3304 
3305 	/* Work out how much data we can actually add into the pipe */
3306 	used = pipe_occupancy(pipe->head, pipe->tail);
3307 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3308 	len = min_t(size_t, len, npages * PAGE_SIZE);
3309 
3310 	do {
3311 		if (*ppos >= i_size_read(inode))
3312 			break;
3313 
3314 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3315 					SGP_READ);
3316 		if (error) {
3317 			if (error == -EINVAL)
3318 				error = 0;
3319 			break;
3320 		}
3321 		if (folio) {
3322 			folio_unlock(folio);
3323 
3324 			if (folio_test_hwpoison(folio) ||
3325 			    (folio_test_large(folio) &&
3326 			     folio_test_has_hwpoisoned(folio))) {
3327 				error = -EIO;
3328 				break;
3329 			}
3330 		}
3331 
3332 		/*
3333 		 * i_size must be checked after we know the pages are Uptodate.
3334 		 *
3335 		 * Checking i_size after the check allows us to calculate
3336 		 * the correct value for "nr", which means the zero-filled
3337 		 * part of the page is not copied back to userspace (unless
3338 		 * another truncate extends the file - this is desired though).
3339 		 */
3340 		isize = i_size_read(inode);
3341 		if (unlikely(*ppos >= isize))
3342 			break;
3343 		part = min_t(loff_t, isize - *ppos, len);
3344 
3345 		if (folio) {
3346 			/*
3347 			 * If users can be writing to this page using arbitrary
3348 			 * virtual addresses, take care about potential aliasing
3349 			 * before reading the page on the kernel side.
3350 			 */
3351 			if (mapping_writably_mapped(mapping))
3352 				flush_dcache_folio(folio);
3353 			folio_mark_accessed(folio);
3354 			/*
3355 			 * Ok, we have the page, and it's up-to-date, so we can
3356 			 * now splice it into the pipe.
3357 			 */
3358 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3359 			folio_put(folio);
3360 			folio = NULL;
3361 		} else {
3362 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3363 		}
3364 
3365 		if (!n)
3366 			break;
3367 		len -= n;
3368 		total_spliced += n;
3369 		*ppos += n;
3370 		in->f_ra.prev_pos = *ppos;
3371 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3372 			break;
3373 
3374 		cond_resched();
3375 	} while (len);
3376 
3377 	if (folio)
3378 		folio_put(folio);
3379 
3380 	file_accessed(in);
3381 	return total_spliced ? total_spliced : error;
3382 }
3383 
shmem_file_llseek(struct file * file,loff_t offset,int whence)3384 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3385 {
3386 	struct address_space *mapping = file->f_mapping;
3387 	struct inode *inode = mapping->host;
3388 
3389 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3390 		return generic_file_llseek_size(file, offset, whence,
3391 					MAX_LFS_FILESIZE, i_size_read(inode));
3392 	if (offset < 0)
3393 		return -ENXIO;
3394 
3395 	inode_lock(inode);
3396 	/* We're holding i_rwsem so we can access i_size directly */
3397 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3398 	if (offset >= 0)
3399 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3400 	inode_unlock(inode);
3401 	return offset;
3402 }
3403 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3404 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3405 							 loff_t len)
3406 {
3407 	struct inode *inode = file_inode(file);
3408 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3409 	struct shmem_inode_info *info = SHMEM_I(inode);
3410 	struct shmem_falloc shmem_falloc;
3411 	pgoff_t start, index, end, undo_fallocend;
3412 	int error;
3413 
3414 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3415 		return -EOPNOTSUPP;
3416 
3417 	inode_lock(inode);
3418 
3419 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3420 		struct address_space *mapping = file->f_mapping;
3421 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3422 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3423 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3424 
3425 		/* protected by i_rwsem */
3426 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3427 			error = -EPERM;
3428 			goto out;
3429 		}
3430 
3431 		shmem_falloc.waitq = &shmem_falloc_waitq;
3432 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3433 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3434 		spin_lock(&inode->i_lock);
3435 		inode->i_private = &shmem_falloc;
3436 		spin_unlock(&inode->i_lock);
3437 
3438 		if ((u64)unmap_end > (u64)unmap_start)
3439 			unmap_mapping_range(mapping, unmap_start,
3440 					    1 + unmap_end - unmap_start, 0);
3441 		shmem_truncate_range(inode, offset, offset + len - 1);
3442 		/* No need to unmap again: hole-punching leaves COWed pages */
3443 
3444 		spin_lock(&inode->i_lock);
3445 		inode->i_private = NULL;
3446 		wake_up_all(&shmem_falloc_waitq);
3447 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3448 		spin_unlock(&inode->i_lock);
3449 		error = 0;
3450 		goto out;
3451 	}
3452 
3453 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3454 	error = inode_newsize_ok(inode, offset + len);
3455 	if (error)
3456 		goto out;
3457 
3458 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3459 		error = -EPERM;
3460 		goto out;
3461 	}
3462 
3463 	start = offset >> PAGE_SHIFT;
3464 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3465 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3466 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3467 		error = -ENOSPC;
3468 		goto out;
3469 	}
3470 
3471 	shmem_falloc.waitq = NULL;
3472 	shmem_falloc.start = start;
3473 	shmem_falloc.next  = start;
3474 	shmem_falloc.nr_falloced = 0;
3475 	shmem_falloc.nr_unswapped = 0;
3476 	spin_lock(&inode->i_lock);
3477 	inode->i_private = &shmem_falloc;
3478 	spin_unlock(&inode->i_lock);
3479 
3480 	/*
3481 	 * info->fallocend is only relevant when huge pages might be
3482 	 * involved: to prevent split_huge_page() freeing fallocated
3483 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3484 	 */
3485 	undo_fallocend = info->fallocend;
3486 	if (info->fallocend < end)
3487 		info->fallocend = end;
3488 
3489 	for (index = start; index < end; ) {
3490 		struct folio *folio;
3491 
3492 		/*
3493 		 * Check for fatal signal so that we abort early in OOM
3494 		 * situations. We don't want to abort in case of non-fatal
3495 		 * signals as large fallocate can take noticeable time and
3496 		 * e.g. periodic timers may result in fallocate constantly
3497 		 * restarting.
3498 		 */
3499 		if (fatal_signal_pending(current))
3500 			error = -EINTR;
3501 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3502 			error = -ENOMEM;
3503 		else
3504 			error = shmem_get_folio(inode, index, offset + len,
3505 						&folio, SGP_FALLOC);
3506 		if (error) {
3507 			info->fallocend = undo_fallocend;
3508 			/* Remove the !uptodate folios we added */
3509 			if (index > start) {
3510 				shmem_undo_range(inode,
3511 				    (loff_t)start << PAGE_SHIFT,
3512 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3513 			}
3514 			goto undone;
3515 		}
3516 
3517 		/*
3518 		 * Here is a more important optimization than it appears:
3519 		 * a second SGP_FALLOC on the same large folio will clear it,
3520 		 * making it uptodate and un-undoable if we fail later.
3521 		 */
3522 		index = folio_next_index(folio);
3523 		/* Beware 32-bit wraparound */
3524 		if (!index)
3525 			index--;
3526 
3527 		/*
3528 		 * Inform shmem_writepage() how far we have reached.
3529 		 * No need for lock or barrier: we have the page lock.
3530 		 */
3531 		if (!folio_test_uptodate(folio))
3532 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3533 		shmem_falloc.next = index;
3534 
3535 		/*
3536 		 * If !uptodate, leave it that way so that freeable folios
3537 		 * can be recognized if we need to rollback on error later.
3538 		 * But mark it dirty so that memory pressure will swap rather
3539 		 * than free the folios we are allocating (and SGP_CACHE folios
3540 		 * might still be clean: we now need to mark those dirty too).
3541 		 */
3542 		folio_mark_dirty(folio);
3543 		folio_unlock(folio);
3544 		folio_put(folio);
3545 		cond_resched();
3546 	}
3547 
3548 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3549 		i_size_write(inode, offset + len);
3550 undone:
3551 	spin_lock(&inode->i_lock);
3552 	inode->i_private = NULL;
3553 	spin_unlock(&inode->i_lock);
3554 out:
3555 	if (!error)
3556 		file_modified(file);
3557 	inode_unlock(inode);
3558 	return error;
3559 }
3560 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3561 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3562 {
3563 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3564 
3565 	buf->f_type = TMPFS_MAGIC;
3566 	buf->f_bsize = PAGE_SIZE;
3567 	buf->f_namelen = NAME_MAX;
3568 	if (sbinfo->max_blocks) {
3569 		buf->f_blocks = sbinfo->max_blocks;
3570 		buf->f_bavail =
3571 		buf->f_bfree  = sbinfo->max_blocks -
3572 				percpu_counter_sum(&sbinfo->used_blocks);
3573 	}
3574 	if (sbinfo->max_inodes) {
3575 		buf->f_files = sbinfo->max_inodes;
3576 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3577 	}
3578 	/* else leave those fields 0 like simple_statfs */
3579 
3580 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3581 
3582 	return 0;
3583 }
3584 
3585 /*
3586  * File creation. Allocate an inode, and we're done..
3587  */
3588 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3589 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3590 	    struct dentry *dentry, umode_t mode, dev_t dev)
3591 {
3592 	struct inode *inode;
3593 	int error;
3594 
3595 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3596 	if (IS_ERR(inode))
3597 		return PTR_ERR(inode);
3598 
3599 	error = simple_acl_create(dir, inode);
3600 	if (error)
3601 		goto out_iput;
3602 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3603 					     shmem_initxattrs, NULL);
3604 	if (error && error != -EOPNOTSUPP)
3605 		goto out_iput;
3606 
3607 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3608 	if (error)
3609 		goto out_iput;
3610 
3611 	dir->i_size += BOGO_DIRENT_SIZE;
3612 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3613 	inode_inc_iversion(dir);
3614 	d_instantiate(dentry, inode);
3615 	dget(dentry); /* Extra count - pin the dentry in core */
3616 	return error;
3617 
3618 out_iput:
3619 	iput(inode);
3620 	return error;
3621 }
3622 
3623 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3624 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3625 	      struct file *file, umode_t mode)
3626 {
3627 	struct inode *inode;
3628 	int error;
3629 
3630 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3631 	if (IS_ERR(inode)) {
3632 		error = PTR_ERR(inode);
3633 		goto err_out;
3634 	}
3635 	error = security_inode_init_security(inode, dir, NULL,
3636 					     shmem_initxattrs, NULL);
3637 	if (error && error != -EOPNOTSUPP)
3638 		goto out_iput;
3639 	error = simple_acl_create(dir, inode);
3640 	if (error)
3641 		goto out_iput;
3642 	d_tmpfile(file, inode);
3643 
3644 err_out:
3645 	return finish_open_simple(file, error);
3646 out_iput:
3647 	iput(inode);
3648 	return error;
3649 }
3650 
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3651 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3652 		       struct dentry *dentry, umode_t mode)
3653 {
3654 	int error;
3655 
3656 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3657 	if (error)
3658 		return error;
3659 	inc_nlink(dir);
3660 	return 0;
3661 }
3662 
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3663 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3664 			struct dentry *dentry, umode_t mode, bool excl)
3665 {
3666 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3667 }
3668 
3669 /*
3670  * Link a file..
3671  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3672 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3673 		      struct dentry *dentry)
3674 {
3675 	struct inode *inode = d_inode(old_dentry);
3676 	int ret = 0;
3677 
3678 	/*
3679 	 * No ordinary (disk based) filesystem counts links as inodes;
3680 	 * but each new link needs a new dentry, pinning lowmem, and
3681 	 * tmpfs dentries cannot be pruned until they are unlinked.
3682 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3683 	 * first link must skip that, to get the accounting right.
3684 	 */
3685 	if (inode->i_nlink) {
3686 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3687 		if (ret)
3688 			goto out;
3689 	}
3690 
3691 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3692 	if (ret) {
3693 		if (inode->i_nlink)
3694 			shmem_free_inode(inode->i_sb, 0);
3695 		goto out;
3696 	}
3697 
3698 	dir->i_size += BOGO_DIRENT_SIZE;
3699 	inode_set_mtime_to_ts(dir,
3700 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3701 	inode_inc_iversion(dir);
3702 	inc_nlink(inode);
3703 	ihold(inode);	/* New dentry reference */
3704 	dget(dentry);	/* Extra pinning count for the created dentry */
3705 	d_instantiate(dentry, inode);
3706 out:
3707 	return ret;
3708 }
3709 
shmem_unlink(struct inode * dir,struct dentry * dentry)3710 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3711 {
3712 	struct inode *inode = d_inode(dentry);
3713 
3714 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3715 		shmem_free_inode(inode->i_sb, 0);
3716 
3717 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3718 
3719 	dir->i_size -= BOGO_DIRENT_SIZE;
3720 	inode_set_mtime_to_ts(dir,
3721 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3722 	inode_inc_iversion(dir);
3723 	drop_nlink(inode);
3724 	dput(dentry);	/* Undo the count from "create" - does all the work */
3725 	return 0;
3726 }
3727 
shmem_rmdir(struct inode * dir,struct dentry * dentry)3728 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3729 {
3730 	if (!simple_empty(dentry))
3731 		return -ENOTEMPTY;
3732 
3733 	drop_nlink(d_inode(dentry));
3734 	drop_nlink(dir);
3735 	return shmem_unlink(dir, dentry);
3736 }
3737 
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3738 static int shmem_whiteout(struct mnt_idmap *idmap,
3739 			  struct inode *old_dir, struct dentry *old_dentry)
3740 {
3741 	struct dentry *whiteout;
3742 	int error;
3743 
3744 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3745 	if (!whiteout)
3746 		return -ENOMEM;
3747 
3748 	error = shmem_mknod(idmap, old_dir, whiteout,
3749 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3750 	dput(whiteout);
3751 	if (error)
3752 		return error;
3753 
3754 	/*
3755 	 * Cheat and hash the whiteout while the old dentry is still in
3756 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3757 	 *
3758 	 * d_lookup() will consistently find one of them at this point,
3759 	 * not sure which one, but that isn't even important.
3760 	 */
3761 	d_rehash(whiteout);
3762 	return 0;
3763 }
3764 
3765 /*
3766  * The VFS layer already does all the dentry stuff for rename,
3767  * we just have to decrement the usage count for the target if
3768  * it exists so that the VFS layer correctly free's it when it
3769  * gets overwritten.
3770  */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3771 static int shmem_rename2(struct mnt_idmap *idmap,
3772 			 struct inode *old_dir, struct dentry *old_dentry,
3773 			 struct inode *new_dir, struct dentry *new_dentry,
3774 			 unsigned int flags)
3775 {
3776 	struct inode *inode = d_inode(old_dentry);
3777 	int they_are_dirs = S_ISDIR(inode->i_mode);
3778 	int error;
3779 
3780 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3781 		return -EINVAL;
3782 
3783 	if (flags & RENAME_EXCHANGE)
3784 		return simple_offset_rename_exchange(old_dir, old_dentry,
3785 						     new_dir, new_dentry);
3786 
3787 	if (!simple_empty(new_dentry))
3788 		return -ENOTEMPTY;
3789 
3790 	if (flags & RENAME_WHITEOUT) {
3791 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3792 		if (error)
3793 			return error;
3794 	}
3795 
3796 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3797 	if (error)
3798 		return error;
3799 
3800 	if (d_really_is_positive(new_dentry)) {
3801 		(void) shmem_unlink(new_dir, new_dentry);
3802 		if (they_are_dirs) {
3803 			drop_nlink(d_inode(new_dentry));
3804 			drop_nlink(old_dir);
3805 		}
3806 	} else if (they_are_dirs) {
3807 		drop_nlink(old_dir);
3808 		inc_nlink(new_dir);
3809 	}
3810 
3811 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3812 	new_dir->i_size += BOGO_DIRENT_SIZE;
3813 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3814 	inode_inc_iversion(old_dir);
3815 	inode_inc_iversion(new_dir);
3816 	return 0;
3817 }
3818 
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3819 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3820 			 struct dentry *dentry, const char *symname)
3821 {
3822 	int error;
3823 	int len;
3824 	struct inode *inode;
3825 	struct folio *folio;
3826 
3827 	len = strlen(symname) + 1;
3828 	if (len > PAGE_SIZE)
3829 		return -ENAMETOOLONG;
3830 
3831 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3832 				VM_NORESERVE);
3833 	if (IS_ERR(inode))
3834 		return PTR_ERR(inode);
3835 
3836 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3837 					     shmem_initxattrs, NULL);
3838 	if (error && error != -EOPNOTSUPP)
3839 		goto out_iput;
3840 
3841 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3842 	if (error)
3843 		goto out_iput;
3844 
3845 	inode->i_size = len-1;
3846 	if (len <= SHORT_SYMLINK_LEN) {
3847 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3848 		if (!inode->i_link) {
3849 			error = -ENOMEM;
3850 			goto out_remove_offset;
3851 		}
3852 		inode->i_op = &shmem_short_symlink_operations;
3853 	} else {
3854 		inode_nohighmem(inode);
3855 		inode->i_mapping->a_ops = &shmem_aops;
3856 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3857 		if (error)
3858 			goto out_remove_offset;
3859 		inode->i_op = &shmem_symlink_inode_operations;
3860 		memcpy(folio_address(folio), symname, len);
3861 		folio_mark_uptodate(folio);
3862 		folio_mark_dirty(folio);
3863 		folio_unlock(folio);
3864 		folio_put(folio);
3865 	}
3866 	dir->i_size += BOGO_DIRENT_SIZE;
3867 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3868 	inode_inc_iversion(dir);
3869 	d_instantiate(dentry, inode);
3870 	dget(dentry);
3871 	return 0;
3872 
3873 out_remove_offset:
3874 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3875 out_iput:
3876 	iput(inode);
3877 	return error;
3878 }
3879 
shmem_put_link(void * arg)3880 static void shmem_put_link(void *arg)
3881 {
3882 	folio_mark_accessed(arg);
3883 	folio_put(arg);
3884 }
3885 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3886 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3887 				  struct delayed_call *done)
3888 {
3889 	struct folio *folio = NULL;
3890 	int error;
3891 
3892 	if (!dentry) {
3893 		folio = filemap_get_folio(inode->i_mapping, 0);
3894 		if (IS_ERR(folio))
3895 			return ERR_PTR(-ECHILD);
3896 		if (PageHWPoison(folio_page(folio, 0)) ||
3897 		    !folio_test_uptodate(folio)) {
3898 			folio_put(folio);
3899 			return ERR_PTR(-ECHILD);
3900 		}
3901 	} else {
3902 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3903 		if (error)
3904 			return ERR_PTR(error);
3905 		if (!folio)
3906 			return ERR_PTR(-ECHILD);
3907 		if (PageHWPoison(folio_page(folio, 0))) {
3908 			folio_unlock(folio);
3909 			folio_put(folio);
3910 			return ERR_PTR(-ECHILD);
3911 		}
3912 		folio_unlock(folio);
3913 	}
3914 	set_delayed_call(done, shmem_put_link, folio);
3915 	return folio_address(folio);
3916 }
3917 
3918 #ifdef CONFIG_TMPFS_XATTR
3919 
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3920 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3921 {
3922 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3923 
3924 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3925 
3926 	return 0;
3927 }
3928 
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3929 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3930 			      struct dentry *dentry, struct fileattr *fa)
3931 {
3932 	struct inode *inode = d_inode(dentry);
3933 	struct shmem_inode_info *info = SHMEM_I(inode);
3934 
3935 	if (fileattr_has_fsx(fa))
3936 		return -EOPNOTSUPP;
3937 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3938 		return -EOPNOTSUPP;
3939 
3940 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3941 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3942 
3943 	shmem_set_inode_flags(inode, info->fsflags);
3944 	inode_set_ctime_current(inode);
3945 	inode_inc_iversion(inode);
3946 	return 0;
3947 }
3948 
3949 /*
3950  * Superblocks without xattr inode operations may get some security.* xattr
3951  * support from the LSM "for free". As soon as we have any other xattrs
3952  * like ACLs, we also need to implement the security.* handlers at
3953  * filesystem level, though.
3954  */
3955 
3956 /*
3957  * Callback for security_inode_init_security() for acquiring xattrs.
3958  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3959 static int shmem_initxattrs(struct inode *inode,
3960 			    const struct xattr *xattr_array, void *fs_info)
3961 {
3962 	struct shmem_inode_info *info = SHMEM_I(inode);
3963 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3964 	const struct xattr *xattr;
3965 	struct simple_xattr *new_xattr;
3966 	size_t ispace = 0;
3967 	size_t len;
3968 
3969 	if (sbinfo->max_inodes) {
3970 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3971 			ispace += simple_xattr_space(xattr->name,
3972 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3973 		}
3974 		if (ispace) {
3975 			raw_spin_lock(&sbinfo->stat_lock);
3976 			if (sbinfo->free_ispace < ispace)
3977 				ispace = 0;
3978 			else
3979 				sbinfo->free_ispace -= ispace;
3980 			raw_spin_unlock(&sbinfo->stat_lock);
3981 			if (!ispace)
3982 				return -ENOSPC;
3983 		}
3984 	}
3985 
3986 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3987 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3988 		if (!new_xattr)
3989 			break;
3990 
3991 		len = strlen(xattr->name) + 1;
3992 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3993 					  GFP_KERNEL_ACCOUNT);
3994 		if (!new_xattr->name) {
3995 			kvfree(new_xattr);
3996 			break;
3997 		}
3998 
3999 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4000 		       XATTR_SECURITY_PREFIX_LEN);
4001 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4002 		       xattr->name, len);
4003 
4004 		simple_xattr_add(&info->xattrs, new_xattr);
4005 	}
4006 
4007 	if (xattr->name != NULL) {
4008 		if (ispace) {
4009 			raw_spin_lock(&sbinfo->stat_lock);
4010 			sbinfo->free_ispace += ispace;
4011 			raw_spin_unlock(&sbinfo->stat_lock);
4012 		}
4013 		simple_xattrs_free(&info->xattrs, NULL);
4014 		return -ENOMEM;
4015 	}
4016 
4017 	return 0;
4018 }
4019 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4020 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4021 				   struct dentry *unused, struct inode *inode,
4022 				   const char *name, void *buffer, size_t size)
4023 {
4024 	struct shmem_inode_info *info = SHMEM_I(inode);
4025 
4026 	name = xattr_full_name(handler, name);
4027 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4028 }
4029 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4030 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4031 				   struct mnt_idmap *idmap,
4032 				   struct dentry *unused, struct inode *inode,
4033 				   const char *name, const void *value,
4034 				   size_t size, int flags)
4035 {
4036 	struct shmem_inode_info *info = SHMEM_I(inode);
4037 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4038 	struct simple_xattr *old_xattr;
4039 	size_t ispace = 0;
4040 
4041 	name = xattr_full_name(handler, name);
4042 	if (value && sbinfo->max_inodes) {
4043 		ispace = simple_xattr_space(name, size);
4044 		raw_spin_lock(&sbinfo->stat_lock);
4045 		if (sbinfo->free_ispace < ispace)
4046 			ispace = 0;
4047 		else
4048 			sbinfo->free_ispace -= ispace;
4049 		raw_spin_unlock(&sbinfo->stat_lock);
4050 		if (!ispace)
4051 			return -ENOSPC;
4052 	}
4053 
4054 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4055 	if (!IS_ERR(old_xattr)) {
4056 		ispace = 0;
4057 		if (old_xattr && sbinfo->max_inodes)
4058 			ispace = simple_xattr_space(old_xattr->name,
4059 						    old_xattr->size);
4060 		simple_xattr_free(old_xattr);
4061 		old_xattr = NULL;
4062 		inode_set_ctime_current(inode);
4063 		inode_inc_iversion(inode);
4064 	}
4065 	if (ispace) {
4066 		raw_spin_lock(&sbinfo->stat_lock);
4067 		sbinfo->free_ispace += ispace;
4068 		raw_spin_unlock(&sbinfo->stat_lock);
4069 	}
4070 	return PTR_ERR(old_xattr);
4071 }
4072 
4073 static const struct xattr_handler shmem_security_xattr_handler = {
4074 	.prefix = XATTR_SECURITY_PREFIX,
4075 	.get = shmem_xattr_handler_get,
4076 	.set = shmem_xattr_handler_set,
4077 };
4078 
4079 static const struct xattr_handler shmem_trusted_xattr_handler = {
4080 	.prefix = XATTR_TRUSTED_PREFIX,
4081 	.get = shmem_xattr_handler_get,
4082 	.set = shmem_xattr_handler_set,
4083 };
4084 
4085 static const struct xattr_handler shmem_user_xattr_handler = {
4086 	.prefix = XATTR_USER_PREFIX,
4087 	.get = shmem_xattr_handler_get,
4088 	.set = shmem_xattr_handler_set,
4089 };
4090 
4091 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4092 	&shmem_security_xattr_handler,
4093 	&shmem_trusted_xattr_handler,
4094 	&shmem_user_xattr_handler,
4095 	NULL
4096 };
4097 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4098 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4099 {
4100 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4101 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4102 }
4103 #endif /* CONFIG_TMPFS_XATTR */
4104 
4105 static const struct inode_operations shmem_short_symlink_operations = {
4106 	.getattr	= shmem_getattr,
4107 	.setattr	= shmem_setattr,
4108 	.get_link	= simple_get_link,
4109 #ifdef CONFIG_TMPFS_XATTR
4110 	.listxattr	= shmem_listxattr,
4111 #endif
4112 };
4113 
4114 static const struct inode_operations shmem_symlink_inode_operations = {
4115 	.getattr	= shmem_getattr,
4116 	.setattr	= shmem_setattr,
4117 	.get_link	= shmem_get_link,
4118 #ifdef CONFIG_TMPFS_XATTR
4119 	.listxattr	= shmem_listxattr,
4120 #endif
4121 };
4122 
shmem_get_parent(struct dentry * child)4123 static struct dentry *shmem_get_parent(struct dentry *child)
4124 {
4125 	return ERR_PTR(-ESTALE);
4126 }
4127 
shmem_match(struct inode * ino,void * vfh)4128 static int shmem_match(struct inode *ino, void *vfh)
4129 {
4130 	__u32 *fh = vfh;
4131 	__u64 inum = fh[2];
4132 	inum = (inum << 32) | fh[1];
4133 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4134 }
4135 
4136 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4137 static struct dentry *shmem_find_alias(struct inode *inode)
4138 {
4139 	struct dentry *alias = d_find_alias(inode);
4140 
4141 	return alias ?: d_find_any_alias(inode);
4142 }
4143 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4144 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4145 		struct fid *fid, int fh_len, int fh_type)
4146 {
4147 	struct inode *inode;
4148 	struct dentry *dentry = NULL;
4149 	u64 inum;
4150 
4151 	if (fh_len < 3)
4152 		return NULL;
4153 
4154 	inum = fid->raw[2];
4155 	inum = (inum << 32) | fid->raw[1];
4156 
4157 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4158 			shmem_match, fid->raw);
4159 	if (inode) {
4160 		dentry = shmem_find_alias(inode);
4161 		iput(inode);
4162 	}
4163 
4164 	return dentry;
4165 }
4166 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4167 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4168 				struct inode *parent)
4169 {
4170 	if (*len < 3) {
4171 		*len = 3;
4172 		return FILEID_INVALID;
4173 	}
4174 
4175 	if (inode_unhashed(inode)) {
4176 		/* Unfortunately insert_inode_hash is not idempotent,
4177 		 * so as we hash inodes here rather than at creation
4178 		 * time, we need a lock to ensure we only try
4179 		 * to do it once
4180 		 */
4181 		static DEFINE_SPINLOCK(lock);
4182 		spin_lock(&lock);
4183 		if (inode_unhashed(inode))
4184 			__insert_inode_hash(inode,
4185 					    inode->i_ino + inode->i_generation);
4186 		spin_unlock(&lock);
4187 	}
4188 
4189 	fh[0] = inode->i_generation;
4190 	fh[1] = inode->i_ino;
4191 	fh[2] = ((__u64)inode->i_ino) >> 32;
4192 
4193 	*len = 3;
4194 	return 1;
4195 }
4196 
4197 static const struct export_operations shmem_export_ops = {
4198 	.get_parent     = shmem_get_parent,
4199 	.encode_fh      = shmem_encode_fh,
4200 	.fh_to_dentry	= shmem_fh_to_dentry,
4201 };
4202 
4203 enum shmem_param {
4204 	Opt_gid,
4205 	Opt_huge,
4206 	Opt_mode,
4207 	Opt_mpol,
4208 	Opt_nr_blocks,
4209 	Opt_nr_inodes,
4210 	Opt_size,
4211 	Opt_uid,
4212 	Opt_inode32,
4213 	Opt_inode64,
4214 	Opt_noswap,
4215 	Opt_quota,
4216 	Opt_usrquota,
4217 	Opt_grpquota,
4218 	Opt_usrquota_block_hardlimit,
4219 	Opt_usrquota_inode_hardlimit,
4220 	Opt_grpquota_block_hardlimit,
4221 	Opt_grpquota_inode_hardlimit,
4222 };
4223 
4224 static const struct constant_table shmem_param_enums_huge[] = {
4225 	{"never",	SHMEM_HUGE_NEVER },
4226 	{"always",	SHMEM_HUGE_ALWAYS },
4227 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4228 	{"advise",	SHMEM_HUGE_ADVISE },
4229 	{}
4230 };
4231 
4232 const struct fs_parameter_spec shmem_fs_parameters[] = {
4233 	fsparam_gid   ("gid",		Opt_gid),
4234 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4235 	fsparam_u32oct("mode",		Opt_mode),
4236 	fsparam_string("mpol",		Opt_mpol),
4237 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4238 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4239 	fsparam_string("size",		Opt_size),
4240 	fsparam_uid   ("uid",		Opt_uid),
4241 	fsparam_flag  ("inode32",	Opt_inode32),
4242 	fsparam_flag  ("inode64",	Opt_inode64),
4243 	fsparam_flag  ("noswap",	Opt_noswap),
4244 #ifdef CONFIG_TMPFS_QUOTA
4245 	fsparam_flag  ("quota",		Opt_quota),
4246 	fsparam_flag  ("usrquota",	Opt_usrquota),
4247 	fsparam_flag  ("grpquota",	Opt_grpquota),
4248 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4249 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4250 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4251 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4252 #endif
4253 	{}
4254 };
4255 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4256 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4257 {
4258 	struct shmem_options *ctx = fc->fs_private;
4259 	struct fs_parse_result result;
4260 	unsigned long long size;
4261 	char *rest;
4262 	int opt;
4263 	kuid_t kuid;
4264 	kgid_t kgid;
4265 
4266 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4267 	if (opt < 0)
4268 		return opt;
4269 
4270 	switch (opt) {
4271 	case Opt_size:
4272 		size = memparse(param->string, &rest);
4273 		if (*rest == '%') {
4274 			size <<= PAGE_SHIFT;
4275 			size *= totalram_pages();
4276 			do_div(size, 100);
4277 			rest++;
4278 		}
4279 		if (*rest)
4280 			goto bad_value;
4281 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4282 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4283 		break;
4284 	case Opt_nr_blocks:
4285 		ctx->blocks = memparse(param->string, &rest);
4286 		if (*rest || ctx->blocks > LONG_MAX)
4287 			goto bad_value;
4288 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4289 		break;
4290 	case Opt_nr_inodes:
4291 		ctx->inodes = memparse(param->string, &rest);
4292 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4293 			goto bad_value;
4294 		ctx->seen |= SHMEM_SEEN_INODES;
4295 		break;
4296 	case Opt_mode:
4297 		ctx->mode = result.uint_32 & 07777;
4298 		break;
4299 	case Opt_uid:
4300 		kuid = result.uid;
4301 
4302 		/*
4303 		 * The requested uid must be representable in the
4304 		 * filesystem's idmapping.
4305 		 */
4306 		if (!kuid_has_mapping(fc->user_ns, kuid))
4307 			goto bad_value;
4308 
4309 		ctx->uid = kuid;
4310 		break;
4311 	case Opt_gid:
4312 		kgid = result.gid;
4313 
4314 		/*
4315 		 * The requested gid must be representable in the
4316 		 * filesystem's idmapping.
4317 		 */
4318 		if (!kgid_has_mapping(fc->user_ns, kgid))
4319 			goto bad_value;
4320 
4321 		ctx->gid = kgid;
4322 		break;
4323 	case Opt_huge:
4324 		ctx->huge = result.uint_32;
4325 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4326 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4327 		      has_transparent_hugepage()))
4328 			goto unsupported_parameter;
4329 		ctx->seen |= SHMEM_SEEN_HUGE;
4330 		break;
4331 	case Opt_mpol:
4332 		if (IS_ENABLED(CONFIG_NUMA)) {
4333 			mpol_put(ctx->mpol);
4334 			ctx->mpol = NULL;
4335 			if (mpol_parse_str(param->string, &ctx->mpol))
4336 				goto bad_value;
4337 			break;
4338 		}
4339 		goto unsupported_parameter;
4340 	case Opt_inode32:
4341 		ctx->full_inums = false;
4342 		ctx->seen |= SHMEM_SEEN_INUMS;
4343 		break;
4344 	case Opt_inode64:
4345 		if (sizeof(ino_t) < 8) {
4346 			return invalfc(fc,
4347 				       "Cannot use inode64 with <64bit inums in kernel\n");
4348 		}
4349 		ctx->full_inums = true;
4350 		ctx->seen |= SHMEM_SEEN_INUMS;
4351 		break;
4352 	case Opt_noswap:
4353 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4354 			return invalfc(fc,
4355 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4356 		}
4357 		ctx->noswap = true;
4358 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4359 		break;
4360 	case Opt_quota:
4361 		if (fc->user_ns != &init_user_ns)
4362 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4363 		ctx->seen |= SHMEM_SEEN_QUOTA;
4364 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4365 		break;
4366 	case Opt_usrquota:
4367 		if (fc->user_ns != &init_user_ns)
4368 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4369 		ctx->seen |= SHMEM_SEEN_QUOTA;
4370 		ctx->quota_types |= QTYPE_MASK_USR;
4371 		break;
4372 	case Opt_grpquota:
4373 		if (fc->user_ns != &init_user_ns)
4374 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4375 		ctx->seen |= SHMEM_SEEN_QUOTA;
4376 		ctx->quota_types |= QTYPE_MASK_GRP;
4377 		break;
4378 	case Opt_usrquota_block_hardlimit:
4379 		size = memparse(param->string, &rest);
4380 		if (*rest || !size)
4381 			goto bad_value;
4382 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4383 			return invalfc(fc,
4384 				       "User quota block hardlimit too large.");
4385 		ctx->qlimits.usrquota_bhardlimit = size;
4386 		break;
4387 	case Opt_grpquota_block_hardlimit:
4388 		size = memparse(param->string, &rest);
4389 		if (*rest || !size)
4390 			goto bad_value;
4391 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4392 			return invalfc(fc,
4393 				       "Group quota block hardlimit too large.");
4394 		ctx->qlimits.grpquota_bhardlimit = size;
4395 		break;
4396 	case Opt_usrquota_inode_hardlimit:
4397 		size = memparse(param->string, &rest);
4398 		if (*rest || !size)
4399 			goto bad_value;
4400 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4401 			return invalfc(fc,
4402 				       "User quota inode hardlimit too large.");
4403 		ctx->qlimits.usrquota_ihardlimit = size;
4404 		break;
4405 	case Opt_grpquota_inode_hardlimit:
4406 		size = memparse(param->string, &rest);
4407 		if (*rest || !size)
4408 			goto bad_value;
4409 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4410 			return invalfc(fc,
4411 				       "Group quota inode hardlimit too large.");
4412 		ctx->qlimits.grpquota_ihardlimit = size;
4413 		break;
4414 	}
4415 	return 0;
4416 
4417 unsupported_parameter:
4418 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4419 bad_value:
4420 	return invalfc(fc, "Bad value for '%s'", param->key);
4421 }
4422 
shmem_parse_options(struct fs_context * fc,void * data)4423 static int shmem_parse_options(struct fs_context *fc, void *data)
4424 {
4425 	char *options = data;
4426 
4427 	if (options) {
4428 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4429 		if (err)
4430 			return err;
4431 	}
4432 
4433 	while (options != NULL) {
4434 		char *this_char = options;
4435 		for (;;) {
4436 			/*
4437 			 * NUL-terminate this option: unfortunately,
4438 			 * mount options form a comma-separated list,
4439 			 * but mpol's nodelist may also contain commas.
4440 			 */
4441 			options = strchr(options, ',');
4442 			if (options == NULL)
4443 				break;
4444 			options++;
4445 			if (!isdigit(*options)) {
4446 				options[-1] = '\0';
4447 				break;
4448 			}
4449 		}
4450 		if (*this_char) {
4451 			char *value = strchr(this_char, '=');
4452 			size_t len = 0;
4453 			int err;
4454 
4455 			if (value) {
4456 				*value++ = '\0';
4457 				len = strlen(value);
4458 			}
4459 			err = vfs_parse_fs_string(fc, this_char, value, len);
4460 			if (err < 0)
4461 				return err;
4462 		}
4463 	}
4464 	return 0;
4465 }
4466 
4467 /*
4468  * Reconfigure a shmem filesystem.
4469  */
shmem_reconfigure(struct fs_context * fc)4470 static int shmem_reconfigure(struct fs_context *fc)
4471 {
4472 	struct shmem_options *ctx = fc->fs_private;
4473 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4474 	unsigned long used_isp;
4475 	struct mempolicy *mpol = NULL;
4476 	const char *err;
4477 
4478 	raw_spin_lock(&sbinfo->stat_lock);
4479 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4480 
4481 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4482 		if (!sbinfo->max_blocks) {
4483 			err = "Cannot retroactively limit size";
4484 			goto out;
4485 		}
4486 		if (percpu_counter_compare(&sbinfo->used_blocks,
4487 					   ctx->blocks) > 0) {
4488 			err = "Too small a size for current use";
4489 			goto out;
4490 		}
4491 	}
4492 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4493 		if (!sbinfo->max_inodes) {
4494 			err = "Cannot retroactively limit inodes";
4495 			goto out;
4496 		}
4497 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4498 			err = "Too few inodes for current use";
4499 			goto out;
4500 		}
4501 	}
4502 
4503 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4504 	    sbinfo->next_ino > UINT_MAX) {
4505 		err = "Current inum too high to switch to 32-bit inums";
4506 		goto out;
4507 	}
4508 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4509 		err = "Cannot disable swap on remount";
4510 		goto out;
4511 	}
4512 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4513 		err = "Cannot enable swap on remount if it was disabled on first mount";
4514 		goto out;
4515 	}
4516 
4517 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4518 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4519 		err = "Cannot enable quota on remount";
4520 		goto out;
4521 	}
4522 
4523 #ifdef CONFIG_TMPFS_QUOTA
4524 #define CHANGED_LIMIT(name)						\
4525 	(ctx->qlimits.name## hardlimit &&				\
4526 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4527 
4528 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4529 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4530 		err = "Cannot change global quota limit on remount";
4531 		goto out;
4532 	}
4533 #endif /* CONFIG_TMPFS_QUOTA */
4534 
4535 	if (ctx->seen & SHMEM_SEEN_HUGE)
4536 		sbinfo->huge = ctx->huge;
4537 	if (ctx->seen & SHMEM_SEEN_INUMS)
4538 		sbinfo->full_inums = ctx->full_inums;
4539 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4540 		sbinfo->max_blocks  = ctx->blocks;
4541 	if (ctx->seen & SHMEM_SEEN_INODES) {
4542 		sbinfo->max_inodes  = ctx->inodes;
4543 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4544 	}
4545 
4546 	/*
4547 	 * Preserve previous mempolicy unless mpol remount option was specified.
4548 	 */
4549 	if (ctx->mpol) {
4550 		mpol = sbinfo->mpol;
4551 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4552 		ctx->mpol = NULL;
4553 	}
4554 
4555 	if (ctx->noswap)
4556 		sbinfo->noswap = true;
4557 
4558 	raw_spin_unlock(&sbinfo->stat_lock);
4559 	mpol_put(mpol);
4560 	return 0;
4561 out:
4562 	raw_spin_unlock(&sbinfo->stat_lock);
4563 	return invalfc(fc, "%s", err);
4564 }
4565 
shmem_show_options(struct seq_file * seq,struct dentry * root)4566 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4567 {
4568 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4569 	struct mempolicy *mpol;
4570 
4571 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4572 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4573 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4574 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4575 	if (sbinfo->mode != (0777 | S_ISVTX))
4576 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4577 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4578 		seq_printf(seq, ",uid=%u",
4579 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4580 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4581 		seq_printf(seq, ",gid=%u",
4582 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4583 
4584 	/*
4585 	 * Showing inode{64,32} might be useful even if it's the system default,
4586 	 * since then people don't have to resort to checking both here and
4587 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4588 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4589 	 *
4590 	 * We hide it when inode64 isn't the default and we are using 32-bit
4591 	 * inodes, since that probably just means the feature isn't even under
4592 	 * consideration.
4593 	 *
4594 	 * As such:
4595 	 *
4596 	 *                     +-----------------+-----------------+
4597 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4598 	 *  +------------------+-----------------+-----------------+
4599 	 *  | full_inums=true  | show            | show            |
4600 	 *  | full_inums=false | show            | hide            |
4601 	 *  +------------------+-----------------+-----------------+
4602 	 *
4603 	 */
4604 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4605 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4607 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4608 	if (sbinfo->huge)
4609 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4610 #endif
4611 	mpol = shmem_get_sbmpol(sbinfo);
4612 	shmem_show_mpol(seq, mpol);
4613 	mpol_put(mpol);
4614 	if (sbinfo->noswap)
4615 		seq_printf(seq, ",noswap");
4616 #ifdef CONFIG_TMPFS_QUOTA
4617 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4618 		seq_printf(seq, ",usrquota");
4619 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4620 		seq_printf(seq, ",grpquota");
4621 	if (sbinfo->qlimits.usrquota_bhardlimit)
4622 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4623 			   sbinfo->qlimits.usrquota_bhardlimit);
4624 	if (sbinfo->qlimits.grpquota_bhardlimit)
4625 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4626 			   sbinfo->qlimits.grpquota_bhardlimit);
4627 	if (sbinfo->qlimits.usrquota_ihardlimit)
4628 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4629 			   sbinfo->qlimits.usrquota_ihardlimit);
4630 	if (sbinfo->qlimits.grpquota_ihardlimit)
4631 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4632 			   sbinfo->qlimits.grpquota_ihardlimit);
4633 #endif
4634 	return 0;
4635 }
4636 
4637 #endif /* CONFIG_TMPFS */
4638 
shmem_put_super(struct super_block * sb)4639 static void shmem_put_super(struct super_block *sb)
4640 {
4641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4642 
4643 #ifdef CONFIG_TMPFS_QUOTA
4644 	shmem_disable_quotas(sb);
4645 #endif
4646 	free_percpu(sbinfo->ino_batch);
4647 	percpu_counter_destroy(&sbinfo->used_blocks);
4648 	mpol_put(sbinfo->mpol);
4649 	kfree(sbinfo);
4650 	sb->s_fs_info = NULL;
4651 }
4652 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4653 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4654 {
4655 	struct shmem_options *ctx = fc->fs_private;
4656 	struct inode *inode;
4657 	struct shmem_sb_info *sbinfo;
4658 	int error = -ENOMEM;
4659 
4660 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4661 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4662 				L1_CACHE_BYTES), GFP_KERNEL);
4663 	if (!sbinfo)
4664 		return error;
4665 
4666 	sb->s_fs_info = sbinfo;
4667 
4668 #ifdef CONFIG_TMPFS
4669 	/*
4670 	 * Per default we only allow half of the physical ram per
4671 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4672 	 * but the internal instance is left unlimited.
4673 	 */
4674 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4675 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4676 			ctx->blocks = shmem_default_max_blocks();
4677 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4678 			ctx->inodes = shmem_default_max_inodes();
4679 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4680 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4681 		sbinfo->noswap = ctx->noswap;
4682 	} else {
4683 		sb->s_flags |= SB_NOUSER;
4684 	}
4685 	sb->s_export_op = &shmem_export_ops;
4686 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4687 #else
4688 	sb->s_flags |= SB_NOUSER;
4689 #endif
4690 	sbinfo->max_blocks = ctx->blocks;
4691 	sbinfo->max_inodes = ctx->inodes;
4692 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4693 	if (sb->s_flags & SB_KERNMOUNT) {
4694 		sbinfo->ino_batch = alloc_percpu(ino_t);
4695 		if (!sbinfo->ino_batch)
4696 			goto failed;
4697 	}
4698 	sbinfo->uid = ctx->uid;
4699 	sbinfo->gid = ctx->gid;
4700 	sbinfo->full_inums = ctx->full_inums;
4701 	sbinfo->mode = ctx->mode;
4702 	sbinfo->huge = ctx->huge;
4703 	sbinfo->mpol = ctx->mpol;
4704 	ctx->mpol = NULL;
4705 
4706 	raw_spin_lock_init(&sbinfo->stat_lock);
4707 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4708 		goto failed;
4709 	spin_lock_init(&sbinfo->shrinklist_lock);
4710 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4711 
4712 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4713 	sb->s_blocksize = PAGE_SIZE;
4714 	sb->s_blocksize_bits = PAGE_SHIFT;
4715 	sb->s_magic = TMPFS_MAGIC;
4716 	sb->s_op = &shmem_ops;
4717 	sb->s_time_gran = 1;
4718 #ifdef CONFIG_TMPFS_XATTR
4719 	sb->s_xattr = shmem_xattr_handlers;
4720 #endif
4721 #ifdef CONFIG_TMPFS_POSIX_ACL
4722 	sb->s_flags |= SB_POSIXACL;
4723 #endif
4724 	uuid_t uuid;
4725 	uuid_gen(&uuid);
4726 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4727 
4728 #ifdef CONFIG_TMPFS_QUOTA
4729 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4730 		sb->dq_op = &shmem_quota_operations;
4731 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4732 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4733 
4734 		/* Copy the default limits from ctx into sbinfo */
4735 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4736 		       sizeof(struct shmem_quota_limits));
4737 
4738 		if (shmem_enable_quotas(sb, ctx->quota_types))
4739 			goto failed;
4740 	}
4741 #endif /* CONFIG_TMPFS_QUOTA */
4742 
4743 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4744 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4745 	if (IS_ERR(inode)) {
4746 		error = PTR_ERR(inode);
4747 		goto failed;
4748 	}
4749 	inode->i_uid = sbinfo->uid;
4750 	inode->i_gid = sbinfo->gid;
4751 	sb->s_root = d_make_root(inode);
4752 	if (!sb->s_root)
4753 		goto failed;
4754 	return 0;
4755 
4756 failed:
4757 	shmem_put_super(sb);
4758 	return error;
4759 }
4760 
shmem_get_tree(struct fs_context * fc)4761 static int shmem_get_tree(struct fs_context *fc)
4762 {
4763 	return get_tree_nodev(fc, shmem_fill_super);
4764 }
4765 
shmem_free_fc(struct fs_context * fc)4766 static void shmem_free_fc(struct fs_context *fc)
4767 {
4768 	struct shmem_options *ctx = fc->fs_private;
4769 
4770 	if (ctx) {
4771 		mpol_put(ctx->mpol);
4772 		kfree(ctx);
4773 	}
4774 }
4775 
4776 static const struct fs_context_operations shmem_fs_context_ops = {
4777 	.free			= shmem_free_fc,
4778 	.get_tree		= shmem_get_tree,
4779 #ifdef CONFIG_TMPFS
4780 	.parse_monolithic	= shmem_parse_options,
4781 	.parse_param		= shmem_parse_one,
4782 	.reconfigure		= shmem_reconfigure,
4783 #endif
4784 };
4785 
4786 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4787 
shmem_alloc_inode(struct super_block * sb)4788 static struct inode *shmem_alloc_inode(struct super_block *sb)
4789 {
4790 	struct shmem_inode_info *info;
4791 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4792 	if (!info)
4793 		return NULL;
4794 	return &info->vfs_inode;
4795 }
4796 
shmem_free_in_core_inode(struct inode * inode)4797 static void shmem_free_in_core_inode(struct inode *inode)
4798 {
4799 	if (S_ISLNK(inode->i_mode))
4800 		kfree(inode->i_link);
4801 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4802 }
4803 
shmem_destroy_inode(struct inode * inode)4804 static void shmem_destroy_inode(struct inode *inode)
4805 {
4806 	if (S_ISREG(inode->i_mode))
4807 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4808 	if (S_ISDIR(inode->i_mode))
4809 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4810 }
4811 
shmem_init_inode(void * foo)4812 static void shmem_init_inode(void *foo)
4813 {
4814 	struct shmem_inode_info *info = foo;
4815 	inode_init_once(&info->vfs_inode);
4816 }
4817 
shmem_init_inodecache(void)4818 static void __init shmem_init_inodecache(void)
4819 {
4820 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4821 				sizeof(struct shmem_inode_info),
4822 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4823 }
4824 
shmem_destroy_inodecache(void)4825 static void __init shmem_destroy_inodecache(void)
4826 {
4827 	kmem_cache_destroy(shmem_inode_cachep);
4828 }
4829 
4830 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)4831 static int shmem_error_remove_folio(struct address_space *mapping,
4832 				   struct folio *folio)
4833 {
4834 	return 0;
4835 }
4836 
4837 static const struct address_space_operations shmem_aops = {
4838 	.writepage	= shmem_writepage,
4839 	.dirty_folio	= noop_dirty_folio,
4840 #ifdef CONFIG_TMPFS
4841 	.write_begin	= shmem_write_begin,
4842 	.write_end	= shmem_write_end,
4843 #endif
4844 #ifdef CONFIG_MIGRATION
4845 	.migrate_folio	= migrate_folio,
4846 #endif
4847 	.error_remove_folio = shmem_error_remove_folio,
4848 };
4849 
4850 #ifdef CONFIG_ASHMEM_RUST
4851 extern long ashmem_memfd_ioctl(struct file *file, unsigned int cmd,
4852 			       unsigned long arg);
4853 #endif
4854 
4855 static const struct file_operations shmem_file_operations = {
4856 	.mmap		= shmem_mmap,
4857 	.open		= shmem_file_open,
4858 	.get_unmapped_area = shmem_get_unmapped_area,
4859 #ifdef CONFIG_TMPFS
4860 	.llseek		= shmem_file_llseek,
4861 	.read_iter	= shmem_file_read_iter,
4862 	.write_iter	= shmem_file_write_iter,
4863 	.fsync		= noop_fsync,
4864 	.splice_read	= shmem_file_splice_read,
4865 	.splice_write	= iter_file_splice_write,
4866 	.fallocate	= shmem_fallocate,
4867 #endif
4868 #ifdef CONFIG_ASHMEM_RUST
4869 	.unlocked_ioctl	= ashmem_memfd_ioctl,
4870 #ifdef CONFIG_COMPAT
4871 	.compat_ioctl	= ashmem_memfd_ioctl,
4872 #endif
4873 #endif
4874 };
4875 
4876 static const struct inode_operations shmem_inode_operations = {
4877 	.getattr	= shmem_getattr,
4878 	.setattr	= shmem_setattr,
4879 #ifdef CONFIG_TMPFS_XATTR
4880 	.listxattr	= shmem_listxattr,
4881 	.set_acl	= simple_set_acl,
4882 	.fileattr_get	= shmem_fileattr_get,
4883 	.fileattr_set	= shmem_fileattr_set,
4884 #endif
4885 };
4886 
4887 static const struct inode_operations shmem_dir_inode_operations = {
4888 #ifdef CONFIG_TMPFS
4889 	.getattr	= shmem_getattr,
4890 	.create		= shmem_create,
4891 	.lookup		= simple_lookup,
4892 	.link		= shmem_link,
4893 	.unlink		= shmem_unlink,
4894 	.symlink	= shmem_symlink,
4895 	.mkdir		= shmem_mkdir,
4896 	.rmdir		= shmem_rmdir,
4897 	.mknod		= shmem_mknod,
4898 	.rename		= shmem_rename2,
4899 	.tmpfile	= shmem_tmpfile,
4900 	.get_offset_ctx	= shmem_get_offset_ctx,
4901 #endif
4902 #ifdef CONFIG_TMPFS_XATTR
4903 	.listxattr	= shmem_listxattr,
4904 	.fileattr_get	= shmem_fileattr_get,
4905 	.fileattr_set	= shmem_fileattr_set,
4906 #endif
4907 #ifdef CONFIG_TMPFS_POSIX_ACL
4908 	.setattr	= shmem_setattr,
4909 	.set_acl	= simple_set_acl,
4910 #endif
4911 };
4912 
4913 static const struct inode_operations shmem_special_inode_operations = {
4914 	.getattr	= shmem_getattr,
4915 #ifdef CONFIG_TMPFS_XATTR
4916 	.listxattr	= shmem_listxattr,
4917 #endif
4918 #ifdef CONFIG_TMPFS_POSIX_ACL
4919 	.setattr	= shmem_setattr,
4920 	.set_acl	= simple_set_acl,
4921 #endif
4922 };
4923 
4924 static const struct super_operations shmem_ops = {
4925 	.alloc_inode	= shmem_alloc_inode,
4926 	.free_inode	= shmem_free_in_core_inode,
4927 	.destroy_inode	= shmem_destroy_inode,
4928 #ifdef CONFIG_TMPFS
4929 	.statfs		= shmem_statfs,
4930 	.show_options	= shmem_show_options,
4931 #endif
4932 #ifdef CONFIG_TMPFS_QUOTA
4933 	.get_dquots	= shmem_get_dquots,
4934 #endif
4935 	.evict_inode	= shmem_evict_inode,
4936 	.drop_inode	= generic_delete_inode,
4937 	.put_super	= shmem_put_super,
4938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4939 	.nr_cached_objects	= shmem_unused_huge_count,
4940 	.free_cached_objects	= shmem_unused_huge_scan,
4941 #endif
4942 };
4943 
4944 static const struct vm_operations_struct shmem_vm_ops = {
4945 	.fault		= shmem_fault,
4946 	.map_pages	= filemap_map_pages,
4947 #ifdef CONFIG_NUMA
4948 	.set_policy     = shmem_set_policy,
4949 	.get_policy     = shmem_get_policy,
4950 #endif
4951 };
4952 
4953 static const struct vm_operations_struct shmem_anon_vm_ops = {
4954 	.fault		= shmem_fault,
4955 	.map_pages	= filemap_map_pages,
4956 #ifdef CONFIG_NUMA
4957 	.set_policy     = shmem_set_policy,
4958 	.get_policy     = shmem_get_policy,
4959 #endif
4960 };
4961 
shmem_init_fs_context(struct fs_context * fc)4962 int shmem_init_fs_context(struct fs_context *fc)
4963 {
4964 	struct shmem_options *ctx;
4965 
4966 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4967 	if (!ctx)
4968 		return -ENOMEM;
4969 
4970 	ctx->mode = 0777 | S_ISVTX;
4971 	ctx->uid = current_fsuid();
4972 	ctx->gid = current_fsgid();
4973 
4974 	fc->fs_private = ctx;
4975 	fc->ops = &shmem_fs_context_ops;
4976 	return 0;
4977 }
4978 
4979 static struct file_system_type shmem_fs_type = {
4980 	.owner		= THIS_MODULE,
4981 	.name		= "tmpfs",
4982 	.init_fs_context = shmem_init_fs_context,
4983 #ifdef CONFIG_TMPFS
4984 	.parameters	= shmem_fs_parameters,
4985 #endif
4986 	.kill_sb	= kill_litter_super,
4987 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4988 };
4989 
shmem_init(void)4990 void __init shmem_init(void)
4991 {
4992 	int error;
4993 
4994 	shmem_init_inodecache();
4995 
4996 #ifdef CONFIG_TMPFS_QUOTA
4997 	register_quota_format(&shmem_quota_format);
4998 #endif
4999 
5000 	error = register_filesystem(&shmem_fs_type);
5001 	if (error) {
5002 		pr_err("Could not register tmpfs\n");
5003 		goto out2;
5004 	}
5005 
5006 	shm_mnt = kern_mount(&shmem_fs_type);
5007 	if (IS_ERR(shm_mnt)) {
5008 		error = PTR_ERR(shm_mnt);
5009 		pr_err("Could not kern_mount tmpfs\n");
5010 		goto out1;
5011 	}
5012 
5013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5014 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5015 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5016 	else
5017 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5018 
5019 	/*
5020 	 * Default to setting PMD-sized THP to inherit the global setting and
5021 	 * disable all other multi-size THPs.
5022 	 */
5023 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5024 #endif
5025 	return;
5026 
5027 out1:
5028 	unregister_filesystem(&shmem_fs_type);
5029 out2:
5030 #ifdef CONFIG_TMPFS_QUOTA
5031 	unregister_quota_format(&shmem_quota_format);
5032 #endif
5033 	shmem_destroy_inodecache();
5034 	shm_mnt = ERR_PTR(error);
5035 }
5036 
5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5038 static ssize_t shmem_enabled_show(struct kobject *kobj,
5039 				  struct kobj_attribute *attr, char *buf)
5040 {
5041 	static const int values[] = {
5042 		SHMEM_HUGE_ALWAYS,
5043 		SHMEM_HUGE_WITHIN_SIZE,
5044 		SHMEM_HUGE_ADVISE,
5045 		SHMEM_HUGE_NEVER,
5046 		SHMEM_HUGE_DENY,
5047 		SHMEM_HUGE_FORCE,
5048 	};
5049 	int len = 0;
5050 	int i;
5051 
5052 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5053 		len += sysfs_emit_at(buf, len,
5054 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5055 				i ? " " : "", shmem_format_huge(values[i]));
5056 	}
5057 	len += sysfs_emit_at(buf, len, "\n");
5058 
5059 	return len;
5060 }
5061 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5062 static ssize_t shmem_enabled_store(struct kobject *kobj,
5063 		struct kobj_attribute *attr, const char *buf, size_t count)
5064 {
5065 	char tmp[16];
5066 	int huge;
5067 
5068 	if (count + 1 > sizeof(tmp))
5069 		return -EINVAL;
5070 	memcpy(tmp, buf, count);
5071 	tmp[count] = '\0';
5072 	if (count && tmp[count - 1] == '\n')
5073 		tmp[count - 1] = '\0';
5074 
5075 	huge = shmem_parse_huge(tmp);
5076 	if (huge == -EINVAL)
5077 		return -EINVAL;
5078 	if (!has_transparent_hugepage() &&
5079 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5080 		return -EINVAL;
5081 
5082 	/* Do not override huge allocation policy with non-PMD sized mTHP */
5083 	if (huge == SHMEM_HUGE_FORCE &&
5084 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5085 		return -EINVAL;
5086 
5087 	shmem_huge = huge;
5088 	if (shmem_huge > SHMEM_HUGE_DENY)
5089 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5090 	return count;
5091 }
5092 
5093 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5094 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5095 
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5096 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5097 					  struct kobj_attribute *attr, char *buf)
5098 {
5099 	int order = to_thpsize(kobj)->order;
5100 	const char *output;
5101 
5102 	if (test_bit(order, &huge_shmem_orders_always))
5103 		output = "[always] inherit within_size advise never";
5104 	else if (test_bit(order, &huge_shmem_orders_inherit))
5105 		output = "always [inherit] within_size advise never";
5106 	else if (test_bit(order, &huge_shmem_orders_within_size))
5107 		output = "always inherit [within_size] advise never";
5108 	else if (test_bit(order, &huge_shmem_orders_madvise))
5109 		output = "always inherit within_size [advise] never";
5110 	else
5111 		output = "always inherit within_size advise [never]";
5112 
5113 	return sysfs_emit(buf, "%s\n", output);
5114 }
5115 
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5116 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5117 					   struct kobj_attribute *attr,
5118 					   const char *buf, size_t count)
5119 {
5120 	int order = to_thpsize(kobj)->order;
5121 	ssize_t ret = count;
5122 
5123 	if (sysfs_streq(buf, "always")) {
5124 		spin_lock(&huge_shmem_orders_lock);
5125 		clear_bit(order, &huge_shmem_orders_inherit);
5126 		clear_bit(order, &huge_shmem_orders_madvise);
5127 		clear_bit(order, &huge_shmem_orders_within_size);
5128 		set_bit(order, &huge_shmem_orders_always);
5129 		spin_unlock(&huge_shmem_orders_lock);
5130 	} else if (sysfs_streq(buf, "inherit")) {
5131 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5132 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5133 		    order != HPAGE_PMD_ORDER)
5134 			return -EINVAL;
5135 
5136 		spin_lock(&huge_shmem_orders_lock);
5137 		clear_bit(order, &huge_shmem_orders_always);
5138 		clear_bit(order, &huge_shmem_orders_madvise);
5139 		clear_bit(order, &huge_shmem_orders_within_size);
5140 		set_bit(order, &huge_shmem_orders_inherit);
5141 		spin_unlock(&huge_shmem_orders_lock);
5142 	} else if (sysfs_streq(buf, "within_size")) {
5143 		spin_lock(&huge_shmem_orders_lock);
5144 		clear_bit(order, &huge_shmem_orders_always);
5145 		clear_bit(order, &huge_shmem_orders_inherit);
5146 		clear_bit(order, &huge_shmem_orders_madvise);
5147 		set_bit(order, &huge_shmem_orders_within_size);
5148 		spin_unlock(&huge_shmem_orders_lock);
5149 	} else if (sysfs_streq(buf, "advise")) {
5150 		spin_lock(&huge_shmem_orders_lock);
5151 		clear_bit(order, &huge_shmem_orders_always);
5152 		clear_bit(order, &huge_shmem_orders_inherit);
5153 		clear_bit(order, &huge_shmem_orders_within_size);
5154 		set_bit(order, &huge_shmem_orders_madvise);
5155 		spin_unlock(&huge_shmem_orders_lock);
5156 	} else if (sysfs_streq(buf, "never")) {
5157 		spin_lock(&huge_shmem_orders_lock);
5158 		clear_bit(order, &huge_shmem_orders_always);
5159 		clear_bit(order, &huge_shmem_orders_inherit);
5160 		clear_bit(order, &huge_shmem_orders_within_size);
5161 		clear_bit(order, &huge_shmem_orders_madvise);
5162 		spin_unlock(&huge_shmem_orders_lock);
5163 	} else {
5164 		ret = -EINVAL;
5165 	}
5166 
5167 	return ret;
5168 }
5169 
5170 struct kobj_attribute thpsize_shmem_enabled_attr =
5171 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5173 
5174 #else /* !CONFIG_SHMEM */
5175 
5176 /*
5177  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5178  *
5179  * This is intended for small system where the benefits of the full
5180  * shmem code (swap-backed and resource-limited) are outweighed by
5181  * their complexity. On systems without swap this code should be
5182  * effectively equivalent, but much lighter weight.
5183  */
5184 
5185 static struct file_system_type shmem_fs_type = {
5186 	.name		= "tmpfs",
5187 	.init_fs_context = ramfs_init_fs_context,
5188 	.parameters	= ramfs_fs_parameters,
5189 	.kill_sb	= ramfs_kill_sb,
5190 	.fs_flags	= FS_USERNS_MOUNT,
5191 };
5192 
shmem_init(void)5193 void __init shmem_init(void)
5194 {
5195 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5196 
5197 	shm_mnt = kern_mount(&shmem_fs_type);
5198 	BUG_ON(IS_ERR(shm_mnt));
5199 }
5200 
shmem_unuse(unsigned int type)5201 int shmem_unuse(unsigned int type)
5202 {
5203 	return 0;
5204 }
5205 
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5206 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5207 {
5208 	return 0;
5209 }
5210 
shmem_unlock_mapping(struct address_space * mapping)5211 void shmem_unlock_mapping(struct address_space *mapping)
5212 {
5213 }
5214 
5215 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5216 unsigned long shmem_get_unmapped_area(struct file *file,
5217 				      unsigned long addr, unsigned long len,
5218 				      unsigned long pgoff, unsigned long flags)
5219 {
5220 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5221 }
5222 #endif
5223 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5224 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5225 {
5226 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5227 }
5228 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5229 
5230 #define shmem_vm_ops				generic_file_vm_ops
5231 #define shmem_anon_vm_ops			generic_file_vm_ops
5232 #define shmem_file_operations			ramfs_file_operations
5233 #define shmem_acct_size(flags, size)		0
5234 #define shmem_unacct_size(flags, size)		do {} while (0)
5235 
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5236 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5237 				struct super_block *sb, struct inode *dir,
5238 				umode_t mode, dev_t dev, unsigned long flags)
5239 {
5240 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5241 	return inode ? inode : ERR_PTR(-ENOSPC);
5242 }
5243 
5244 #endif /* CONFIG_SHMEM */
5245 
5246 /* common code */
5247 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5248 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5249 			loff_t size, unsigned long flags, unsigned int i_flags)
5250 {
5251 	struct inode *inode;
5252 	struct file *res;
5253 
5254 	if (IS_ERR(mnt))
5255 		return ERR_CAST(mnt);
5256 
5257 	if (size < 0 || size > MAX_LFS_FILESIZE)
5258 		return ERR_PTR(-EINVAL);
5259 
5260 	if (shmem_acct_size(flags, size))
5261 		return ERR_PTR(-ENOMEM);
5262 
5263 	if (is_idmapped_mnt(mnt))
5264 		return ERR_PTR(-EINVAL);
5265 
5266 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5267 				S_IFREG | S_IRWXUGO, 0, flags);
5268 	if (IS_ERR(inode)) {
5269 		shmem_unacct_size(flags, size);
5270 		return ERR_CAST(inode);
5271 	}
5272 	inode->i_flags |= i_flags;
5273 	inode->i_size = size;
5274 	clear_nlink(inode);	/* It is unlinked */
5275 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5276 	if (!IS_ERR(res))
5277 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5278 				&shmem_file_operations);
5279 	if (IS_ERR(res))
5280 		iput(inode);
5281 	return res;
5282 }
5283 
5284 /**
5285  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5286  * 	kernel internal.  There will be NO LSM permission checks against the
5287  * 	underlying inode.  So users of this interface must do LSM checks at a
5288  *	higher layer.  The users are the big_key and shm implementations.  LSM
5289  *	checks are provided at the key or shm level rather than the inode.
5290  * @name: name for dentry (to be seen in /proc/<pid>/maps
5291  * @size: size to be set for the file
5292  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5293  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5294 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5295 {
5296 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5297 }
5298 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5299 
5300 /**
5301  * shmem_file_setup - get an unlinked file living in tmpfs
5302  * @name: name for dentry (to be seen in /proc/<pid>/maps
5303  * @size: size to be set for the file
5304  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5305  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5306 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5307 {
5308 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5309 }
5310 EXPORT_SYMBOL_GPL(shmem_file_setup);
5311 
5312 /**
5313  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5314  * @mnt: the tmpfs mount where the file will be created
5315  * @name: name for dentry (to be seen in /proc/<pid>/maps
5316  * @size: size to be set for the file
5317  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5318  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5319 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5320 				       loff_t size, unsigned long flags)
5321 {
5322 	return __shmem_file_setup(mnt, name, size, flags, 0);
5323 }
5324 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5325 
5326 /**
5327  * shmem_zero_setup - setup a shared anonymous mapping
5328  * @vma: the vma to be mmapped is prepared by do_mmap
5329  */
shmem_zero_setup(struct vm_area_struct * vma)5330 int shmem_zero_setup(struct vm_area_struct *vma)
5331 {
5332 	struct file *file;
5333 	loff_t size = vma->vm_end - vma->vm_start;
5334 
5335 	/*
5336 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5337 	 * between XFS directory reading and selinux: since this file is only
5338 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5339 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5340 	 */
5341 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5342 	if (IS_ERR(file))
5343 		return PTR_ERR(file);
5344 
5345 	if (vma->vm_file)
5346 		fput(vma->vm_file);
5347 	vma->vm_file = file;
5348 	vma->vm_ops = &shmem_anon_vm_ops;
5349 
5350 	return 0;
5351 }
5352 
5353 /**
5354  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5355  * @mapping:	the folio's address_space
5356  * @index:	the folio index
5357  * @gfp:	the page allocator flags to use if allocating
5358  *
5359  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5360  * with any new page allocations done using the specified allocation flags.
5361  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5362  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5363  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5364  *
5365  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5366  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5367  */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5368 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5369 		pgoff_t index, gfp_t gfp)
5370 {
5371 #ifdef CONFIG_SHMEM
5372 	struct inode *inode = mapping->host;
5373 	struct folio *folio;
5374 	int error;
5375 
5376 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5377 				    gfp, NULL, NULL);
5378 	if (error)
5379 		return ERR_PTR(error);
5380 
5381 	folio_unlock(folio);
5382 	return folio;
5383 #else
5384 	/*
5385 	 * The tiny !SHMEM case uses ramfs without swap
5386 	 */
5387 	return mapping_read_folio_gfp(mapping, index, gfp);
5388 #endif
5389 }
5390 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5391 
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5392 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5393 					 pgoff_t index, gfp_t gfp)
5394 {
5395 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5396 	struct page *page;
5397 
5398 	if (IS_ERR(folio))
5399 		return &folio->page;
5400 
5401 	page = folio_file_page(folio, index);
5402 	if (PageHWPoison(page)) {
5403 		folio_put(folio);
5404 		return ERR_PTR(-EIO);
5405 	}
5406 
5407 	return page;
5408 }
5409 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5410 
reclaim_shmem_address_space(struct address_space * mapping)5411 int reclaim_shmem_address_space(struct address_space *mapping)
5412 {
5413 #ifdef CONFIG_SHMEM
5414 	pgoff_t start = 0;
5415 	struct page *page;
5416 	LIST_HEAD(page_list);
5417 	XA_STATE(xas, &mapping->i_pages, start);
5418 
5419 	if (!shmem_mapping(mapping))
5420 		return -EINVAL;
5421 
5422 	lru_add_drain();
5423 
5424 	rcu_read_lock();
5425 	xas_for_each(&xas, page, ULONG_MAX) {
5426 		if (xas_retry(&xas, page))
5427 			continue;
5428 		if (xa_is_value(page))
5429 			continue;
5430 		if (!folio_isolate_lru(page_folio(page)))
5431 			continue;
5432 
5433 		list_add(&page->lru, &page_list);
5434 
5435 		if (need_resched()) {
5436 			xas_pause(&xas);
5437 			cond_resched_rcu();
5438 		}
5439 	}
5440 	rcu_read_unlock();
5441 
5442 	return reclaim_pages(&page_list);
5443 #else
5444 	return 0;
5445 #endif
5446 }
5447 EXPORT_SYMBOL_GPL(reclaim_shmem_address_space);
5448