• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kmemleak.h>
25 #include <linux/kasan.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/page.h>
29 #include <linux/memcontrol.h>
30 #include <linux/stackdepot.h>
31 
32 #include "internal.h"
33 #include "slab.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/kmem.h>
37 #undef CREATE_TRACE_POINTS
38 #include <trace/hooks/mm.h>
39 
40 enum slab_state slab_state;
41 LIST_HEAD(slab_caches);
42 DEFINE_MUTEX(slab_mutex);
43 struct kmem_cache *kmem_cache;
44 
45 /*
46  * Set of flags that will prevent slab merging
47  */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 		SLAB_FAILSLAB | SLAB_NO_MERGE)
51 
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54 
55 /*
56  * Merge control. If this is set then no merging of slab caches will occur.
57  */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59 
setup_slab_nomerge(char * str)60 static int __init setup_slab_nomerge(char *str)
61 {
62 	slab_nomerge = true;
63 	return 1;
64 }
65 
setup_slab_merge(char * str)66 static int __init setup_slab_merge(char *str)
67 {
68 	slab_nomerge = false;
69 	return 1;
70 }
71 
72 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
73 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
74 
75 __setup("slab_nomerge", setup_slab_nomerge);
76 __setup("slab_merge", setup_slab_merge);
77 
78 /*
79  * Determine the size of a slab object
80  */
kmem_cache_size(struct kmem_cache * s)81 unsigned int kmem_cache_size(struct kmem_cache *s)
82 {
83 	return s->object_size;
84 }
85 EXPORT_SYMBOL(kmem_cache_size);
86 
87 #ifdef CONFIG_DEBUG_VM
88 
kmem_cache_is_duplicate_name(const char * name)89 static bool kmem_cache_is_duplicate_name(const char *name)
90 {
91 	struct kmem_cache *s;
92 
93 	list_for_each_entry(s, &slab_caches, list) {
94 		if (!strcmp(s->name, name))
95 			return true;
96 	}
97 
98 	return false;
99 }
100 
kmem_cache_sanity_check(const char * name,unsigned int size)101 static int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
104 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
105 		return -EINVAL;
106 	}
107 
108 	/* Duplicate names will confuse slabtop, et al */
109 	WARN(kmem_cache_is_duplicate_name(name),
110 			"kmem_cache of name '%s' already exists\n", name);
111 
112 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
113 	return 0;
114 }
115 #else
kmem_cache_sanity_check(const char * name,unsigned int size)116 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
117 {
118 	return 0;
119 }
120 #endif
121 
122 /*
123  * Figure out what the alignment of the objects will be given a set of
124  * flags, a user specified alignment and the size of the objects.
125  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)126 static unsigned int calculate_alignment(slab_flags_t flags,
127 		unsigned int align, unsigned int size)
128 {
129 	/*
130 	 * If the user wants hardware cache aligned objects then follow that
131 	 * suggestion if the object is sufficiently large.
132 	 *
133 	 * The hardware cache alignment cannot override the specified
134 	 * alignment though. If that is greater then use it.
135 	 */
136 	if (flags & SLAB_HWCACHE_ALIGN) {
137 		unsigned int ralign;
138 
139 		ralign = cache_line_size();
140 		while (size <= ralign / 2)
141 			ralign /= 2;
142 		align = max(align, ralign);
143 	}
144 
145 	align = max(align, arch_slab_minalign());
146 
147 	return ALIGN(align, sizeof(void *));
148 }
149 
150 /*
151  * Find a mergeable slab cache
152  */
slab_unmergeable(struct kmem_cache * s)153 int slab_unmergeable(struct kmem_cache *s)
154 {
155 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
156 		return 1;
157 
158 	if (s->ctor)
159 		return 1;
160 
161 #ifdef CONFIG_HARDENED_USERCOPY
162 	if (s->usersize)
163 		return 1;
164 #endif
165 
166 	/*
167 	 * We may have set a slab to be unmergeable during bootstrap.
168 	 */
169 	if (s->refcount < 0)
170 		return 1;
171 
172 	return 0;
173 }
174 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))175 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
176 		slab_flags_t flags, const char *name, void (*ctor)(void *))
177 {
178 	struct kmem_cache *s;
179 
180 	if (slab_nomerge)
181 		return NULL;
182 
183 	if (ctor)
184 		return NULL;
185 
186 	flags = kmem_cache_flags(flags, name);
187 
188 	if (flags & SLAB_NEVER_MERGE)
189 		return NULL;
190 
191 	size = ALIGN(size, sizeof(void *));
192 	align = calculate_alignment(flags, align, size);
193 	size = ALIGN(size, align);
194 
195 	list_for_each_entry_reverse(s, &slab_caches, list) {
196 		if (slab_unmergeable(s))
197 			continue;
198 
199 		if (size > s->size)
200 			continue;
201 
202 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
203 			continue;
204 		/*
205 		 * Check if alignment is compatible.
206 		 * Courtesy of Adrian Drzewiecki
207 		 */
208 		if ((s->size & ~(align - 1)) != s->size)
209 			continue;
210 
211 		if (s->size - size >= sizeof(void *))
212 			continue;
213 
214 		return s;
215 	}
216 	return NULL;
217 }
218 
create_cache(const char * name,unsigned int object_size,struct kmem_cache_args * args,slab_flags_t flags)219 static struct kmem_cache *create_cache(const char *name,
220 				       unsigned int object_size,
221 				       struct kmem_cache_args *args,
222 				       slab_flags_t flags)
223 {
224 	struct kmem_cache *s;
225 	int err;
226 
227 	if (WARN_ON(args->useroffset + args->usersize > object_size))
228 		args->useroffset = args->usersize = 0;
229 
230 	/* If a custom freelist pointer is requested make sure it's sane. */
231 	err = -EINVAL;
232 	if (args->use_freeptr_offset &&
233 	    (args->freeptr_offset >= object_size ||
234 	     !(flags & SLAB_TYPESAFE_BY_RCU) ||
235 	     !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t))))
236 		goto out;
237 
238 	err = -ENOMEM;
239 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
240 	if (!s)
241 		goto out;
242 	err = do_kmem_cache_create(s, name, object_size, args, flags);
243 	if (err)
244 		goto out_free_cache;
245 
246 	s->refcount = 1;
247 	list_add(&s->list, &slab_caches);
248 	return s;
249 
250 out_free_cache:
251 	kmem_cache_free(kmem_cache, s);
252 out:
253 	return ERR_PTR(err);
254 }
255 
256 /**
257  * __kmem_cache_create_args - Create a kmem cache.
258  * @name: A string which is used in /proc/slabinfo to identify this cache.
259  * @object_size: The size of objects to be created in this cache.
260  * @args: Additional arguments for the cache creation (see
261  *        &struct kmem_cache_args).
262  * @flags: See %SLAB_* flags for an explanation of individual @flags.
263  *
264  * Not to be called directly, use the kmem_cache_create() wrapper with the same
265  * parameters.
266  *
267  * Context: Cannot be called within a interrupt, but can be interrupted.
268  *
269  * Return: a pointer to the cache on success, NULL on failure.
270  */
__kmem_cache_create_args(const char * name,unsigned int object_size,struct kmem_cache_args * args,slab_flags_t flags)271 struct kmem_cache *__kmem_cache_create_args(const char *name,
272 					    unsigned int object_size,
273 					    struct kmem_cache_args *args,
274 					    slab_flags_t flags)
275 {
276 	struct kmem_cache *s = NULL;
277 	const char *cache_name;
278 	int err;
279 
280 #ifdef CONFIG_SLUB_DEBUG
281 	/*
282 	 * If no slab_debug was enabled globally, the static key is not yet
283 	 * enabled by setup_slub_debug(). Enable it if the cache is being
284 	 * created with any of the debugging flags passed explicitly.
285 	 * It's also possible that this is the first cache created with
286 	 * SLAB_STORE_USER and we should init stack_depot for it.
287 	 */
288 	if (flags & SLAB_DEBUG_FLAGS)
289 		static_branch_enable(&slub_debug_enabled);
290 	if (flags & SLAB_STORE_USER)
291 		stack_depot_init();
292 #endif
293 
294 	mutex_lock(&slab_mutex);
295 
296 	err = kmem_cache_sanity_check(name, object_size);
297 	if (err) {
298 		goto out_unlock;
299 	}
300 
301 	/* Refuse requests with allocator specific flags */
302 	if (flags & ~SLAB_FLAGS_PERMITTED) {
303 		err = -EINVAL;
304 		goto out_unlock;
305 	}
306 
307 	/*
308 	 * Some allocators will constraint the set of valid flags to a subset
309 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
310 	 * case, and we'll just provide them with a sanitized version of the
311 	 * passed flags.
312 	 */
313 	flags &= CACHE_CREATE_MASK;
314 
315 	/* Fail closed on bad usersize of useroffset values. */
316 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
317 	    WARN_ON(!args->usersize && args->useroffset) ||
318 	    WARN_ON(object_size < args->usersize ||
319 		    object_size - args->usersize < args->useroffset))
320 		args->usersize = args->useroffset = 0;
321 
322 	if (!args->usersize)
323 		s = __kmem_cache_alias(name, object_size, args->align, flags,
324 				       args->ctor);
325 	if (s)
326 		goto out_unlock;
327 
328 	cache_name = kstrdup_const(name, GFP_KERNEL);
329 	if (!cache_name) {
330 		err = -ENOMEM;
331 		goto out_unlock;
332 	}
333 
334 	args->align = calculate_alignment(flags, args->align, object_size);
335 	s = create_cache(cache_name, object_size, args, flags);
336 	if (IS_ERR(s)) {
337 		err = PTR_ERR(s);
338 		kfree_const(cache_name);
339 	}
340 
341 out_unlock:
342 	mutex_unlock(&slab_mutex);
343 
344 	if (err) {
345 		if (flags & SLAB_PANIC)
346 			panic("%s: Failed to create slab '%s'. Error %d\n",
347 				__func__, name, err);
348 		else {
349 			pr_warn("%s(%s) failed with error %d\n",
350 				__func__, name, err);
351 			dump_stack();
352 		}
353 		return NULL;
354 	}
355 	return s;
356 }
357 EXPORT_SYMBOL(__kmem_cache_create_args);
358 
359 static struct kmem_cache *kmem_buckets_cache __ro_after_init;
360 
361 /**
362  * kmem_buckets_create - Create a set of caches that handle dynamic sized
363  *			 allocations via kmem_buckets_alloc()
364  * @name: A prefix string which is used in /proc/slabinfo to identify this
365  *	  cache. The individual caches with have their sizes as the suffix.
366  * @flags: SLAB flags (see kmem_cache_create() for details).
367  * @useroffset: Starting offset within an allocation that may be copied
368  *		to/from userspace.
369  * @usersize: How many bytes, starting at @useroffset, may be copied
370  *		to/from userspace.
371  * @ctor: A constructor for the objects, run when new allocations are made.
372  *
373  * Cannot be called within an interrupt, but can be interrupted.
374  *
375  * Return: a pointer to the cache on success, NULL on failure. When
376  * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and
377  * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc().
378  * (i.e. callers only need to check for NULL on failure.)
379  */
kmem_buckets_create(const char * name,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))380 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
381 				  unsigned int useroffset,
382 				  unsigned int usersize,
383 				  void (*ctor)(void *))
384 {
385 	unsigned long mask = 0;
386 	unsigned int idx;
387 	kmem_buckets *b;
388 
389 	BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG);
390 
391 	/*
392 	 * When the separate buckets API is not built in, just return
393 	 * a non-NULL value for the kmem_buckets pointer, which will be
394 	 * unused when performing allocations.
395 	 */
396 	if (!IS_ENABLED(CONFIG_SLAB_BUCKETS))
397 		return ZERO_SIZE_PTR;
398 
399 	if (WARN_ON(!kmem_buckets_cache))
400 		return NULL;
401 
402 	b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO);
403 	if (WARN_ON(!b))
404 		return NULL;
405 
406 	flags |= SLAB_NO_MERGE;
407 
408 	for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) {
409 		char *short_size, *cache_name;
410 		unsigned int cache_useroffset, cache_usersize;
411 		unsigned int size, aligned_idx;
412 
413 		if (!kmalloc_caches[KMALLOC_NORMAL][idx])
414 			continue;
415 
416 		size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size;
417 		if (!size)
418 			continue;
419 
420 		short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-');
421 		if (WARN_ON(!short_size))
422 			goto fail;
423 
424 		if (useroffset >= size) {
425 			cache_useroffset = 0;
426 			cache_usersize = 0;
427 		} else {
428 			cache_useroffset = useroffset;
429 			cache_usersize = min(size - cache_useroffset, usersize);
430 		}
431 
432 		aligned_idx = __kmalloc_index(size, false);
433 		if (!(*b)[aligned_idx]) {
434 			cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1);
435 			if (WARN_ON(!cache_name))
436 				goto fail;
437 			(*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size,
438 					0, flags, cache_useroffset,
439 					cache_usersize, ctor);
440 			kfree(cache_name);
441 			if (WARN_ON(!(*b)[aligned_idx]))
442 				goto fail;
443 			set_bit(aligned_idx, &mask);
444 		}
445 		if (idx != aligned_idx)
446 			(*b)[idx] = (*b)[aligned_idx];
447 	}
448 
449 	return b;
450 
451 fail:
452 	for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]))
453 		kmem_cache_destroy((*b)[idx]);
454 	kmem_cache_free(kmem_buckets_cache, b);
455 
456 	return NULL;
457 }
458 EXPORT_SYMBOL(kmem_buckets_create);
459 
460 /*
461  * For a given kmem_cache, kmem_cache_destroy() should only be called
462  * once or there will be a use-after-free problem. The actual deletion
463  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
464  * protection. So they are now done without holding those locks.
465  */
kmem_cache_release(struct kmem_cache * s)466 static void kmem_cache_release(struct kmem_cache *s)
467 {
468 	kfence_shutdown_cache(s);
469 	if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL)
470 		sysfs_slab_release(s);
471 	else
472 		slab_kmem_cache_release(s);
473 }
474 
slab_kmem_cache_release(struct kmem_cache * s)475 void slab_kmem_cache_release(struct kmem_cache *s)
476 {
477 	__kmem_cache_release(s);
478 	kfree_const(s->name);
479 	kmem_cache_free(kmem_cache, s);
480 }
481 
kmem_cache_destroy(struct kmem_cache * s)482 void kmem_cache_destroy(struct kmem_cache *s)
483 {
484 	int err;
485 
486 	if (unlikely(!s) || !kasan_check_byte(s))
487 		return;
488 
489 	/* in-flight kfree_rcu()'s may include objects from our cache */
490 	kvfree_rcu_barrier();
491 
492 	if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) &&
493 	    (s->flags & SLAB_TYPESAFE_BY_RCU)) {
494 		/*
495 		 * Under CONFIG_SLUB_RCU_DEBUG, when objects in a
496 		 * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally
497 		 * defer their freeing with call_rcu().
498 		 * Wait for such call_rcu() invocations here before actually
499 		 * destroying the cache.
500 		 *
501 		 * It doesn't matter that we haven't looked at the slab refcount
502 		 * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so
503 		 * the refcount should be 1 here.
504 		 */
505 		rcu_barrier();
506 	}
507 
508 	cpus_read_lock();
509 	mutex_lock(&slab_mutex);
510 
511 	s->refcount--;
512 	if (s->refcount) {
513 		mutex_unlock(&slab_mutex);
514 		cpus_read_unlock();
515 		return;
516 	}
517 
518 	/* free asan quarantined objects */
519 	kasan_cache_shutdown(s);
520 
521 	err = __kmem_cache_shutdown(s);
522 	if (!slab_in_kunit_test())
523 		WARN(err, "%s %s: Slab cache still has objects when called from %pS",
524 		     __func__, s->name, (void *)_RET_IP_);
525 
526 	list_del(&s->list);
527 
528 	mutex_unlock(&slab_mutex);
529 	cpus_read_unlock();
530 
531 	if (slab_state >= FULL)
532 		sysfs_slab_unlink(s);
533 	debugfs_slab_release(s);
534 
535 	if (err)
536 		return;
537 
538 	if (s->flags & SLAB_TYPESAFE_BY_RCU)
539 		rcu_barrier();
540 
541 	kmem_cache_release(s);
542 }
543 EXPORT_SYMBOL(kmem_cache_destroy);
544 
545 /**
546  * kmem_cache_shrink - Shrink a cache.
547  * @cachep: The cache to shrink.
548  *
549  * Releases as many slabs as possible for a cache.
550  * To help debugging, a zero exit status indicates all slabs were released.
551  *
552  * Return: %0 if all slabs were released, non-zero otherwise
553  */
kmem_cache_shrink(struct kmem_cache * cachep)554 int kmem_cache_shrink(struct kmem_cache *cachep)
555 {
556 	kasan_cache_shrink(cachep);
557 
558 	return __kmem_cache_shrink(cachep);
559 }
560 EXPORT_SYMBOL(kmem_cache_shrink);
561 
slab_is_available(void)562 bool slab_is_available(void)
563 {
564 	return slab_state >= UP;
565 }
566 
567 #ifdef CONFIG_PRINTK
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)568 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
569 {
570 	if (__kfence_obj_info(kpp, object, slab))
571 		return;
572 	__kmem_obj_info(kpp, object, slab);
573 }
574 
575 /**
576  * kmem_dump_obj - Print available slab provenance information
577  * @object: slab object for which to find provenance information.
578  *
579  * This function uses pr_cont(), so that the caller is expected to have
580  * printed out whatever preamble is appropriate.  The provenance information
581  * depends on the type of object and on how much debugging is enabled.
582  * For a slab-cache object, the fact that it is a slab object is printed,
583  * and, if available, the slab name, return address, and stack trace from
584  * the allocation and last free path of that object.
585  *
586  * Return: %true if the pointer is to a not-yet-freed object from
587  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
588  * is to an already-freed object, and %false otherwise.
589  */
kmem_dump_obj(void * object)590 bool kmem_dump_obj(void *object)
591 {
592 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
593 	int i;
594 	struct slab *slab;
595 	unsigned long ptroffset;
596 	struct kmem_obj_info kp = { };
597 
598 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
599 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
600 		return false;
601 	slab = virt_to_slab(object);
602 	if (!slab)
603 		return false;
604 
605 	kmem_obj_info(&kp, object, slab);
606 	if (kp.kp_slab_cache)
607 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
608 	else
609 		pr_cont(" slab%s", cp);
610 	if (is_kfence_address(object))
611 		pr_cont(" (kfence)");
612 	if (kp.kp_objp)
613 		pr_cont(" start %px", kp.kp_objp);
614 	if (kp.kp_data_offset)
615 		pr_cont(" data offset %lu", kp.kp_data_offset);
616 	if (kp.kp_objp) {
617 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
618 		pr_cont(" pointer offset %lu", ptroffset);
619 	}
620 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
621 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
622 	if (kp.kp_ret)
623 		pr_cont(" allocated at %pS\n", kp.kp_ret);
624 	else
625 		pr_cont("\n");
626 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
627 		if (!kp.kp_stack[i])
628 			break;
629 		pr_info("    %pS\n", kp.kp_stack[i]);
630 	}
631 
632 	if (kp.kp_free_stack[0])
633 		pr_cont(" Free path:\n");
634 
635 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
636 		if (!kp.kp_free_stack[i])
637 			break;
638 		pr_info("    %pS\n", kp.kp_free_stack[i]);
639 	}
640 
641 	return true;
642 }
643 EXPORT_SYMBOL_GPL(kmem_dump_obj);
644 #endif
645 
646 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)647 void __init create_boot_cache(struct kmem_cache *s, const char *name,
648 		unsigned int size, slab_flags_t flags,
649 		unsigned int useroffset, unsigned int usersize)
650 {
651 	int err;
652 	unsigned int align = ARCH_KMALLOC_MINALIGN;
653 	struct kmem_cache_args kmem_args = {};
654 
655 	/*
656 	 * kmalloc caches guarantee alignment of at least the largest
657 	 * power-of-two divisor of the size. For power-of-two sizes,
658 	 * it is the size itself.
659 	 */
660 	if (flags & SLAB_KMALLOC)
661 		align = max(align, 1U << (ffs(size) - 1));
662 	kmem_args.align = calculate_alignment(flags, align, size);
663 
664 #ifdef CONFIG_HARDENED_USERCOPY
665 	kmem_args.useroffset = useroffset;
666 	kmem_args.usersize = usersize;
667 #endif
668 
669 	err = do_kmem_cache_create(s, name, size, &kmem_args, flags);
670 
671 	if (err)
672 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
673 					name, size, err);
674 
675 	s->refcount = -1;	/* Exempt from merging for now */
676 }
677 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags)678 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
679 						      unsigned int size,
680 						      slab_flags_t flags)
681 {
682 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
683 
684 	if (!s)
685 		panic("Out of memory when creating slab %s\n", name);
686 
687 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
688 	list_add(&s->list, &slab_caches);
689 	s->refcount = 1;
690 	return s;
691 }
692 
693 kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init =
694 { /* initialization for https://llvm.org/pr42570 */ };
695 EXPORT_SYMBOL(kmalloc_caches);
696 
697 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
698 unsigned long random_kmalloc_seed __ro_after_init;
699 EXPORT_SYMBOL(random_kmalloc_seed);
700 #endif
701 
702 /*
703  * Conversion table for small slabs sizes / 8 to the index in the
704  * kmalloc array. This is necessary for slabs < 192 since we have non power
705  * of two cache sizes there. The size of larger slabs can be determined using
706  * fls.
707  */
708 u8 kmalloc_size_index[24] __ro_after_init = {
709 	3,	/* 8 */
710 	4,	/* 16 */
711 	5,	/* 24 */
712 	5,	/* 32 */
713 	6,	/* 40 */
714 	6,	/* 48 */
715 	6,	/* 56 */
716 	6,	/* 64 */
717 	1,	/* 72 */
718 	1,	/* 80 */
719 	1,	/* 88 */
720 	1,	/* 96 */
721 	7,	/* 104 */
722 	7,	/* 112 */
723 	7,	/* 120 */
724 	7,	/* 128 */
725 	2,	/* 136 */
726 	2,	/* 144 */
727 	2,	/* 152 */
728 	2,	/* 160 */
729 	2,	/* 168 */
730 	2,	/* 176 */
731 	2,	/* 184 */
732 	2	/* 192 */
733 };
734 
kmalloc_size_roundup(size_t size)735 size_t kmalloc_size_roundup(size_t size)
736 {
737 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
738 		/*
739 		 * The flags don't matter since size_index is common to all.
740 		 * Neither does the caller for just getting ->object_size.
741 		 */
742 		return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size;
743 	}
744 
745 	/* Above the smaller buckets, size is a multiple of page size. */
746 	if (size && size <= KMALLOC_MAX_SIZE)
747 		return PAGE_SIZE << get_order(size);
748 
749 	/*
750 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
751 	 * and very large size - kmalloc() may fail.
752 	 */
753 	return size;
754 
755 }
756 EXPORT_SYMBOL(kmalloc_size_roundup);
757 
758 #ifdef CONFIG_ZONE_DMA
759 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
760 #else
761 #define KMALLOC_DMA_NAME(sz)
762 #endif
763 
764 #ifdef CONFIG_MEMCG
765 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
766 #else
767 #define KMALLOC_CGROUP_NAME(sz)
768 #endif
769 
770 #ifndef CONFIG_SLUB_TINY
771 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
772 #else
773 #define KMALLOC_RCL_NAME(sz)
774 #endif
775 
776 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
777 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
778 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
779 #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
780 #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
781 #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
782 #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
783 #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
784 #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
785 #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
786 #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
787 #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
788 #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
789 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
790 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
791 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
792 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
793 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
794 #else // CONFIG_RANDOM_KMALLOC_CACHES
795 #define KMALLOC_RANDOM_NAME(N, sz)
796 #endif
797 
798 #define INIT_KMALLOC_INFO(__size, __short_size)			\
799 {								\
800 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
801 	KMALLOC_RCL_NAME(__short_size)				\
802 	KMALLOC_CGROUP_NAME(__short_size)			\
803 	KMALLOC_DMA_NAME(__short_size)				\
804 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
805 	.size = __size,						\
806 }
807 
808 /*
809  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
810  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
811  * kmalloc-2M.
812  */
813 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
814 	INIT_KMALLOC_INFO(0, 0),
815 	INIT_KMALLOC_INFO(96, 96),
816 	INIT_KMALLOC_INFO(192, 192),
817 	INIT_KMALLOC_INFO(8, 8),
818 	INIT_KMALLOC_INFO(16, 16),
819 	INIT_KMALLOC_INFO(32, 32),
820 	INIT_KMALLOC_INFO(64, 64),
821 	INIT_KMALLOC_INFO(128, 128),
822 	INIT_KMALLOC_INFO(256, 256),
823 	INIT_KMALLOC_INFO(512, 512),
824 	INIT_KMALLOC_INFO(1024, 1k),
825 	INIT_KMALLOC_INFO(2048, 2k),
826 	INIT_KMALLOC_INFO(4096, 4k),
827 	INIT_KMALLOC_INFO(8192, 8k),
828 	INIT_KMALLOC_INFO(16384, 16k),
829 	INIT_KMALLOC_INFO(32768, 32k),
830 	INIT_KMALLOC_INFO(65536, 64k),
831 	INIT_KMALLOC_INFO(131072, 128k),
832 	INIT_KMALLOC_INFO(262144, 256k),
833 	INIT_KMALLOC_INFO(524288, 512k),
834 	INIT_KMALLOC_INFO(1048576, 1M),
835 	INIT_KMALLOC_INFO(2097152, 2M)
836 };
837 
838 /*
839  * Patch up the size_index table if we have strange large alignment
840  * requirements for the kmalloc array. This is only the case for
841  * MIPS it seems. The standard arches will not generate any code here.
842  *
843  * Largest permitted alignment is 256 bytes due to the way we
844  * handle the index determination for the smaller caches.
845  *
846  * Make sure that nothing crazy happens if someone starts tinkering
847  * around with ARCH_KMALLOC_MINALIGN
848  */
setup_kmalloc_cache_index_table(void)849 void __init setup_kmalloc_cache_index_table(void)
850 {
851 	unsigned int i;
852 
853 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
854 		!is_power_of_2(KMALLOC_MIN_SIZE));
855 
856 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
857 		unsigned int elem = size_index_elem(i);
858 
859 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
860 			break;
861 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
862 	}
863 
864 	if (KMALLOC_MIN_SIZE >= 64) {
865 		/*
866 		 * The 96 byte sized cache is not used if the alignment
867 		 * is 64 byte.
868 		 */
869 		for (i = 64 + 8; i <= 96; i += 8)
870 			kmalloc_size_index[size_index_elem(i)] = 7;
871 
872 	}
873 
874 	if (KMALLOC_MIN_SIZE >= 128) {
875 		/*
876 		 * The 192 byte sized cache is not used if the alignment
877 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
878 		 * instead.
879 		 */
880 		for (i = 128 + 8; i <= 192; i += 8)
881 			kmalloc_size_index[size_index_elem(i)] = 8;
882 	}
883 }
884 
__kmalloc_minalign(void)885 static unsigned int __kmalloc_minalign(void)
886 {
887 	unsigned int minalign = dma_get_cache_alignment();
888 
889 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
890 	    is_swiotlb_allocated())
891 		minalign = ARCH_KMALLOC_MINALIGN;
892 
893 	return max(minalign, arch_slab_minalign());
894 }
895 
896 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type)897 new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
898 {
899 	slab_flags_t flags = 0;
900 	unsigned int minalign = __kmalloc_minalign();
901 	unsigned int aligned_size = kmalloc_info[idx].size;
902 	int aligned_idx = idx;
903 
904 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
905 		flags |= SLAB_RECLAIM_ACCOUNT;
906 	} else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) {
907 		if (mem_cgroup_kmem_disabled()) {
908 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
909 			return;
910 		}
911 		flags |= SLAB_ACCOUNT;
912 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
913 		flags |= SLAB_CACHE_DMA;
914 	}
915 
916 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
917 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
918 		flags |= SLAB_NO_MERGE;
919 #endif
920 
921 	/*
922 	 * If CONFIG_MEMCG is enabled, disable cache merging for
923 	 * KMALLOC_NORMAL caches.
924 	 */
925 	if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL))
926 		flags |= SLAB_NO_MERGE;
927 
928 	if (minalign > ARCH_KMALLOC_MINALIGN) {
929 		aligned_size = ALIGN(aligned_size, minalign);
930 		aligned_idx = __kmalloc_index(aligned_size, false);
931 	}
932 
933 	if (!kmalloc_caches[type][aligned_idx])
934 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
935 					kmalloc_info[aligned_idx].name[type],
936 					aligned_size, flags);
937 	if (idx != aligned_idx)
938 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
939 }
940 
941 /*
942  * Create the kmalloc array. Some of the regular kmalloc arrays
943  * may already have been created because they were needed to
944  * enable allocations for slab creation.
945  */
create_kmalloc_caches(void)946 void __init create_kmalloc_caches(void)
947 {
948 	int i;
949 	enum kmalloc_cache_type type;
950 
951 	/*
952 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG defined
953 	 */
954 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
955 		/* Caches that are NOT of the two-to-the-power-of size. */
956 		if (KMALLOC_MIN_SIZE <= 32)
957 			new_kmalloc_cache(1, type);
958 		if (KMALLOC_MIN_SIZE <= 64)
959 			new_kmalloc_cache(2, type);
960 
961 		/* Caches that are of the two-to-the-power-of size. */
962 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
963 			new_kmalloc_cache(i, type);
964 	}
965 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
966 	random_kmalloc_seed = get_random_u64();
967 #endif
968 
969 	/* Kmalloc array is now usable */
970 	slab_state = UP;
971 
972 	if (IS_ENABLED(CONFIG_SLAB_BUCKETS))
973 		kmem_buckets_cache = kmem_cache_create("kmalloc_buckets",
974 						       sizeof(kmem_buckets),
975 						       0, SLAB_NO_MERGE, NULL);
976 }
977 
978 /**
979  * __ksize -- Report full size of underlying allocation
980  * @object: pointer to the object
981  *
982  * This should only be used internally to query the true size of allocations.
983  * It is not meant to be a way to discover the usable size of an allocation
984  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
985  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
986  * and/or FORTIFY_SOURCE.
987  *
988  * Return: size of the actual memory used by @object in bytes
989  */
__ksize(const void * object)990 size_t __ksize(const void *object)
991 {
992 	struct folio *folio;
993 	size_t up_size = 0;
994 
995 	if (unlikely(object == ZERO_SIZE_PTR))
996 		return 0;
997 
998 	folio = virt_to_folio(object);
999 
1000 	if (unlikely(!folio_test_slab(folio))) {
1001 		trace_android_vh_ksize(folio, &up_size);
1002 		if (up_size)
1003 			return up_size;
1004 
1005 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1006 			return 0;
1007 		if (WARN_ON(object != folio_address(folio)))
1008 			return 0;
1009 
1010 		return folio_size(folio);
1011 	}
1012 
1013 #ifdef CONFIG_SLUB_DEBUG
1014 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1015 #endif
1016 
1017 	return slab_ksize(folio_slab(folio)->slab_cache);
1018 }
1019 
kmalloc_fix_flags(gfp_t flags)1020 gfp_t kmalloc_fix_flags(gfp_t flags)
1021 {
1022 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1023 
1024 	flags &= ~GFP_SLAB_BUG_MASK;
1025 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1026 			invalid_mask, &invalid_mask, flags, &flags);
1027 	dump_stack();
1028 
1029 	return flags;
1030 }
1031 
1032 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1033 /* Randomize a generic freelist */
freelist_randomize(unsigned int * list,unsigned int count)1034 static void freelist_randomize(unsigned int *list,
1035 			       unsigned int count)
1036 {
1037 	unsigned int rand;
1038 	unsigned int i;
1039 
1040 	for (i = 0; i < count; i++)
1041 		list[i] = i;
1042 
1043 	/* Fisher-Yates shuffle */
1044 	for (i = count - 1; i > 0; i--) {
1045 		rand = get_random_u32_below(i + 1);
1046 		swap(list[i], list[rand]);
1047 	}
1048 }
1049 
1050 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1051 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1052 				    gfp_t gfp)
1053 {
1054 
1055 	if (count < 2 || cachep->random_seq)
1056 		return 0;
1057 
1058 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1059 	if (!cachep->random_seq)
1060 		return -ENOMEM;
1061 
1062 	freelist_randomize(cachep->random_seq, count);
1063 	return 0;
1064 }
1065 
1066 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1067 void cache_random_seq_destroy(struct kmem_cache *cachep)
1068 {
1069 	kfree(cachep->random_seq);
1070 	cachep->random_seq = NULL;
1071 }
1072 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1073 
1074 #ifdef CONFIG_SLUB_DEBUG
1075 #define SLABINFO_RIGHTS (0400)
1076 
print_slabinfo_header(struct seq_file * m)1077 static void print_slabinfo_header(struct seq_file *m)
1078 {
1079 	/*
1080 	 * Output format version, so at least we can change it
1081 	 * without _too_ many complaints.
1082 	 */
1083 	seq_puts(m, "slabinfo - version: 2.1\n");
1084 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1085 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1086 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1087 	trace_android_vh_print_slabinfo_header(m);
1088 	seq_putc(m, '\n');
1089 }
1090 
slab_start(struct seq_file * m,loff_t * pos)1091 static void *slab_start(struct seq_file *m, loff_t *pos)
1092 {
1093 	mutex_lock(&slab_mutex);
1094 	return seq_list_start(&slab_caches, *pos);
1095 }
1096 
slab_next(struct seq_file * m,void * p,loff_t * pos)1097 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1098 {
1099 	return seq_list_next(p, &slab_caches, pos);
1100 }
1101 
slab_stop(struct seq_file * m,void * p)1102 static void slab_stop(struct seq_file *m, void *p)
1103 {
1104 	mutex_unlock(&slab_mutex);
1105 }
1106 
cache_show(struct kmem_cache * s,struct seq_file * m)1107 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1108 {
1109 	struct slabinfo sinfo;
1110 
1111 	memset(&sinfo, 0, sizeof(sinfo));
1112 	get_slabinfo(s, &sinfo);
1113 
1114 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1115 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1116 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1117 
1118 	seq_printf(m, " : tunables %4u %4u %4u",
1119 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1120 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1121 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1122 	trace_android_vh_cache_show(m, &sinfo, s);
1123 	seq_putc(m, '\n');
1124 }
1125 
slab_show(struct seq_file * m,void * p)1126 static int slab_show(struct seq_file *m, void *p)
1127 {
1128 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1129 
1130 	if (p == slab_caches.next)
1131 		print_slabinfo_header(m);
1132 	cache_show(s, m);
1133 	return 0;
1134 }
1135 
dump_unreclaimable_slab(void)1136 void dump_unreclaimable_slab(void)
1137 {
1138 	struct kmem_cache *s;
1139 	struct slabinfo sinfo;
1140 
1141 	/*
1142 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1143 	 * sleep in oom path. But, without mutex hold, it may introduce a
1144 	 * risk of crash.
1145 	 * Use mutex_trylock to protect the list traverse, dump nothing
1146 	 * without acquiring the mutex.
1147 	 */
1148 	if (!mutex_trylock(&slab_mutex)) {
1149 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1150 		return;
1151 	}
1152 
1153 	pr_info("Unreclaimable slab info:\n");
1154 	pr_info("Name                      Used          Total\n");
1155 
1156 	list_for_each_entry(s, &slab_caches, list) {
1157 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1158 			continue;
1159 
1160 		get_slabinfo(s, &sinfo);
1161 
1162 		if (sinfo.num_objs > 0)
1163 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1164 				(sinfo.active_objs * s->size) / 1024,
1165 				(sinfo.num_objs * s->size) / 1024);
1166 	}
1167 	mutex_unlock(&slab_mutex);
1168 }
1169 
1170 /*
1171  * slabinfo_op - iterator that generates /proc/slabinfo
1172  *
1173  * Output layout:
1174  * cache-name
1175  * num-active-objs
1176  * total-objs
1177  * object size
1178  * num-active-slabs
1179  * total-slabs
1180  * num-pages-per-slab
1181  * + further values on SMP and with statistics enabled
1182  */
1183 static const struct seq_operations slabinfo_op = {
1184 	.start = slab_start,
1185 	.next = slab_next,
1186 	.stop = slab_stop,
1187 	.show = slab_show,
1188 };
1189 
slabinfo_open(struct inode * inode,struct file * file)1190 static int slabinfo_open(struct inode *inode, struct file *file)
1191 {
1192 	return seq_open(file, &slabinfo_op);
1193 }
1194 
1195 static const struct proc_ops slabinfo_proc_ops = {
1196 	.proc_flags	= PROC_ENTRY_PERMANENT,
1197 	.proc_open	= slabinfo_open,
1198 	.proc_read	= seq_read,
1199 	.proc_lseek	= seq_lseek,
1200 	.proc_release	= seq_release,
1201 };
1202 
slab_proc_init(void)1203 static int __init slab_proc_init(void)
1204 {
1205 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1206 	return 0;
1207 }
1208 module_init(slab_proc_init);
1209 
1210 #endif /* CONFIG_SLUB_DEBUG */
1211 
1212 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1213 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1214 {
1215 	void *ret;
1216 	size_t ks;
1217 
1218 	/* Check for double-free before calling ksize. */
1219 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1220 		if (!kasan_check_byte(p))
1221 			return NULL;
1222 		ks = ksize(p);
1223 	} else
1224 		ks = 0;
1225 
1226 	/* If the object still fits, repoison it precisely. */
1227 	if (ks >= new_size) {
1228 		/* Zero out spare memory. */
1229 		if (want_init_on_alloc(flags)) {
1230 			kasan_disable_current();
1231 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
1232 			kasan_enable_current();
1233 		}
1234 
1235 		p = kasan_krealloc((void *)p, new_size, flags);
1236 		return (void *)p;
1237 	}
1238 
1239 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
1240 	if (ret && p) {
1241 		/* Disable KASAN checks as the object's redzone is accessed. */
1242 		kasan_disable_current();
1243 		memcpy(ret, kasan_reset_tag(p), ks);
1244 		kasan_enable_current();
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /**
1251  * krealloc - reallocate memory. The contents will remain unchanged.
1252  * @p: object to reallocate memory for.
1253  * @new_size: how many bytes of memory are required.
1254  * @flags: the type of memory to allocate.
1255  *
1256  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1257  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1258  *
1259  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
1260  * initial memory allocation, every subsequent call to this API for the same
1261  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
1262  * __GFP_ZERO is not fully honored by this API.
1263  *
1264  * This is the case, since krealloc() only knows about the bucket size of an
1265  * allocation (but not the exact size it was allocated with) and hence
1266  * implements the following semantics for shrinking and growing buffers with
1267  * __GFP_ZERO.
1268  *
1269  *         new             bucket
1270  * 0       size             size
1271  * |--------|----------------|
1272  * |  keep  |      zero      |
1273  *
1274  * In any case, the contents of the object pointed to are preserved up to the
1275  * lesser of the new and old sizes.
1276  *
1277  * Return: pointer to the allocated memory or %NULL in case of error
1278  */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)1279 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
1280 {
1281 	void *ret;
1282 
1283 	if (unlikely(!new_size)) {
1284 		kfree(p);
1285 		return ZERO_SIZE_PTR;
1286 	}
1287 
1288 	ret = __do_krealloc(p, new_size, flags);
1289 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1290 		kfree(p);
1291 
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL(krealloc_noprof);
1295 
1296 /**
1297  * kfree_sensitive - Clear sensitive information in memory before freeing
1298  * @p: object to free memory of
1299  *
1300  * The memory of the object @p points to is zeroed before freed.
1301  * If @p is %NULL, kfree_sensitive() does nothing.
1302  *
1303  * Note: this function zeroes the whole allocated buffer which can be a good
1304  * deal bigger than the requested buffer size passed to kmalloc(). So be
1305  * careful when using this function in performance sensitive code.
1306  */
kfree_sensitive(const void * p)1307 void kfree_sensitive(const void *p)
1308 {
1309 	size_t ks;
1310 	void *mem = (void *)p;
1311 
1312 	ks = ksize(mem);
1313 	if (ks) {
1314 		kasan_unpoison_range(mem, ks);
1315 		memzero_explicit(mem, ks);
1316 	}
1317 	kfree(mem);
1318 }
1319 EXPORT_SYMBOL(kfree_sensitive);
1320 
ksize(const void * objp)1321 size_t ksize(const void *objp)
1322 {
1323 	/*
1324 	 * We need to first check that the pointer to the object is valid.
1325 	 * The KASAN report printed from ksize() is more useful, then when
1326 	 * it's printed later when the behaviour could be undefined due to
1327 	 * a potential use-after-free or double-free.
1328 	 *
1329 	 * We use kasan_check_byte(), which is supported for the hardware
1330 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1331 	 *
1332 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1333 	 * ksize() writing to and potentially corrupting the memory region.
1334 	 *
1335 	 * We want to perform the check before __ksize(), to avoid potentially
1336 	 * crashing in __ksize() due to accessing invalid metadata.
1337 	 */
1338 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1339 		return 0;
1340 
1341 	return kfence_ksize(objp) ?: __ksize(objp);
1342 }
1343 EXPORT_SYMBOL(ksize);
1344 
1345 /* Tracepoints definitions. */
1346 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1347 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1348 EXPORT_TRACEPOINT_SYMBOL(kfree);
1349 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1350 
1351