1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 #include <linux/vmstat.h>
18 #include "internal.h"
19 #include <asm/dma.h>
20
21 /*
22 * Permanent SPARSEMEM data:
23 *
24 * 1) mem_section - memory sections, mem_map's for valid memory
25 */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
page_to_nid(const struct page * page)46 int page_to_nid(const struct page *page)
47 {
48 return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
set_section_nid(unsigned long section_nr,int nid)52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
69 if (slab_is_available()) {
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 } else {
72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 nid);
74 if (!section)
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__, array_size, nid);
77 }
78
79 return section;
80 }
81
sparse_index_init(unsigned long section_nr,int nid)82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 struct mem_section *section;
86
87 /*
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
91 *
92 * The mem_hotplug_lock resolves the apparent race below.
93 */
94 if (mem_section[root])
95 return 0;
96
97 section = sparse_index_alloc(nid);
98 if (!section)
99 return -ENOMEM;
100
101 mem_section[root] = section;
102
103 return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 return 0;
109 }
110 #endif
111
112 /*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node. This keeps us from having to use another data structure. The
116 * node information is cleared just before we store the real mem_map.
117 */
sparse_encode_early_nid(int nid)118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120 return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122
sparse_early_nid(struct mem_section * section)123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125 return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127
128 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 unsigned long *end_pfn)
131 {
132 unsigned long max_sparsemem_pfn = (PHYSMEM_END + 1) >> PAGE_SHIFT;
133
134 /*
135 * Sanity checks - do not allow an architecture to pass
136 * in larger pfns than the maximum scope of sparsemem:
137 */
138 if (*start_pfn > max_sparsemem_pfn) {
139 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 *start_pfn, *end_pfn, max_sparsemem_pfn);
142 WARN_ON_ONCE(1);
143 *start_pfn = max_sparsemem_pfn;
144 *end_pfn = max_sparsemem_pfn;
145 } else if (*end_pfn > max_sparsemem_pfn) {
146 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 *start_pfn, *end_pfn, max_sparsemem_pfn);
149 WARN_ON_ONCE(1);
150 *end_pfn = max_sparsemem_pfn;
151 }
152 }
153
154 /*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each. But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163 unsigned long __highest_present_section_nr;
__section_mark_present(struct mem_section * ms,unsigned long section_nr)164 static void __section_mark_present(struct mem_section *ms,
165 unsigned long section_nr)
166 {
167 if (section_nr > __highest_present_section_nr)
168 __highest_present_section_nr = section_nr;
169
170 ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172
173 #define for_each_present_section_nr(start, section_nr) \
174 for (section_nr = next_present_section_nr(start-1); \
175 section_nr != -1; \
176 section_nr = next_present_section_nr(section_nr))
177
first_present_section_nr(void)178 static inline unsigned long first_present_section_nr(void)
179 {
180 return next_present_section_nr(-1);
181 }
182
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)184 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185 unsigned long nr_pages)
186 {
187 int idx = subsection_map_index(pfn);
188 int end = subsection_map_index(pfn + nr_pages - 1);
189
190 bitmap_set(map, idx, end - idx + 1);
191 }
192
subsection_map_init(unsigned long pfn,unsigned long nr_pages)193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194 {
195 int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196 unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197
198 for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199 struct mem_section *ms;
200 unsigned long pfns;
201
202 pfns = min(nr_pages, PAGES_PER_SECTION
203 - (pfn & ~PAGE_SECTION_MASK));
204 ms = __nr_to_section(nr);
205 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206
207 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208 pfns, subsection_map_index(pfn),
209 subsection_map_index(pfn + pfns - 1));
210
211 pfn += pfns;
212 nr_pages -= pfns;
213 }
214 }
215 #else
subsection_map_init(unsigned long pfn,unsigned long nr_pages)216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217 {
218 }
219 #endif
220
221 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)222 static void __init memory_present(int nid, unsigned long start, unsigned long end)
223 {
224 unsigned long pfn;
225
226 start &= PAGE_SECTION_MASK;
227 mminit_validate_memmodel_limits(&start, &end);
228 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229 unsigned long section_nr = pfn_to_section_nr(pfn);
230 struct mem_section *ms;
231
232 sparse_index_init(section_nr, nid);
233 set_section_nid(section_nr, nid);
234
235 ms = __nr_to_section(section_nr);
236 if (!ms->section_mem_map) {
237 ms->section_mem_map = sparse_encode_early_nid(nid) |
238 SECTION_IS_ONLINE;
239 __section_mark_present(ms, section_nr);
240 }
241 }
242 }
243
244 /*
245 * Mark all memblocks as present using memory_present().
246 * This is a convenience function that is useful to mark all of the systems
247 * memory as present during initialization.
248 */
memblocks_present(void)249 static void __init memblocks_present(void)
250 {
251 unsigned long start, end;
252 int i, nid;
253
254 #ifdef CONFIG_SPARSEMEM_EXTREME
255 if (unlikely(!mem_section)) {
256 unsigned long size, align;
257
258 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259 align = 1 << (INTERNODE_CACHE_SHIFT);
260 mem_section = memblock_alloc(size, align);
261 if (!mem_section)
262 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263 __func__, size, align);
264 }
265 #endif
266
267 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268 memory_present(nid, start, end);
269 }
270
271 /*
272 * Subtle, we encode the real pfn into the mem_map such that
273 * the identity pfn - section_mem_map will return the actual
274 * physical page frame number.
275 */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)276 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277 {
278 unsigned long coded_mem_map =
279 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282 return coded_mem_map;
283 }
284
285 #ifdef CONFIG_MEMORY_HOTPLUG
286 /*
287 * Decode mem_map from the coded memmap
288 */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)289 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290 {
291 /* mask off the extra low bits of information */
292 coded_mem_map &= SECTION_MAP_MASK;
293 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)297 static void __meminit sparse_init_one_section(struct mem_section *ms,
298 unsigned long pnum, struct page *mem_map,
299 struct mem_section_usage *usage, unsigned long flags)
300 {
301 ms->section_mem_map &= ~SECTION_MAP_MASK;
302 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303 | SECTION_HAS_MEM_MAP | flags;
304 ms->usage = usage;
305 }
306
usemap_size(void)307 static unsigned long usemap_size(void)
308 {
309 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310 }
311
mem_section_usage_size(void)312 size_t mem_section_usage_size(void)
313 {
314 return sizeof(struct mem_section_usage) + usemap_size();
315 }
316
317 #ifdef CONFIG_MEMORY_HOTREMOVE
pgdat_to_phys(struct pglist_data * pgdat)318 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319 {
320 #ifndef CONFIG_NUMA
321 VM_BUG_ON(pgdat != &contig_page_data);
322 return __pa_symbol(&contig_page_data);
323 #else
324 return __pa(pgdat);
325 #endif
326 }
327
328 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)329 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330 unsigned long size)
331 {
332 struct mem_section_usage *usage;
333 unsigned long goal, limit;
334 int nid;
335 /*
336 * A page may contain usemaps for other sections preventing the
337 * page being freed and making a section unremovable while
338 * other sections referencing the usemap remain active. Similarly,
339 * a pgdat can prevent a section being removed. If section A
340 * contains a pgdat and section B contains the usemap, both
341 * sections become inter-dependent. This allocates usemaps
342 * from the same section as the pgdat where possible to avoid
343 * this problem.
344 */
345 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346 limit = goal + (1UL << PA_SECTION_SHIFT);
347 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348 again:
349 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350 if (!usage && limit) {
351 limit = MEMBLOCK_ALLOC_ACCESSIBLE;
352 goto again;
353 }
354 return usage;
355 }
356
check_usemap_section_nr(int nid,struct mem_section_usage * usage)357 static void __init check_usemap_section_nr(int nid,
358 struct mem_section_usage *usage)
359 {
360 unsigned long usemap_snr, pgdat_snr;
361 static unsigned long old_usemap_snr;
362 static unsigned long old_pgdat_snr;
363 struct pglist_data *pgdat = NODE_DATA(nid);
364 int usemap_nid;
365
366 /* First call */
367 if (!old_usemap_snr) {
368 old_usemap_snr = NR_MEM_SECTIONS;
369 old_pgdat_snr = NR_MEM_SECTIONS;
370 }
371
372 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374 if (usemap_snr == pgdat_snr)
375 return;
376
377 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378 /* skip redundant message */
379 return;
380
381 old_usemap_snr = usemap_snr;
382 old_pgdat_snr = pgdat_snr;
383
384 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385 if (usemap_nid != nid) {
386 pr_info("node %d must be removed before remove section %ld\n",
387 nid, usemap_snr);
388 return;
389 }
390 /*
391 * There is a circular dependency.
392 * Some platforms allow un-removable section because they will just
393 * gather other removable sections for dynamic partitioning.
394 * Just notify un-removable section's number here.
395 */
396 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397 usemap_snr, pgdat_snr, nid);
398 }
399 #else
400 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)401 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402 unsigned long size)
403 {
404 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405 }
406
check_usemap_section_nr(int nid,struct mem_section_usage * usage)407 static void __init check_usemap_section_nr(int nid,
408 struct mem_section_usage *usage)
409 {
410 }
411 #endif /* CONFIG_MEMORY_HOTREMOVE */
412
413 #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)414 static unsigned long __init section_map_size(void)
415 {
416 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
417 }
418
419 #else
section_map_size(void)420 static unsigned long __init section_map_size(void)
421 {
422 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
423 }
424
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)425 struct page __init *__populate_section_memmap(unsigned long pfn,
426 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427 struct dev_pagemap *pgmap)
428 {
429 unsigned long size = section_map_size();
430 struct page *map = sparse_buffer_alloc(size);
431 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432
433 if (map)
434 return map;
435
436 map = memmap_alloc(size, size, addr, nid, false);
437 if (!map)
438 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439 __func__, size, PAGE_SIZE, nid, &addr);
440
441 return map;
442 }
443 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445 static void *sparsemap_buf __meminitdata;
446 static void *sparsemap_buf_end __meminitdata;
447
sparse_buffer_free(unsigned long size)448 static inline void __meminit sparse_buffer_free(unsigned long size)
449 {
450 WARN_ON(!sparsemap_buf || size == 0);
451 memblock_free(sparsemap_buf, size);
452 }
453
sparse_buffer_init(unsigned long size,int nid)454 static void __init sparse_buffer_init(unsigned long size, int nid)
455 {
456 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
458 /*
459 * Pre-allocated buffer is mainly used by __populate_section_memmap
460 * and we want it to be properly aligned to the section size - this is
461 * especially the case for VMEMMAP which maps memmap to PMDs
462 */
463 sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464 sparsemap_buf_end = sparsemap_buf + size;
465 }
466
sparse_buffer_fini(void)467 static void __init sparse_buffer_fini(void)
468 {
469 unsigned long size = sparsemap_buf_end - sparsemap_buf;
470
471 if (sparsemap_buf && size > 0)
472 sparse_buffer_free(size);
473 sparsemap_buf = NULL;
474 }
475
sparse_buffer_alloc(unsigned long size)476 void * __meminit sparse_buffer_alloc(unsigned long size)
477 {
478 void *ptr = NULL;
479
480 if (sparsemap_buf) {
481 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
482 if (ptr + size > sparsemap_buf_end)
483 ptr = NULL;
484 else {
485 /* Free redundant aligned space */
486 if ((unsigned long)(ptr - sparsemap_buf) > 0)
487 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
488 sparsemap_buf = ptr + size;
489 }
490 }
491 return ptr;
492 }
493
vmemmap_populate_print_last(void)494 void __weak __meminit vmemmap_populate_print_last(void)
495 {
496 }
497
498 /*
499 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
500 * And number of present sections in this node is map_count.
501 */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)502 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
503 unsigned long pnum_end,
504 unsigned long map_count)
505 {
506 struct mem_section_usage *usage;
507 unsigned long pnum;
508 struct page *map;
509
510 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
511 mem_section_usage_size() * map_count);
512 if (!usage) {
513 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
514 goto failed;
515 }
516 sparse_buffer_init(map_count * section_map_size(), nid);
517 for_each_present_section_nr(pnum_begin, pnum) {
518 unsigned long pfn = section_nr_to_pfn(pnum);
519
520 if (pnum >= pnum_end)
521 break;
522
523 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
524 nid, NULL, NULL);
525 if (!map) {
526 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
527 __func__, nid);
528 pnum_begin = pnum;
529 sparse_buffer_fini();
530 goto failed;
531 }
532 memmap_boot_pages_add(DIV_ROUND_UP(PAGES_PER_SECTION * sizeof(struct page),
533 PAGE_SIZE));
534 check_usemap_section_nr(nid, usage);
535 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
536 SECTION_IS_EARLY);
537 usage = (void *) usage + mem_section_usage_size();
538 }
539 sparse_buffer_fini();
540 return;
541 failed:
542 /* We failed to allocate, mark all the following pnums as not present */
543 for_each_present_section_nr(pnum_begin, pnum) {
544 struct mem_section *ms;
545
546 if (pnum >= pnum_end)
547 break;
548 ms = __nr_to_section(pnum);
549 ms->section_mem_map = 0;
550 }
551 }
552
553 /*
554 * Allocate the accumulated non-linear sections, allocate a mem_map
555 * for each and record the physical to section mapping.
556 */
sparse_init(void)557 void __init sparse_init(void)
558 {
559 unsigned long pnum_end, pnum_begin, map_count = 1;
560 int nid_begin;
561
562 /* see include/linux/mmzone.h 'struct mem_section' definition */
563 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
564 memblocks_present();
565
566 pnum_begin = first_present_section_nr();
567 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568
569 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570 set_pageblock_order();
571
572 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
573 int nid = sparse_early_nid(__nr_to_section(pnum_end));
574
575 if (nid == nid_begin) {
576 map_count++;
577 continue;
578 }
579 /* Init node with sections in range [pnum_begin, pnum_end) */
580 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
581 nid_begin = nid;
582 pnum_begin = pnum_end;
583 map_count = 1;
584 }
585 /* cover the last node */
586 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
587 vmemmap_populate_print_last();
588 }
589
590 #ifdef CONFIG_MEMORY_HOTPLUG
591
592 /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)593 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
594 {
595 unsigned long pfn;
596
597 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598 unsigned long section_nr = pfn_to_section_nr(pfn);
599 struct mem_section *ms;
600
601 /* onlining code should never touch invalid ranges */
602 if (WARN_ON(!valid_section_nr(section_nr)))
603 continue;
604
605 ms = __nr_to_section(section_nr);
606 ms->section_mem_map |= SECTION_IS_ONLINE;
607 }
608 }
609
610 /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)611 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612 {
613 unsigned long pfn;
614
615 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616 unsigned long section_nr = pfn_to_section_nr(pfn);
617 struct mem_section *ms;
618
619 /*
620 * TODO this needs some double checking. Offlining code makes
621 * sure to check pfn_valid but those checks might be just bogus
622 */
623 if (WARN_ON(!valid_section_nr(section_nr)))
624 continue;
625
626 ms = __nr_to_section(section_nr);
627 ms->section_mem_map &= ~SECTION_IS_ONLINE;
628 }
629 }
630
631 #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)632 static struct page * __meminit populate_section_memmap(unsigned long pfn,
633 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
634 struct dev_pagemap *pgmap)
635 {
636 return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
637 }
638
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)639 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
640 struct vmem_altmap *altmap)
641 {
642 unsigned long start = (unsigned long) pfn_to_page(pfn);
643 unsigned long end = start + nr_pages * sizeof(struct page);
644
645 vmemmap_free(start, end, altmap);
646 }
free_map_bootmem(struct page * memmap)647 static void free_map_bootmem(struct page *memmap)
648 {
649 unsigned long start = (unsigned long)memmap;
650 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
651
652 vmemmap_free(start, end, NULL);
653 }
654
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)655 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
656 {
657 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
658 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
659 struct mem_section *ms = __pfn_to_section(pfn);
660 unsigned long *subsection_map = ms->usage
661 ? &ms->usage->subsection_map[0] : NULL;
662
663 subsection_mask_set(map, pfn, nr_pages);
664 if (subsection_map)
665 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
666
667 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
668 "section already deactivated (%#lx + %ld)\n",
669 pfn, nr_pages))
670 return -EINVAL;
671
672 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
673 return 0;
674 }
675
is_subsection_map_empty(struct mem_section * ms)676 static bool is_subsection_map_empty(struct mem_section *ms)
677 {
678 return bitmap_empty(&ms->usage->subsection_map[0],
679 SUBSECTIONS_PER_SECTION);
680 }
681
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)682 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
683 {
684 struct mem_section *ms = __pfn_to_section(pfn);
685 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
686 unsigned long *subsection_map;
687 int rc = 0;
688
689 subsection_mask_set(map, pfn, nr_pages);
690
691 subsection_map = &ms->usage->subsection_map[0];
692
693 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
694 rc = -EINVAL;
695 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
696 rc = -EEXIST;
697 else
698 bitmap_or(subsection_map, map, subsection_map,
699 SUBSECTIONS_PER_SECTION);
700
701 return rc;
702 }
703 #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)704 static struct page * __meminit populate_section_memmap(unsigned long pfn,
705 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
706 struct dev_pagemap *pgmap)
707 {
708 return kvmalloc_node(array_size(sizeof(struct page),
709 PAGES_PER_SECTION), GFP_KERNEL, nid);
710 }
711
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)712 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
713 struct vmem_altmap *altmap)
714 {
715 kvfree(pfn_to_page(pfn));
716 }
717
free_map_bootmem(struct page * memmap)718 static void free_map_bootmem(struct page *memmap)
719 {
720 unsigned long maps_section_nr, removing_section_nr, i;
721 unsigned long magic, nr_pages;
722 struct page *page = virt_to_page(memmap);
723
724 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
725 >> PAGE_SHIFT;
726
727 for (i = 0; i < nr_pages; i++, page++) {
728 magic = page->index;
729
730 BUG_ON(magic == NODE_INFO);
731
732 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
733 removing_section_nr = page_private(page);
734
735 /*
736 * When this function is called, the removing section is
737 * logical offlined state. This means all pages are isolated
738 * from page allocator. If removing section's memmap is placed
739 * on the same section, it must not be freed.
740 * If it is freed, page allocator may allocate it which will
741 * be removed physically soon.
742 */
743 if (maps_section_nr != removing_section_nr)
744 put_page_bootmem(page);
745 }
746 }
747
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)748 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
749 {
750 return 0;
751 }
752
is_subsection_map_empty(struct mem_section * ms)753 static bool is_subsection_map_empty(struct mem_section *ms)
754 {
755 return true;
756 }
757
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)758 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
759 {
760 return 0;
761 }
762 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
763
764 /*
765 * To deactivate a memory region, there are 3 cases to handle across
766 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
767 *
768 * 1. deactivation of a partial hot-added section (only possible in
769 * the SPARSEMEM_VMEMMAP=y case).
770 * a) section was present at memory init.
771 * b) section was hot-added post memory init.
772 * 2. deactivation of a complete hot-added section.
773 * 3. deactivation of a complete section from memory init.
774 *
775 * For 1, when subsection_map does not empty we will not be freeing the
776 * usage map, but still need to free the vmemmap range.
777 *
778 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
779 */
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)780 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
781 struct vmem_altmap *altmap)
782 {
783 struct mem_section *ms = __pfn_to_section(pfn);
784 bool section_is_early = early_section(ms);
785 struct page *memmap = NULL;
786 bool empty;
787
788 if (clear_subsection_map(pfn, nr_pages))
789 return;
790
791 empty = is_subsection_map_empty(ms);
792 if (empty) {
793 unsigned long section_nr = pfn_to_section_nr(pfn);
794
795 /*
796 * Mark the section invalid so that valid_section()
797 * return false. This prevents code from dereferencing
798 * ms->usage array.
799 */
800 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
801
802 /*
803 * When removing an early section, the usage map is kept (as the
804 * usage maps of other sections fall into the same page). It
805 * will be re-used when re-adding the section - which is then no
806 * longer an early section. If the usage map is PageReserved, it
807 * was allocated during boot.
808 */
809 if (!PageReserved(virt_to_page(ms->usage))) {
810 kfree_rcu(ms->usage, rcu);
811 WRITE_ONCE(ms->usage, NULL);
812 }
813 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
814 }
815
816 /*
817 * The memmap of early sections is always fully populated. See
818 * section_activate() and pfn_valid() .
819 */
820 if (!section_is_early) {
821 memmap_pages_add(-1L * (DIV_ROUND_UP(nr_pages * sizeof(struct page), PAGE_SIZE)));
822 depopulate_section_memmap(pfn, nr_pages, altmap);
823 } else if (memmap) {
824 memmap_boot_pages_add(-1L * (DIV_ROUND_UP(nr_pages * sizeof(struct page),
825 PAGE_SIZE)));
826 free_map_bootmem(memmap);
827 }
828
829 if (empty)
830 ms->section_mem_map = (unsigned long)NULL;
831 }
832
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)833 static struct page * __meminit section_activate(int nid, unsigned long pfn,
834 unsigned long nr_pages, struct vmem_altmap *altmap,
835 struct dev_pagemap *pgmap)
836 {
837 struct mem_section *ms = __pfn_to_section(pfn);
838 struct mem_section_usage *usage = NULL;
839 struct page *memmap;
840 int rc;
841
842 if (!ms->usage) {
843 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
844 if (!usage)
845 return ERR_PTR(-ENOMEM);
846 ms->usage = usage;
847 }
848
849 rc = fill_subsection_map(pfn, nr_pages);
850 if (rc) {
851 if (usage)
852 ms->usage = NULL;
853 kfree(usage);
854 return ERR_PTR(rc);
855 }
856
857 /*
858 * The early init code does not consider partially populated
859 * initial sections, it simply assumes that memory will never be
860 * referenced. If we hot-add memory into such a section then we
861 * do not need to populate the memmap and can simply reuse what
862 * is already there.
863 */
864 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
865 return pfn_to_page(pfn);
866
867 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
868 if (!memmap) {
869 section_deactivate(pfn, nr_pages, altmap);
870 return ERR_PTR(-ENOMEM);
871 }
872 memmap_pages_add(DIV_ROUND_UP(nr_pages * sizeof(struct page), PAGE_SIZE));
873
874 return memmap;
875 }
876
877 /**
878 * sparse_add_section - add a memory section, or populate an existing one
879 * @nid: The node to add section on
880 * @start_pfn: start pfn of the memory range
881 * @nr_pages: number of pfns to add in the section
882 * @altmap: alternate pfns to allocate the memmap backing store
883 * @pgmap: alternate compound page geometry for devmap mappings
884 *
885 * This is only intended for hotplug.
886 *
887 * Note that only VMEMMAP supports sub-section aligned hotplug,
888 * the proper alignment and size are gated by check_pfn_span().
889 *
890 *
891 * Return:
892 * * 0 - On success.
893 * * -EEXIST - Section has been present.
894 * * -ENOMEM - Out of memory.
895 */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)896 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
897 unsigned long nr_pages, struct vmem_altmap *altmap,
898 struct dev_pagemap *pgmap)
899 {
900 unsigned long section_nr = pfn_to_section_nr(start_pfn);
901 struct mem_section *ms;
902 struct page *memmap;
903 int ret;
904
905 ret = sparse_index_init(section_nr, nid);
906 if (ret < 0)
907 return ret;
908
909 memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
910 if (IS_ERR(memmap))
911 return PTR_ERR(memmap);
912
913 /*
914 * Poison uninitialized struct pages in order to catch invalid flags
915 * combinations.
916 */
917 if (!altmap || !altmap->inaccessible)
918 page_init_poison(memmap, sizeof(struct page) * nr_pages);
919
920 ms = __nr_to_section(section_nr);
921 set_section_nid(section_nr, nid);
922 __section_mark_present(ms, section_nr);
923
924 /* Align memmap to section boundary in the subsection case */
925 if (section_nr_to_pfn(section_nr) != start_pfn)
926 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
927 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
928
929 return 0;
930 }
931
sparse_remove_section(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)932 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
933 struct vmem_altmap *altmap)
934 {
935 struct mem_section *ms = __pfn_to_section(pfn);
936
937 if (WARN_ON_ONCE(!valid_section(ms)))
938 return;
939
940 section_deactivate(pfn, nr_pages, altmap);
941 }
942 #endif /* CONFIG_MEMORY_HOTPLUG */
943