1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/page_size_compat.h>
20 #include <linux/pagemap.h>
21 #include <linux/namei.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/random.h>
25 #include <linux/writeback.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/ksm.h>
30 #include <linux/rmap.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/mutex.h>
34 #include <linux/capability.h>
35 #include <linux/syscalls.h>
36 #include <linux/memcontrol.h>
37 #include <linux/poll.h>
38 #include <linux/oom.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 #include <linux/suspend.h>
45 #include <linux/zswap.h>
46 #include <linux/plist.h>
47
48 #include <asm/tlbflush.h>
49 #include <linux/swapops.h>
50 #include <linux/swap_cgroup.h>
51 #include "internal.h"
52 #include "swap.h"
53 #include <trace/hooks/bl_hib.h>
54 #include <trace/hooks/mm.h>
55
56 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
57 unsigned char);
58 static void free_swap_count_continuations(struct swap_info_struct *);
59 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
60 unsigned int nr_pages);
61 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
62 unsigned int nr_entries);
63 static bool folio_swapcache_freeable(struct folio *folio);
64 static struct swap_cluster_info *lock_cluster_or_swap_info(
65 struct swap_info_struct *si, unsigned long offset);
66 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
67 struct swap_cluster_info *ci);
68
69 static DEFINE_SPINLOCK(swap_lock);
70 static unsigned int nr_swapfiles;
71 atomic_long_t nr_swap_pages;
72 /*
73 * Some modules use swappable objects and may try to swap them out under
74 * memory pressure (via the shrinker). Before doing so, they may wish to
75 * check to see if any swap space is available.
76 */
77 EXPORT_SYMBOL_GPL(nr_swap_pages);
78 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
79 long total_swap_pages;
80 static int least_priority = -1;
81 unsigned long swapfile_maximum_size;
82 #ifdef CONFIG_MIGRATION
83 bool swap_migration_ad_supported;
84 EXPORT_SYMBOL_GPL(swap_migration_ad_supported);
85 #endif /* CONFIG_MIGRATION */
86
87 static const char Bad_file[] = "Bad swap file entry ";
88 static const char Unused_file[] = "Unused swap file entry ";
89 static const char Bad_offset[] = "Bad swap offset entry ";
90 static const char Unused_offset[] = "Unused swap offset entry ";
91
92 /*
93 * all active swap_info_structs
94 * protected with swap_lock, and ordered by priority.
95 */
96 static PLIST_HEAD(swap_active_head);
97
98 /*
99 * all available (active, not full) swap_info_structs
100 * protected with swap_avail_lock, ordered by priority.
101 * This is used by folio_alloc_swap() instead of swap_active_head
102 * because swap_active_head includes all swap_info_structs,
103 * but folio_alloc_swap() doesn't need to look at full ones.
104 * This uses its own lock instead of swap_lock because when a
105 * swap_info_struct changes between not-full/full, it needs to
106 * add/remove itself to/from this list, but the swap_info_struct->lock
107 * is held and the locking order requires swap_lock to be taken
108 * before any swap_info_struct->lock.
109 */
110 static struct plist_head *swap_avail_heads;
111 static DEFINE_SPINLOCK(swap_avail_lock);
112
113 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
114
115 static DEFINE_MUTEX(swapon_mutex);
116
117 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
118 /* Activity counter to indicate that a swapon or swapoff has occurred */
119 static atomic_t proc_poll_event = ATOMIC_INIT(0);
120
121 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
122
swap_type_to_swap_info(int type)123 static struct swap_info_struct *swap_type_to_swap_info(int type)
124 {
125 if (type >= MAX_SWAPFILES)
126 return NULL;
127
128 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
129 }
130
swap_count(unsigned char ent)131 static inline unsigned char swap_count(unsigned char ent)
132 {
133 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
134 }
135
136 /* Reclaim the swap entry anyway if possible */
137 #define TTRS_ANYWAY 0x1
138 /*
139 * Reclaim the swap entry if there are no more mappings of the
140 * corresponding page
141 */
142 #define TTRS_UNMAPPED 0x2
143 /* Reclaim the swap entry if swap is getting full */
144 #define TTRS_FULL 0x4
145 /* Reclaim directly, bypass the slot cache and don't touch device lock */
146 #define TTRS_DIRECT 0x8
147
swap_is_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)148 static bool swap_is_has_cache(struct swap_info_struct *si,
149 unsigned long offset, int nr_pages)
150 {
151 unsigned char *map = si->swap_map + offset;
152 unsigned char *map_end = map + nr_pages;
153
154 do {
155 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
156 if (*map != SWAP_HAS_CACHE)
157 return false;
158 } while (++map < map_end);
159
160 return true;
161 }
162
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)163 static bool swap_is_last_map(struct swap_info_struct *si,
164 unsigned long offset, int nr_pages, bool *has_cache)
165 {
166 unsigned char *map = si->swap_map + offset;
167 unsigned char *map_end = map + nr_pages;
168 unsigned char count = *map;
169
170 if (swap_count(count) != 1)
171 return false;
172
173 while (++map < map_end) {
174 if (*map != count)
175 return false;
176 }
177
178 *has_cache = !!(count & SWAP_HAS_CACHE);
179 return true;
180 }
181
182 /*
183 * returns number of pages in the folio that backs the swap entry. If positive,
184 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
185 * folio was associated with the swap entry.
186 */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)187 static int __try_to_reclaim_swap(struct swap_info_struct *si,
188 unsigned long offset, unsigned long flags)
189 {
190 swp_entry_t entry = swp_entry(si->type, offset);
191 struct address_space *address_space = swap_address_space(entry);
192 struct swap_cluster_info *ci;
193 struct folio *folio;
194 int ret, nr_pages;
195 bool need_reclaim;
196
197 folio = filemap_get_folio(address_space, swap_cache_index(entry));
198 if (IS_ERR(folio))
199 return 0;
200
201 nr_pages = folio_nr_pages(folio);
202 ret = -nr_pages;
203
204 /*
205 * When this function is called from scan_swap_map_slots() and it's
206 * called by vmscan.c at reclaiming folios. So we hold a folio lock
207 * here. We have to use trylock for avoiding deadlock. This is a special
208 * case and you should use folio_free_swap() with explicit folio_lock()
209 * in usual operations.
210 */
211 if (!folio_trylock(folio))
212 goto out;
213
214 /* offset could point to the middle of a large folio */
215 entry = folio->swap;
216 offset = swp_offset(entry);
217
218 need_reclaim = ((flags & TTRS_ANYWAY) ||
219 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
220 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
221 if (!need_reclaim || !folio_swapcache_freeable(folio))
222 goto out_unlock;
223
224 /*
225 * It's safe to delete the folio from swap cache only if the folio's
226 * swap_map is HAS_CACHE only, which means the slots have no page table
227 * reference or pending writeback, and can't be allocated to others.
228 */
229 ci = lock_cluster_or_swap_info(si, offset);
230 need_reclaim = swap_is_has_cache(si, offset, nr_pages);
231 unlock_cluster_or_swap_info(si, ci);
232 if (!need_reclaim)
233 goto out_unlock;
234
235 if (!(flags & TTRS_DIRECT)) {
236 /* Free through slot cache */
237 delete_from_swap_cache(folio);
238 folio_set_dirty(folio);
239 ret = nr_pages;
240 goto out_unlock;
241 }
242
243 xa_lock_irq(&address_space->i_pages);
244 __delete_from_swap_cache(folio, entry, NULL);
245 xa_unlock_irq(&address_space->i_pages);
246 folio_ref_sub(folio, nr_pages);
247 folio_set_dirty(folio);
248
249 spin_lock(&si->lock);
250 /* Only sinple page folio can be backed by zswap */
251 if (nr_pages == 1)
252 zswap_invalidate(entry);
253 swap_entry_range_free(si, entry, nr_pages);
254 spin_unlock(&si->lock);
255 ret = nr_pages;
256 out_unlock:
257 folio_unlock(folio);
258 out:
259 folio_put(folio);
260 return ret;
261 }
262
first_se(struct swap_info_struct * sis)263 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
264 {
265 struct rb_node *rb = rb_first(&sis->swap_extent_root);
266 return rb_entry(rb, struct swap_extent, rb_node);
267 }
268
next_se(struct swap_extent * se)269 static inline struct swap_extent *next_se(struct swap_extent *se)
270 {
271 struct rb_node *rb = rb_next(&se->rb_node);
272 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
273 }
274
275 /*
276 * swapon tell device that all the old swap contents can be discarded,
277 * to allow the swap device to optimize its wear-levelling.
278 */
discard_swap(struct swap_info_struct * si)279 static int discard_swap(struct swap_info_struct *si)
280 {
281 struct swap_extent *se;
282 sector_t start_block;
283 sector_t nr_blocks;
284 int err = 0;
285
286 /* Do not discard the swap header page! */
287 se = first_se(si);
288 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
289 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
290 if (nr_blocks) {
291 err = blkdev_issue_discard(si->bdev, start_block,
292 nr_blocks, GFP_KERNEL);
293 if (err)
294 return err;
295 cond_resched();
296 }
297
298 for (se = next_se(se); se; se = next_se(se)) {
299 start_block = se->start_block << (PAGE_SHIFT - 9);
300 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
301
302 err = blkdev_issue_discard(si->bdev, start_block,
303 nr_blocks, GFP_KERNEL);
304 if (err)
305 break;
306
307 cond_resched();
308 }
309 return err; /* That will often be -EOPNOTSUPP */
310 }
311
312 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)313 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
314 {
315 struct swap_extent *se;
316 struct rb_node *rb;
317
318 rb = sis->swap_extent_root.rb_node;
319 while (rb) {
320 se = rb_entry(rb, struct swap_extent, rb_node);
321 if (offset < se->start_page)
322 rb = rb->rb_left;
323 else if (offset >= se->start_page + se->nr_pages)
324 rb = rb->rb_right;
325 else
326 return se;
327 }
328 /* It *must* be present */
329 BUG();
330 }
331
swap_folio_sector(struct folio * folio)332 sector_t swap_folio_sector(struct folio *folio)
333 {
334 struct swap_info_struct *sis = swp_swap_info(folio->swap);
335 struct swap_extent *se;
336 sector_t sector;
337 pgoff_t offset;
338
339 offset = swp_offset(folio->swap);
340 se = offset_to_swap_extent(sis, offset);
341 sector = se->start_block + (offset - se->start_page);
342 return sector << (PAGE_SHIFT - 9);
343 }
344
345 /*
346 * swap allocation tell device that a cluster of swap can now be discarded,
347 * to allow the swap device to optimize its wear-levelling.
348 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)349 static void discard_swap_cluster(struct swap_info_struct *si,
350 pgoff_t start_page, pgoff_t nr_pages)
351 {
352 struct swap_extent *se = offset_to_swap_extent(si, start_page);
353
354 while (nr_pages) {
355 pgoff_t offset = start_page - se->start_page;
356 sector_t start_block = se->start_block + offset;
357 sector_t nr_blocks = se->nr_pages - offset;
358
359 if (nr_blocks > nr_pages)
360 nr_blocks = nr_pages;
361 start_page += nr_blocks;
362 nr_pages -= nr_blocks;
363
364 start_block <<= PAGE_SHIFT - 9;
365 nr_blocks <<= PAGE_SHIFT - 9;
366 if (blkdev_issue_discard(si->bdev, start_block,
367 nr_blocks, GFP_NOIO))
368 break;
369
370 se = next_se(se);
371 }
372 }
373
374 #ifdef CONFIG_THP_SWAP
375 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
376
377 #define swap_entry_order(order) (order)
378 #else
379 #define SWAPFILE_CLUSTER 256
380
381 /*
382 * Define swap_entry_order() as constant to let compiler to optimize
383 * out some code if !CONFIG_THP_SWAP
384 */
385 #define swap_entry_order(order) 0
386 #endif
387 #define LATENCY_LIMIT 256
388
cluster_is_free(struct swap_cluster_info * info)389 static inline bool cluster_is_free(struct swap_cluster_info *info)
390 {
391 return info->flags & CLUSTER_FLAG_FREE;
392 }
393
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)394 static inline unsigned int cluster_index(struct swap_info_struct *si,
395 struct swap_cluster_info *ci)
396 {
397 return ci - si->cluster_info;
398 }
399
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)400 static inline unsigned int cluster_offset(struct swap_info_struct *si,
401 struct swap_cluster_info *ci)
402 {
403 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
404 }
405
lock_cluster(struct swap_info_struct * si,unsigned long offset)406 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
407 unsigned long offset)
408 {
409 struct swap_cluster_info *ci;
410
411 ci = si->cluster_info;
412 if (ci) {
413 ci += offset / SWAPFILE_CLUSTER;
414 spin_lock(&ci->lock);
415 }
416 return ci;
417 }
418
unlock_cluster(struct swap_cluster_info * ci)419 static inline void unlock_cluster(struct swap_cluster_info *ci)
420 {
421 if (ci)
422 spin_unlock(&ci->lock);
423 }
424
425 /*
426 * Determine the locking method in use for this device. Return
427 * swap_cluster_info if SSD-style cluster-based locking is in place.
428 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)429 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
430 struct swap_info_struct *si, unsigned long offset)
431 {
432 struct swap_cluster_info *ci;
433
434 /* Try to use fine-grained SSD-style locking if available: */
435 ci = lock_cluster(si, offset);
436 /* Otherwise, fall back to traditional, coarse locking: */
437 if (!ci)
438 spin_lock(&si->lock);
439
440 return ci;
441 }
442
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)443 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
444 struct swap_cluster_info *ci)
445 {
446 if (ci)
447 unlock_cluster(ci);
448 else
449 spin_unlock(&si->lock);
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 struct swap_cluster_info *ci)
455 {
456 unsigned int idx = cluster_index(si, ci);
457 /*
458 * If scan_swap_map_slots() can't find a free cluster, it will check
459 * si->swap_map directly. To make sure the discarding cluster isn't
460 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
461 * It will be cleared after discard
462 */
463 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
464 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465
466 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
467 list_move_tail(&ci->list, &si->discard_clusters);
468 ci->flags = 0;
469 schedule_work(&si->discard_work);
470 }
471
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)472 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
473 {
474 lockdep_assert_held(&si->lock);
475 lockdep_assert_held(&ci->lock);
476
477 if (ci->flags)
478 list_move_tail(&ci->list, &si->free_clusters);
479 else
480 list_add_tail(&ci->list, &si->free_clusters);
481 ci->flags = CLUSTER_FLAG_FREE;
482 ci->order = 0;
483 }
484
485 /*
486 * Doing discard actually. After a cluster discard is finished, the cluster
487 * will be added to free cluster list. caller should hold si->lock.
488 */
swap_do_scheduled_discard(struct swap_info_struct * si)489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 struct swap_cluster_info *ci;
492 unsigned int idx;
493
494 while (!list_empty(&si->discard_clusters)) {
495 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
496 list_del(&ci->list);
497 idx = cluster_index(si, ci);
498 spin_unlock(&si->lock);
499
500 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 SWAPFILE_CLUSTER);
502
503 spin_lock(&si->lock);
504 spin_lock(&ci->lock);
505 __free_cluster(si, ci);
506 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 0, SWAPFILE_CLUSTER);
508 spin_unlock(&ci->lock);
509 }
510 }
511
swap_discard_work(struct work_struct * work)512 static void swap_discard_work(struct work_struct *work)
513 {
514 struct swap_info_struct *si;
515
516 si = container_of(work, struct swap_info_struct, discard_work);
517
518 spin_lock(&si->lock);
519 swap_do_scheduled_discard(si);
520 spin_unlock(&si->lock);
521 }
522
swap_users_ref_free(struct percpu_ref * ref)523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 struct swap_info_struct *si;
526
527 si = container_of(ref, struct swap_info_struct, users);
528 complete(&si->comp);
529 }
530
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)531 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
532 {
533 VM_BUG_ON(ci->count != 0);
534 lockdep_assert_held(&si->lock);
535 lockdep_assert_held(&ci->lock);
536
537 if (ci->flags & CLUSTER_FLAG_FRAG)
538 si->frag_cluster_nr[ci->order]--;
539
540 /*
541 * If the swap is discardable, prepare discard the cluster
542 * instead of free it immediately. The cluster will be freed
543 * after discard.
544 */
545 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
546 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
547 swap_cluster_schedule_discard(si, ci);
548 return;
549 }
550
551 __free_cluster(si, ci);
552 }
553
554 /*
555 * The cluster corresponding to page_nr will be used. The cluster will not be
556 * added to free cluster list and its usage counter will be increased by 1.
557 * Only used for initialization.
558 */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)559 static void inc_cluster_info_page(struct swap_info_struct *si,
560 struct swap_cluster_info *cluster_info, unsigned long page_nr)
561 {
562 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
563 struct swap_cluster_info *ci;
564
565 if (!cluster_info)
566 return;
567
568 ci = cluster_info + idx;
569 ci->count++;
570
571 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
572 VM_BUG_ON(ci->flags);
573 }
574
575 /*
576 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
577 * which means no page in the cluster is in use, we can optionally discard
578 * the cluster and add it to free cluster list.
579 */
dec_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * ci,int nr_pages)580 static void dec_cluster_info_page(struct swap_info_struct *si,
581 struct swap_cluster_info *ci, int nr_pages)
582 {
583 if (!si->cluster_info)
584 return;
585
586 VM_BUG_ON(ci->count < nr_pages);
587 VM_BUG_ON(cluster_is_free(ci));
588 lockdep_assert_held(&si->lock);
589 lockdep_assert_held(&ci->lock);
590 ci->count -= nr_pages;
591
592 if (!ci->count) {
593 free_cluster(si, ci);
594 return;
595 }
596
597 if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
598 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
599 if (ci->flags & CLUSTER_FLAG_FRAG)
600 si->frag_cluster_nr[ci->order]--;
601 list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
602 ci->flags = CLUSTER_FLAG_NONFULL;
603 }
604 }
605
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)606 static bool cluster_reclaim_range(struct swap_info_struct *si,
607 struct swap_cluster_info *ci,
608 unsigned long start, unsigned long end)
609 {
610 unsigned char *map = si->swap_map;
611 unsigned long offset;
612
613 spin_unlock(&ci->lock);
614 spin_unlock(&si->lock);
615
616 for (offset = start; offset < end; offset++) {
617 switch (READ_ONCE(map[offset])) {
618 case 0:
619 continue;
620 case SWAP_HAS_CACHE:
621 if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
622 continue;
623 goto out;
624 default:
625 goto out;
626 }
627 }
628 out:
629 spin_lock(&si->lock);
630 spin_lock(&ci->lock);
631
632 /*
633 * Recheck the range no matter reclaim succeeded or not, the slot
634 * could have been be freed while we are not holding the lock.
635 */
636 for (offset = start; offset < end; offset++)
637 if (READ_ONCE(map[offset]))
638 return false;
639
640 return true;
641 }
642
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages)643 static bool cluster_scan_range(struct swap_info_struct *si,
644 struct swap_cluster_info *ci,
645 unsigned long start, unsigned int nr_pages)
646 {
647 unsigned long offset, end = start + nr_pages;
648 unsigned char *map = si->swap_map;
649 bool need_reclaim = false;
650
651 for (offset = start; offset < end; offset++) {
652 switch (READ_ONCE(map[offset])) {
653 case 0:
654 continue;
655 case SWAP_HAS_CACHE:
656 if (!vm_swap_full())
657 return false;
658 need_reclaim = true;
659 continue;
660 default:
661 return false;
662 }
663 }
664
665 if (need_reclaim)
666 return cluster_reclaim_range(si, ci, start, end);
667
668 return true;
669 }
670
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)671 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
672 unsigned int start, unsigned char usage,
673 unsigned int order)
674 {
675 unsigned int nr_pages = 1 << order;
676
677 if (!(si->flags & SWP_WRITEOK))
678 return false;
679
680 if (cluster_is_free(ci)) {
681 if (nr_pages < SWAPFILE_CLUSTER) {
682 list_move_tail(&ci->list, &si->nonfull_clusters[order]);
683 ci->flags = CLUSTER_FLAG_NONFULL;
684 }
685 ci->order = order;
686 }
687
688 memset(si->swap_map + start, usage, nr_pages);
689 swap_range_alloc(si, start, nr_pages);
690 ci->count += nr_pages;
691
692 if (ci->count == SWAPFILE_CLUSTER) {
693 VM_BUG_ON(!(ci->flags &
694 (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
695 if (ci->flags & CLUSTER_FLAG_FRAG)
696 si->frag_cluster_nr[ci->order]--;
697 list_move_tail(&ci->list, &si->full_clusters);
698 ci->flags = CLUSTER_FLAG_FULL;
699 }
700
701 return true;
702 }
703
alloc_swap_scan_cluster(struct swap_info_struct * si,unsigned long offset,unsigned int * foundp,unsigned int order,unsigned char usage)704 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
705 unsigned int *foundp, unsigned int order,
706 unsigned char usage)
707 {
708 unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
709 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
710 unsigned int nr_pages = 1 << order;
711 struct swap_cluster_info *ci;
712
713 if (end < nr_pages)
714 return SWAP_NEXT_INVALID;
715 end -= nr_pages;
716
717 ci = lock_cluster(si, offset);
718 if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
719 offset = SWAP_NEXT_INVALID;
720 goto done;
721 }
722
723 while (offset <= end) {
724 if (cluster_scan_range(si, ci, offset, nr_pages)) {
725 if (!cluster_alloc_range(si, ci, offset, usage, order)) {
726 offset = SWAP_NEXT_INVALID;
727 goto done;
728 }
729 *foundp = offset;
730 if (ci->count == SWAPFILE_CLUSTER) {
731 offset = SWAP_NEXT_INVALID;
732 goto done;
733 }
734 offset += nr_pages;
735 break;
736 }
737 offset += nr_pages;
738 }
739 if (offset > end)
740 offset = SWAP_NEXT_INVALID;
741 done:
742 unlock_cluster(ci);
743 return offset;
744 }
745
746 /* Return true if reclaimed a whole cluster */
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)747 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
748 {
749 long to_scan = 1;
750 unsigned long offset, end;
751 struct swap_cluster_info *ci;
752 unsigned char *map = si->swap_map;
753 int nr_reclaim;
754
755 if (force)
756 to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
757
758 while (!list_empty(&si->full_clusters)) {
759 ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
760 list_move_tail(&ci->list, &si->full_clusters);
761 offset = cluster_offset(si, ci);
762 end = min(si->max, offset + SWAPFILE_CLUSTER);
763 to_scan--;
764
765 spin_unlock(&si->lock);
766 while (offset < end) {
767 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
768 nr_reclaim = __try_to_reclaim_swap(si, offset,
769 TTRS_ANYWAY | TTRS_DIRECT);
770 if (nr_reclaim) {
771 offset += abs(nr_reclaim);
772 continue;
773 }
774 }
775 offset++;
776 }
777 spin_lock(&si->lock);
778
779 if (to_scan <= 0)
780 break;
781 }
782 }
783
swap_reclaim_work(struct work_struct * work)784 static void swap_reclaim_work(struct work_struct *work)
785 {
786 struct swap_info_struct *si;
787
788 si = container_of(work, struct swap_info_struct, reclaim_work);
789
790 spin_lock(&si->lock);
791 swap_reclaim_full_clusters(si, true);
792 spin_unlock(&si->lock);
793 }
794
795 /*
796 * Try to get swap entries with specified order from current cpu's swap entry
797 * pool (a cluster). This might involve allocating a new cluster for current CPU
798 * too.
799 */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)800 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
801 unsigned char usage)
802 {
803 struct percpu_cluster *cluster;
804 struct swap_cluster_info *ci;
805 unsigned int offset, found = 0;
806
807 new_cluster:
808 lockdep_assert_held(&si->lock);
809 cluster = this_cpu_ptr(si->percpu_cluster);
810 offset = cluster->next[order];
811 if (offset) {
812 offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
813 if (found)
814 goto done;
815 }
816
817 if (!list_empty(&si->free_clusters)) {
818 ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
819 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
820 /*
821 * Either we didn't touch the cluster due to swapoff,
822 * or the allocation must success.
823 */
824 VM_BUG_ON((si->flags & SWP_WRITEOK) && !found);
825 goto done;
826 }
827
828 /* Try reclaim from full clusters if free clusters list is drained */
829 if (vm_swap_full())
830 swap_reclaim_full_clusters(si, false);
831
832 if (order < PMD_ORDER) {
833 unsigned int frags = 0;
834
835 while (!list_empty(&si->nonfull_clusters[order])) {
836 ci = list_first_entry(&si->nonfull_clusters[order],
837 struct swap_cluster_info, list);
838 list_move_tail(&ci->list, &si->frag_clusters[order]);
839 ci->flags = CLUSTER_FLAG_FRAG;
840 si->frag_cluster_nr[order]++;
841 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
842 &found, order, usage);
843 frags++;
844 if (found)
845 break;
846 }
847
848 if (!found) {
849 /*
850 * Nonfull clusters are moved to frag tail if we reached
851 * here, count them too, don't over scan the frag list.
852 */
853 while (frags < si->frag_cluster_nr[order]) {
854 ci = list_first_entry(&si->frag_clusters[order],
855 struct swap_cluster_info, list);
856 /*
857 * Rotate the frag list to iterate, they were all failing
858 * high order allocation or moved here due to per-CPU usage,
859 * this help keeping usable cluster ahead.
860 */
861 list_move_tail(&ci->list, &si->frag_clusters[order]);
862 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
863 &found, order, usage);
864 frags++;
865 if (found)
866 break;
867 }
868 }
869 }
870
871 if (found)
872 goto done;
873
874 if (!list_empty(&si->discard_clusters)) {
875 /*
876 * we don't have free cluster but have some clusters in
877 * discarding, do discard now and reclaim them, then
878 * reread cluster_next_cpu since we dropped si->lock
879 */
880 swap_do_scheduled_discard(si);
881 goto new_cluster;
882 }
883
884 if (order)
885 goto done;
886
887 /* Order 0 stealing from higher order */
888 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
889 /*
890 * Clusters here have at least one usable slots and can't fail order 0
891 * allocation, but reclaim may drop si->lock and race with another user.
892 */
893 while (!list_empty(&si->frag_clusters[o])) {
894 ci = list_first_entry(&si->frag_clusters[o],
895 struct swap_cluster_info, list);
896 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
897 &found, 0, usage);
898 if (found)
899 goto done;
900 }
901
902 while (!list_empty(&si->nonfull_clusters[o])) {
903 ci = list_first_entry(&si->nonfull_clusters[o],
904 struct swap_cluster_info, list);
905 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
906 &found, 0, usage);
907 if (found)
908 goto done;
909 }
910 }
911
912 done:
913 cluster->next[order] = offset;
914 return found;
915 }
916
__del_from_avail_list(struct swap_info_struct * si)917 static void __del_from_avail_list(struct swap_info_struct *si)
918 {
919 int nid;
920
921 assert_spin_locked(&si->lock);
922 for_each_node(nid)
923 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
924 }
925
del_from_avail_list(struct swap_info_struct * si)926 static void del_from_avail_list(struct swap_info_struct *si)
927 {
928 spin_lock(&swap_avail_lock);
929 __del_from_avail_list(si);
930 spin_unlock(&swap_avail_lock);
931 }
932
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)933 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
934 unsigned int nr_entries)
935 {
936 unsigned int end = offset + nr_entries - 1;
937
938 if (offset == si->lowest_bit)
939 si->lowest_bit += nr_entries;
940 if (end == si->highest_bit)
941 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
942 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
943 if (si->inuse_pages == si->pages) {
944 si->lowest_bit = si->max;
945 si->highest_bit = 0;
946 del_from_avail_list(si);
947
948 if (si->cluster_info && vm_swap_full())
949 schedule_work(&si->reclaim_work);
950 }
951 }
952
add_to_avail_list(struct swap_info_struct * si)953 static void add_to_avail_list(struct swap_info_struct *si)
954 {
955 int nid;
956
957 spin_lock(&swap_avail_lock);
958 for_each_node(nid)
959 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
960 spin_unlock(&swap_avail_lock);
961 }
962
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)963 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
964 unsigned int nr_entries)
965 {
966 unsigned long begin = offset;
967 unsigned long end = offset + nr_entries - 1;
968 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
969 unsigned int i;
970
971 /*
972 * Use atomic clear_bit operations only on zeromap instead of non-atomic
973 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
974 */
975 for (i = 0; i < nr_entries; i++)
976 clear_bit(offset + i, si->zeromap);
977
978 if (offset < si->lowest_bit)
979 si->lowest_bit = offset;
980 if (end > si->highest_bit) {
981 bool was_full = !si->highest_bit;
982
983 WRITE_ONCE(si->highest_bit, end);
984 if (was_full && (si->flags & SWP_WRITEOK))
985 add_to_avail_list(si);
986 }
987 if (si->flags & SWP_BLKDEV)
988 swap_slot_free_notify =
989 si->bdev->bd_disk->fops->swap_slot_free_notify;
990 else
991 swap_slot_free_notify = NULL;
992 while (offset <= end) {
993 arch_swap_invalidate_page(si->type, offset);
994 if (swap_slot_free_notify)
995 swap_slot_free_notify(si->bdev, offset);
996 offset++;
997 }
998 clear_shadow_from_swap_cache(si->type, begin, end);
999
1000 /*
1001 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1002 * only after the above cleanups are done.
1003 */
1004 smp_wmb();
1005 atomic_long_add(nr_entries, &nr_swap_pages);
1006 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
1007 }
1008
set_cluster_next(struct swap_info_struct * si,unsigned long next)1009 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
1010 {
1011 unsigned long prev;
1012
1013 if (!(si->flags & SWP_SOLIDSTATE)) {
1014 si->cluster_next = next;
1015 return;
1016 }
1017
1018 prev = this_cpu_read(*si->cluster_next_cpu);
1019 /*
1020 * Cross the swap address space size aligned trunk, choose
1021 * another trunk randomly to avoid lock contention on swap
1022 * address space if possible.
1023 */
1024 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1025 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1026 /* No free swap slots available */
1027 if (si->highest_bit <= si->lowest_bit)
1028 return;
1029 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1030 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1031 next = max_t(unsigned int, next, si->lowest_bit);
1032 }
1033 this_cpu_write(*si->cluster_next_cpu, next);
1034 }
1035
swap_offset_available_and_locked(struct swap_info_struct * si,unsigned long offset)1036 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1037 unsigned long offset)
1038 {
1039 if (data_race(!si->swap_map[offset])) {
1040 spin_lock(&si->lock);
1041 return true;
1042 }
1043
1044 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1045 spin_lock(&si->lock);
1046 return true;
1047 }
1048
1049 return false;
1050 }
1051
cluster_alloc_swap(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1052 static int cluster_alloc_swap(struct swap_info_struct *si,
1053 unsigned char usage, int nr,
1054 swp_entry_t slots[], int order)
1055 {
1056 int n_ret = 0;
1057
1058 VM_BUG_ON(!si->cluster_info);
1059
1060 si->flags += SWP_SCANNING;
1061
1062 while (n_ret < nr) {
1063 unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1064
1065 if (!offset)
1066 break;
1067 slots[n_ret++] = swp_entry(si->type, offset);
1068 }
1069
1070 si->flags -= SWP_SCANNING;
1071
1072 return n_ret;
1073 }
1074
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1075 static int scan_swap_map_slots(struct swap_info_struct *si,
1076 unsigned char usage, int nr,
1077 swp_entry_t slots[], int order)
1078 {
1079 unsigned long offset;
1080 unsigned long scan_base;
1081 unsigned long last_in_cluster = 0;
1082 int latency_ration = LATENCY_LIMIT;
1083 unsigned int nr_pages = 1 << order;
1084 int n_ret = 0;
1085 bool scanned_many = false;
1086
1087 /*
1088 * We try to cluster swap pages by allocating them sequentially
1089 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
1090 * way, however, we resort to first-free allocation, starting
1091 * a new cluster. This prevents us from scattering swap pages
1092 * all over the entire swap partition, so that we reduce
1093 * overall disk seek times between swap pages. -- sct
1094 * But we do now try to find an empty cluster. -Andrea
1095 * And we let swap pages go all over an SSD partition. Hugh
1096 */
1097
1098 if (order > 0) {
1099 /*
1100 * Should not even be attempting large allocations when huge
1101 * page swap is disabled. Warn and fail the allocation.
1102 */
1103 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1104 nr_pages > SWAPFILE_CLUSTER) {
1105 VM_WARN_ON_ONCE(1);
1106 return 0;
1107 }
1108
1109 /*
1110 * Swapfile is not block device or not using clusters so unable
1111 * to allocate large entries.
1112 */
1113 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1114 return 0;
1115 }
1116
1117 if (si->cluster_info)
1118 return cluster_alloc_swap(si, usage, nr, slots, order);
1119
1120 si->flags += SWP_SCANNING;
1121
1122 /* For HDD, sequential access is more important. */
1123 scan_base = si->cluster_next;
1124 offset = scan_base;
1125
1126 if (unlikely(!si->cluster_nr--)) {
1127 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1128 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1129 goto checks;
1130 }
1131
1132 spin_unlock(&si->lock);
1133
1134 /*
1135 * If seek is expensive, start searching for new cluster from
1136 * start of partition, to minimize the span of allocated swap.
1137 */
1138 scan_base = offset = si->lowest_bit;
1139 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1140
1141 /* Locate the first empty (unaligned) cluster */
1142 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1143 if (si->swap_map[offset])
1144 last_in_cluster = offset + SWAPFILE_CLUSTER;
1145 else if (offset == last_in_cluster) {
1146 spin_lock(&si->lock);
1147 offset -= SWAPFILE_CLUSTER - 1;
1148 si->cluster_next = offset;
1149 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1150 goto checks;
1151 }
1152 if (unlikely(--latency_ration < 0)) {
1153 cond_resched();
1154 latency_ration = LATENCY_LIMIT;
1155 }
1156 }
1157
1158 offset = scan_base;
1159 spin_lock(&si->lock);
1160 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1161 }
1162
1163 checks:
1164 if (!(si->flags & SWP_WRITEOK))
1165 goto no_page;
1166 if (!si->highest_bit)
1167 goto no_page;
1168 if (offset > si->highest_bit)
1169 scan_base = offset = si->lowest_bit;
1170
1171 /* reuse swap entry of cache-only swap if not busy. */
1172 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1173 int swap_was_freed;
1174 spin_unlock(&si->lock);
1175 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1176 spin_lock(&si->lock);
1177 /* entry was freed successfully, try to use this again */
1178 if (swap_was_freed > 0)
1179 goto checks;
1180 goto scan; /* check next one */
1181 }
1182
1183 if (si->swap_map[offset]) {
1184 if (!n_ret)
1185 goto scan;
1186 else
1187 goto done;
1188 }
1189 memset(si->swap_map + offset, usage, nr_pages);
1190
1191 swap_range_alloc(si, offset, nr_pages);
1192 slots[n_ret++] = swp_entry(si->type, offset);
1193
1194 /* got enough slots or reach max slots? */
1195 if ((n_ret == nr) || (offset >= si->highest_bit))
1196 goto done;
1197
1198 /* search for next available slot */
1199
1200 /* time to take a break? */
1201 if (unlikely(--latency_ration < 0)) {
1202 if (n_ret)
1203 goto done;
1204 spin_unlock(&si->lock);
1205 cond_resched();
1206 spin_lock(&si->lock);
1207 latency_ration = LATENCY_LIMIT;
1208 }
1209
1210 if (si->cluster_nr && !si->swap_map[++offset]) {
1211 /* non-ssd case, still more slots in cluster? */
1212 --si->cluster_nr;
1213 goto checks;
1214 }
1215
1216 /*
1217 * Even if there's no free clusters available (fragmented),
1218 * try to scan a little more quickly with lock held unless we
1219 * have scanned too many slots already.
1220 */
1221 if (!scanned_many) {
1222 unsigned long scan_limit;
1223
1224 if (offset < scan_base)
1225 scan_limit = scan_base;
1226 else
1227 scan_limit = si->highest_bit;
1228 for (; offset <= scan_limit && --latency_ration > 0;
1229 offset++) {
1230 if (!si->swap_map[offset])
1231 goto checks;
1232 }
1233 }
1234
1235 done:
1236 if (order == 0)
1237 set_cluster_next(si, offset + 1);
1238 si->flags -= SWP_SCANNING;
1239 return n_ret;
1240
1241 scan:
1242 VM_WARN_ON(order > 0);
1243 spin_unlock(&si->lock);
1244 while (++offset <= READ_ONCE(si->highest_bit)) {
1245 if (unlikely(--latency_ration < 0)) {
1246 cond_resched();
1247 latency_ration = LATENCY_LIMIT;
1248 scanned_many = true;
1249 }
1250 if (swap_offset_available_and_locked(si, offset))
1251 goto checks;
1252 }
1253 offset = si->lowest_bit;
1254 while (offset < scan_base) {
1255 if (unlikely(--latency_ration < 0)) {
1256 cond_resched();
1257 latency_ration = LATENCY_LIMIT;
1258 scanned_many = true;
1259 }
1260 if (swap_offset_available_and_locked(si, offset))
1261 goto checks;
1262 offset++;
1263 }
1264 spin_lock(&si->lock);
1265
1266 no_page:
1267 si->flags -= SWP_SCANNING;
1268 return n_ret;
1269 }
1270
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_order)1271 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1272 {
1273 int order = swap_entry_order(entry_order);
1274 unsigned long size = 1 << order;
1275 struct swap_info_struct *si, *next;
1276 long avail_pgs;
1277 int n_ret = 0;
1278 int node;
1279
1280 spin_lock(&swap_avail_lock);
1281
1282 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1283 if (avail_pgs <= 0) {
1284 spin_unlock(&swap_avail_lock);
1285 goto noswap;
1286 }
1287
1288 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1289
1290 atomic_long_sub(n_goal * size, &nr_swap_pages);
1291
1292 start_over:
1293 node = numa_node_id();
1294 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1295 /* requeue si to after same-priority siblings */
1296 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1297 spin_unlock(&swap_avail_lock);
1298 spin_lock(&si->lock);
1299 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1300 spin_lock(&swap_avail_lock);
1301 if (plist_node_empty(&si->avail_lists[node])) {
1302 spin_unlock(&si->lock);
1303 goto nextsi;
1304 }
1305 WARN(!si->highest_bit,
1306 "swap_info %d in list but !highest_bit\n",
1307 si->type);
1308 WARN(!(si->flags & SWP_WRITEOK),
1309 "swap_info %d in list but !SWP_WRITEOK\n",
1310 si->type);
1311 __del_from_avail_list(si);
1312 spin_unlock(&si->lock);
1313 goto nextsi;
1314 }
1315 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1316 n_goal, swp_entries, order);
1317 spin_unlock(&si->lock);
1318 if (n_ret || size > 1)
1319 goto check_out;
1320 cond_resched();
1321
1322 spin_lock(&swap_avail_lock);
1323 nextsi:
1324 /*
1325 * if we got here, it's likely that si was almost full before,
1326 * and since scan_swap_map_slots() can drop the si->lock,
1327 * multiple callers probably all tried to get a page from the
1328 * same si and it filled up before we could get one; or, the si
1329 * filled up between us dropping swap_avail_lock and taking
1330 * si->lock. Since we dropped the swap_avail_lock, the
1331 * swap_avail_head list may have been modified; so if next is
1332 * still in the swap_avail_head list then try it, otherwise
1333 * start over if we have not gotten any slots.
1334 */
1335 if (plist_node_empty(&next->avail_lists[node]))
1336 goto start_over;
1337 }
1338
1339 spin_unlock(&swap_avail_lock);
1340
1341 check_out:
1342 if (n_ret < n_goal)
1343 atomic_long_add((long)(n_goal - n_ret) * size,
1344 &nr_swap_pages);
1345 noswap:
1346 return n_ret;
1347 }
1348
_swap_info_get(swp_entry_t entry)1349 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1350 {
1351 struct swap_info_struct *si;
1352 unsigned long offset;
1353
1354 if (!entry.val)
1355 goto out;
1356 si = swp_swap_info(entry);
1357 if (!si)
1358 goto bad_nofile;
1359 if (data_race(!(si->flags & SWP_USED)))
1360 goto bad_device;
1361 offset = swp_offset(entry);
1362 if (offset >= si->max)
1363 goto bad_offset;
1364 if (data_race(!si->swap_map[swp_offset(entry)]))
1365 goto bad_free;
1366 return si;
1367
1368 bad_free:
1369 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1370 goto out;
1371 bad_offset:
1372 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1373 goto out;
1374 bad_device:
1375 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1376 goto out;
1377 bad_nofile:
1378 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1379 out:
1380 return NULL;
1381 }
1382
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1383 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1384 struct swap_info_struct *q)
1385 {
1386 struct swap_info_struct *p;
1387
1388 p = _swap_info_get(entry);
1389
1390 if (p != q) {
1391 if (q != NULL)
1392 spin_unlock(&q->lock);
1393 if (p != NULL)
1394 spin_lock(&p->lock);
1395 }
1396 return p;
1397 }
1398
__swap_entry_free_locked(struct swap_info_struct * si,unsigned long offset,unsigned char usage)1399 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1400 unsigned long offset,
1401 unsigned char usage)
1402 {
1403 unsigned char count;
1404 unsigned char has_cache;
1405
1406 count = si->swap_map[offset];
1407
1408 has_cache = count & SWAP_HAS_CACHE;
1409 count &= ~SWAP_HAS_CACHE;
1410
1411 if (usage == SWAP_HAS_CACHE) {
1412 VM_BUG_ON(!has_cache);
1413 has_cache = 0;
1414 } else if (count == SWAP_MAP_SHMEM) {
1415 /*
1416 * Or we could insist on shmem.c using a special
1417 * swap_shmem_free() and free_shmem_swap_and_cache()...
1418 */
1419 count = 0;
1420 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1421 if (count == COUNT_CONTINUED) {
1422 if (swap_count_continued(si, offset, count))
1423 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1424 else
1425 count = SWAP_MAP_MAX;
1426 } else
1427 count--;
1428 }
1429
1430 usage = count | has_cache;
1431 if (usage)
1432 WRITE_ONCE(si->swap_map[offset], usage);
1433 else
1434 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1435
1436 return usage;
1437 }
1438
1439 /*
1440 * When we get a swap entry, if there aren't some other ways to
1441 * prevent swapoff, such as the folio in swap cache is locked, RCU
1442 * reader side is locked, etc., the swap entry may become invalid
1443 * because of swapoff. Then, we need to enclose all swap related
1444 * functions with get_swap_device() and put_swap_device(), unless the
1445 * swap functions call get/put_swap_device() by themselves.
1446 *
1447 * RCU reader side lock (including any spinlock) is sufficient to
1448 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1449 * before freeing data structures.
1450 *
1451 * Check whether swap entry is valid in the swap device. If so,
1452 * return pointer to swap_info_struct, and keep the swap entry valid
1453 * via preventing the swap device from being swapoff, until
1454 * put_swap_device() is called. Otherwise return NULL.
1455 *
1456 * Notice that swapoff or swapoff+swapon can still happen before the
1457 * percpu_ref_tryget_live() in get_swap_device() or after the
1458 * percpu_ref_put() in put_swap_device() if there isn't any other way
1459 * to prevent swapoff. The caller must be prepared for that. For
1460 * example, the following situation is possible.
1461 *
1462 * CPU1 CPU2
1463 * do_swap_page()
1464 * ... swapoff+swapon
1465 * __read_swap_cache_async()
1466 * swapcache_prepare()
1467 * __swap_duplicate()
1468 * // check swap_map
1469 * // verify PTE not changed
1470 *
1471 * In __swap_duplicate(), the swap_map need to be checked before
1472 * changing partly because the specified swap entry may be for another
1473 * swap device which has been swapoff. And in do_swap_page(), after
1474 * the page is read from the swap device, the PTE is verified not
1475 * changed with the page table locked to check whether the swap device
1476 * has been swapoff or swapoff+swapon.
1477 */
get_swap_device(swp_entry_t entry)1478 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1479 {
1480 struct swap_info_struct *si;
1481 unsigned long offset;
1482
1483 if (!entry.val)
1484 goto out;
1485 si = swp_swap_info(entry);
1486 if (!si)
1487 goto bad_nofile;
1488 if (!percpu_ref_tryget_live(&si->users))
1489 goto out;
1490 /*
1491 * Guarantee the si->users are checked before accessing other
1492 * fields of swap_info_struct.
1493 *
1494 * Paired with the spin_unlock() after setup_swap_info() in
1495 * enable_swap_info().
1496 */
1497 smp_rmb();
1498 offset = swp_offset(entry);
1499 if (offset >= si->max)
1500 goto put_out;
1501
1502 return si;
1503 bad_nofile:
1504 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1505 out:
1506 return NULL;
1507 put_out:
1508 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1509 percpu_ref_put(&si->users);
1510 return NULL;
1511 }
1512
__swap_entry_free(struct swap_info_struct * si,swp_entry_t entry)1513 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1514 swp_entry_t entry)
1515 {
1516 struct swap_cluster_info *ci;
1517 unsigned long offset = swp_offset(entry);
1518 unsigned char usage;
1519
1520 ci = lock_cluster_or_swap_info(si, offset);
1521 usage = __swap_entry_free_locked(si, offset, 1);
1522 unlock_cluster_or_swap_info(si, ci);
1523 if (!usage)
1524 free_swap_slot(entry);
1525
1526 return usage;
1527 }
1528
__swap_entries_free(struct swap_info_struct * si,swp_entry_t entry,int nr)1529 static bool __swap_entries_free(struct swap_info_struct *si,
1530 swp_entry_t entry, int nr)
1531 {
1532 unsigned long offset = swp_offset(entry);
1533 unsigned int type = swp_type(entry);
1534 struct swap_cluster_info *ci;
1535 bool has_cache = false;
1536 unsigned char count;
1537 int i;
1538
1539 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1540 goto fallback;
1541 /* cross into another cluster */
1542 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1543 goto fallback;
1544
1545 ci = lock_cluster_or_swap_info(si, offset);
1546 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1547 unlock_cluster_or_swap_info(si, ci);
1548 goto fallback;
1549 }
1550 for (i = 0; i < nr; i++)
1551 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1552 unlock_cluster_or_swap_info(si, ci);
1553
1554 if (!has_cache) {
1555 for (i = 0; i < nr; i++)
1556 zswap_invalidate(swp_entry(si->type, offset + i));
1557 spin_lock(&si->lock);
1558 swap_entry_range_free(si, entry, nr);
1559 spin_unlock(&si->lock);
1560 }
1561 return has_cache;
1562
1563 fallback:
1564 for (i = 0; i < nr; i++) {
1565 if (data_race(si->swap_map[offset + i])) {
1566 count = __swap_entry_free(si, swp_entry(type, offset + i));
1567 if (count == SWAP_HAS_CACHE)
1568 has_cache = true;
1569 } else {
1570 WARN_ON_ONCE(1);
1571 }
1572 }
1573 return has_cache;
1574 }
1575
1576 /*
1577 * Drop the last HAS_CACHE flag of swap entries, caller have to
1578 * ensure all entries belong to the same cgroup.
1579 */
swap_entry_range_free(struct swap_info_struct * si,swp_entry_t entry,unsigned int nr_pages)1580 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1581 unsigned int nr_pages)
1582 {
1583 unsigned long offset = swp_offset(entry);
1584 unsigned char *map = si->swap_map + offset;
1585 unsigned char *map_end = map + nr_pages;
1586 struct swap_cluster_info *ci;
1587
1588 ci = lock_cluster(si, offset);
1589 do {
1590 VM_BUG_ON(*map != SWAP_HAS_CACHE);
1591 *map = 0;
1592 } while (++map < map_end);
1593 dec_cluster_info_page(si, ci, nr_pages);
1594 unlock_cluster(ci);
1595
1596 mem_cgroup_uncharge_swap(entry, nr_pages);
1597 swap_range_free(si, offset, nr_pages);
1598 }
1599
cluster_swap_free_nr(struct swap_info_struct * si,unsigned long offset,int nr_pages,unsigned char usage)1600 static void cluster_swap_free_nr(struct swap_info_struct *si,
1601 unsigned long offset, int nr_pages,
1602 unsigned char usage)
1603 {
1604 struct swap_cluster_info *ci;
1605 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1606 int i, nr;
1607
1608 ci = lock_cluster_or_swap_info(si, offset);
1609 while (nr_pages) {
1610 nr = min(BITS_PER_LONG, nr_pages);
1611 for (i = 0; i < nr; i++) {
1612 if (!__swap_entry_free_locked(si, offset + i, usage))
1613 bitmap_set(to_free, i, 1);
1614 }
1615 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1616 unlock_cluster_or_swap_info(si, ci);
1617 for_each_set_bit(i, to_free, BITS_PER_LONG)
1618 free_swap_slot(swp_entry(si->type, offset + i));
1619 if (nr == nr_pages)
1620 return;
1621 bitmap_clear(to_free, 0, BITS_PER_LONG);
1622 ci = lock_cluster_or_swap_info(si, offset);
1623 }
1624 offset += nr;
1625 nr_pages -= nr;
1626 }
1627 unlock_cluster_or_swap_info(si, ci);
1628 }
1629
1630 /*
1631 * Caller has made sure that the swap device corresponding to entry
1632 * is still around or has not been recycled.
1633 */
swap_free_nr(swp_entry_t entry,int nr_pages)1634 void swap_free_nr(swp_entry_t entry, int nr_pages)
1635 {
1636 int nr;
1637 struct swap_info_struct *sis;
1638 unsigned long offset = swp_offset(entry);
1639
1640 sis = _swap_info_get(entry);
1641 if (!sis)
1642 return;
1643
1644 while (nr_pages) {
1645 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1646 cluster_swap_free_nr(sis, offset, nr, 1);
1647 offset += nr;
1648 nr_pages -= nr;
1649 }
1650 }
1651
1652 /*
1653 * Called after dropping swapcache to decrease refcnt to swap entries.
1654 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1655 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1656 {
1657 unsigned long offset = swp_offset(entry);
1658 struct swap_cluster_info *ci;
1659 struct swap_info_struct *si;
1660 int size = 1 << swap_entry_order(folio_order(folio));
1661
1662 si = _swap_info_get(entry);
1663 if (!si)
1664 return;
1665
1666 ci = lock_cluster_or_swap_info(si, offset);
1667 if (size > 1 && swap_is_has_cache(si, offset, size)) {
1668 unlock_cluster_or_swap_info(si, ci);
1669 spin_lock(&si->lock);
1670 swap_entry_range_free(si, entry, size);
1671 spin_unlock(&si->lock);
1672 return;
1673 }
1674 for (int i = 0; i < size; i++, entry.val++) {
1675 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1676 unlock_cluster_or_swap_info(si, ci);
1677 free_swap_slot(entry);
1678 if (i == size - 1)
1679 return;
1680 lock_cluster_or_swap_info(si, offset);
1681 }
1682 }
1683 unlock_cluster_or_swap_info(si, ci);
1684 }
1685
swp_entry_cmp(const void * ent1,const void * ent2)1686 static int swp_entry_cmp(const void *ent1, const void *ent2)
1687 {
1688 const swp_entry_t *e1 = ent1, *e2 = ent2;
1689
1690 return (int)swp_type(*e1) - (int)swp_type(*e2);
1691 }
1692
swapcache_free_entries(swp_entry_t * entries,int n)1693 void swapcache_free_entries(swp_entry_t *entries, int n)
1694 {
1695 struct swap_info_struct *p, *prev;
1696 int i;
1697
1698 if (n <= 0)
1699 return;
1700
1701 prev = NULL;
1702 p = NULL;
1703
1704 /*
1705 * Sort swap entries by swap device, so each lock is only taken once.
1706 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1707 * so low that it isn't necessary to optimize further.
1708 */
1709 if (nr_swapfiles > 1)
1710 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1711 for (i = 0; i < n; ++i) {
1712 p = swap_info_get_cont(entries[i], prev);
1713 if (p)
1714 swap_entry_range_free(p, entries[i], 1);
1715 prev = p;
1716 }
1717 if (p)
1718 spin_unlock(&p->lock);
1719 }
1720
__swap_count(swp_entry_t entry)1721 int __swap_count(swp_entry_t entry)
1722 {
1723 struct swap_info_struct *si = swp_swap_info(entry);
1724 pgoff_t offset = swp_offset(entry);
1725
1726 return swap_count(si->swap_map[offset]);
1727 }
1728
1729 /*
1730 * How many references to @entry are currently swapped out?
1731 * This does not give an exact answer when swap count is continued,
1732 * but does include the high COUNT_CONTINUED flag to allow for that.
1733 */
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1734 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1735 {
1736 pgoff_t offset = swp_offset(entry);
1737 struct swap_cluster_info *ci;
1738 int count;
1739
1740 ci = lock_cluster_or_swap_info(si, offset);
1741 count = swap_count(si->swap_map[offset]);
1742 unlock_cluster_or_swap_info(si, ci);
1743 return count;
1744 }
1745
1746 /*
1747 * How many references to @entry are currently swapped out?
1748 * This considers COUNT_CONTINUED so it returns exact answer.
1749 */
swp_swapcount(swp_entry_t entry)1750 int swp_swapcount(swp_entry_t entry)
1751 {
1752 int count, tmp_count, n;
1753 struct swap_info_struct *si;
1754 struct swap_cluster_info *ci;
1755 struct page *page;
1756 pgoff_t offset;
1757 unsigned char *map;
1758
1759 si = _swap_info_get(entry);
1760 if (!si)
1761 return 0;
1762
1763 offset = swp_offset(entry);
1764
1765 ci = lock_cluster_or_swap_info(si, offset);
1766
1767 count = swap_count(si->swap_map[offset]);
1768 if (!(count & COUNT_CONTINUED))
1769 goto out;
1770
1771 count &= ~COUNT_CONTINUED;
1772 n = SWAP_MAP_MAX + 1;
1773
1774 page = vmalloc_to_page(si->swap_map + offset);
1775 offset &= ~PAGE_MASK;
1776 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1777
1778 do {
1779 page = list_next_entry(page, lru);
1780 map = kmap_local_page(page);
1781 tmp_count = map[offset];
1782 kunmap_local(map);
1783
1784 count += (tmp_count & ~COUNT_CONTINUED) * n;
1785 n *= (SWAP_CONT_MAX + 1);
1786 } while (tmp_count & COUNT_CONTINUED);
1787 out:
1788 unlock_cluster_or_swap_info(si, ci);
1789 return count;
1790 }
1791 EXPORT_SYMBOL_GPL(swp_swapcount);
1792
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1793 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1794 swp_entry_t entry, int order)
1795 {
1796 struct swap_cluster_info *ci;
1797 unsigned char *map = si->swap_map;
1798 unsigned int nr_pages = 1 << order;
1799 unsigned long roffset = swp_offset(entry);
1800 unsigned long offset = round_down(roffset, nr_pages);
1801 int i;
1802 bool ret = false;
1803
1804 ci = lock_cluster_or_swap_info(si, offset);
1805 if (!ci || nr_pages == 1) {
1806 if (swap_count(map[roffset]))
1807 ret = true;
1808 goto unlock_out;
1809 }
1810 for (i = 0; i < nr_pages; i++) {
1811 if (swap_count(map[offset + i])) {
1812 ret = true;
1813 break;
1814 }
1815 }
1816 unlock_out:
1817 unlock_cluster_or_swap_info(si, ci);
1818 return ret;
1819 }
1820
folio_swapped(struct folio * folio)1821 static bool folio_swapped(struct folio *folio)
1822 {
1823 swp_entry_t entry = folio->swap;
1824 struct swap_info_struct *si = _swap_info_get(entry);
1825
1826 if (!si)
1827 return false;
1828
1829 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1830 return swap_swapcount(si, entry) != 0;
1831
1832 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1833 }
1834
folio_swapcache_freeable(struct folio * folio)1835 static bool folio_swapcache_freeable(struct folio *folio)
1836 {
1837 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1838
1839 if (!folio_test_swapcache(folio))
1840 return false;
1841 if (folio_test_writeback(folio))
1842 return false;
1843
1844 /*
1845 * Once hibernation has begun to create its image of memory,
1846 * there's a danger that one of the calls to folio_free_swap()
1847 * - most probably a call from __try_to_reclaim_swap() while
1848 * hibernation is allocating its own swap pages for the image,
1849 * but conceivably even a call from memory reclaim - will free
1850 * the swap from a folio which has already been recorded in the
1851 * image as a clean swapcache folio, and then reuse its swap for
1852 * another page of the image. On waking from hibernation, the
1853 * original folio might be freed under memory pressure, then
1854 * later read back in from swap, now with the wrong data.
1855 *
1856 * Hibernation suspends storage while it is writing the image
1857 * to disk so check that here.
1858 */
1859 if (pm_suspended_storage())
1860 return false;
1861
1862 return true;
1863 }
1864
1865 /**
1866 * folio_free_swap() - Free the swap space used for this folio.
1867 * @folio: The folio to remove.
1868 *
1869 * If swap is getting full, or if there are no more mappings of this folio,
1870 * then call folio_free_swap to free its swap space.
1871 *
1872 * Return: true if we were able to release the swap space.
1873 */
folio_free_swap(struct folio * folio)1874 bool folio_free_swap(struct folio *folio)
1875 {
1876 if (!folio_swapcache_freeable(folio))
1877 return false;
1878 if (folio_swapped(folio))
1879 return false;
1880
1881 delete_from_swap_cache(folio);
1882 folio_set_dirty(folio);
1883 return true;
1884 }
1885
1886 /**
1887 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1888 * reclaim their cache if no more references remain.
1889 * @entry: First entry of range.
1890 * @nr: Number of entries in range.
1891 *
1892 * For each swap entry in the contiguous range, release a reference. If any swap
1893 * entries become free, try to reclaim their underlying folios, if present. The
1894 * offset range is defined by [entry.offset, entry.offset + nr).
1895 */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1896 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1897 {
1898 const unsigned long start_offset = swp_offset(entry);
1899 const unsigned long end_offset = start_offset + nr;
1900 struct swap_info_struct *si;
1901 bool any_only_cache = false;
1902 unsigned long offset;
1903
1904 if (non_swap_entry(entry))
1905 return;
1906
1907 si = get_swap_device(entry);
1908 if (!si)
1909 return;
1910
1911 if (WARN_ON(end_offset > si->max))
1912 goto out;
1913
1914 /*
1915 * First free all entries in the range.
1916 */
1917 any_only_cache = __swap_entries_free(si, entry, nr);
1918
1919 /*
1920 * Short-circuit the below loop if none of the entries had their
1921 * reference drop to zero.
1922 */
1923 if (!any_only_cache)
1924 goto out;
1925
1926 /*
1927 * Now go back over the range trying to reclaim the swap cache. This is
1928 * more efficient for large folios because we will only try to reclaim
1929 * the swap once per folio in the common case. If we do
1930 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1931 * latter will get a reference and lock the folio for every individual
1932 * page but will only succeed once the swap slot for every subpage is
1933 * zero.
1934 */
1935 for (offset = start_offset; offset < end_offset; offset += nr) {
1936 nr = 1;
1937 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1938 /*
1939 * Folios are always naturally aligned in swap so
1940 * advance forward to the next boundary. Zero means no
1941 * folio was found for the swap entry, so advance by 1
1942 * in this case. Negative value means folio was found
1943 * but could not be reclaimed. Here we can still advance
1944 * to the next boundary.
1945 */
1946 nr = __try_to_reclaim_swap(si, offset,
1947 TTRS_UNMAPPED | TTRS_FULL);
1948 if (nr == 0)
1949 nr = 1;
1950 else if (nr < 0)
1951 nr = -nr;
1952 nr = ALIGN(offset + 1, nr) - offset;
1953 }
1954 }
1955
1956 out:
1957 put_swap_device(si);
1958 }
1959
1960 #ifdef CONFIG_HIBERNATION
1961
get_swap_page_of_type(int type)1962 swp_entry_t get_swap_page_of_type(int type)
1963 {
1964 struct swap_info_struct *si = swap_type_to_swap_info(type);
1965 swp_entry_t entry = {0};
1966
1967 if (!si)
1968 goto fail;
1969
1970 /* This is called for allocating swap entry, not cache */
1971 spin_lock(&si->lock);
1972 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1973 atomic_long_dec(&nr_swap_pages);
1974 spin_unlock(&si->lock);
1975 fail:
1976 return entry;
1977 }
1978
1979 /*
1980 * Find the swap type that corresponds to given device (if any).
1981 *
1982 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1983 * from 0, in which the swap header is expected to be located.
1984 *
1985 * This is needed for the suspend to disk (aka swsusp).
1986 */
swap_type_of(dev_t device,sector_t offset)1987 int swap_type_of(dev_t device, sector_t offset)
1988 {
1989 int type;
1990
1991 if (!device)
1992 return -1;
1993
1994 spin_lock(&swap_lock);
1995 for (type = 0; type < nr_swapfiles; type++) {
1996 struct swap_info_struct *sis = swap_info[type];
1997
1998 if (!(sis->flags & SWP_WRITEOK))
1999 continue;
2000
2001 if (device == sis->bdev->bd_dev) {
2002 struct swap_extent *se = first_se(sis);
2003
2004 if (se->start_block == offset) {
2005 spin_unlock(&swap_lock);
2006 return type;
2007 }
2008 }
2009 }
2010 spin_unlock(&swap_lock);
2011 return -ENODEV;
2012 }
2013
find_first_swap(dev_t * device)2014 int find_first_swap(dev_t *device)
2015 {
2016 int type;
2017
2018 spin_lock(&swap_lock);
2019 for (type = 0; type < nr_swapfiles; type++) {
2020 struct swap_info_struct *sis = swap_info[type];
2021
2022 if (!(sis->flags & SWP_WRITEOK))
2023 continue;
2024 *device = sis->bdev->bd_dev;
2025 spin_unlock(&swap_lock);
2026 return type;
2027 }
2028 spin_unlock(&swap_lock);
2029 return -ENODEV;
2030 }
2031
2032 /*
2033 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2034 * corresponding to given index in swap_info (swap type).
2035 */
swapdev_block(int type,pgoff_t offset)2036 sector_t swapdev_block(int type, pgoff_t offset)
2037 {
2038 struct swap_info_struct *si = swap_type_to_swap_info(type);
2039 struct swap_extent *se;
2040
2041 if (!si || !(si->flags & SWP_WRITEOK))
2042 return 0;
2043 se = offset_to_swap_extent(si, offset);
2044 return se->start_block + (offset - se->start_page);
2045 }
2046
2047 /*
2048 * Return either the total number of swap pages of given type, or the number
2049 * of free pages of that type (depending on @free)
2050 *
2051 * This is needed for software suspend
2052 */
count_swap_pages(int type,int free)2053 unsigned int count_swap_pages(int type, int free)
2054 {
2055 unsigned int n = 0;
2056
2057 spin_lock(&swap_lock);
2058 if ((unsigned int)type < nr_swapfiles) {
2059 struct swap_info_struct *sis = swap_info[type];
2060
2061 spin_lock(&sis->lock);
2062 if (sis->flags & SWP_WRITEOK) {
2063 n = sis->pages;
2064 if (free)
2065 n -= sis->inuse_pages;
2066 }
2067 spin_unlock(&sis->lock);
2068 }
2069 spin_unlock(&swap_lock);
2070 return n;
2071 }
2072 #endif /* CONFIG_HIBERNATION */
2073
pte_same_as_swp(pte_t pte,pte_t swp_pte)2074 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2075 {
2076 return pte_same(pte_swp_clear_flags(pte), swp_pte);
2077 }
2078
2079 /*
2080 * No need to decide whether this PTE shares the swap entry with others,
2081 * just let do_wp_page work it out if a write is requested later - to
2082 * force COW, vm_page_prot omits write permission from any private vma.
2083 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)2084 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2085 unsigned long addr, swp_entry_t entry, struct folio *folio)
2086 {
2087 struct page *page;
2088 struct folio *swapcache;
2089 spinlock_t *ptl;
2090 pte_t *pte, new_pte, old_pte;
2091 bool hwpoisoned = false;
2092 int ret = 1;
2093
2094 swapcache = folio;
2095 folio = ksm_might_need_to_copy(folio, vma, addr);
2096 if (unlikely(!folio))
2097 return -ENOMEM;
2098 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2099 hwpoisoned = true;
2100 folio = swapcache;
2101 }
2102
2103 page = folio_file_page(folio, swp_offset(entry));
2104 if (PageHWPoison(page))
2105 hwpoisoned = true;
2106
2107 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2108 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2109 swp_entry_to_pte(entry)))) {
2110 ret = 0;
2111 goto out;
2112 }
2113
2114 old_pte = ptep_get(pte);
2115
2116 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2117 swp_entry_t swp_entry;
2118
2119 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2120 if (hwpoisoned) {
2121 swp_entry = make_hwpoison_entry(page);
2122 } else {
2123 swp_entry = make_poisoned_swp_entry();
2124 }
2125 new_pte = swp_entry_to_pte(swp_entry);
2126 ret = 0;
2127 goto setpte;
2128 }
2129
2130 /*
2131 * Some architectures may have to restore extra metadata to the page
2132 * when reading from swap. This metadata may be indexed by swap entry
2133 * so this must be called before swap_free().
2134 */
2135 arch_swap_restore(folio_swap(entry, folio), folio);
2136
2137 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2138 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2139 folio_get(folio);
2140 if (folio == swapcache) {
2141 rmap_t rmap_flags = RMAP_NONE;
2142
2143 /*
2144 * See do_swap_page(): writeback would be problematic.
2145 * However, we do a folio_wait_writeback() just before this
2146 * call and have the folio locked.
2147 */
2148 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2149 if (pte_swp_exclusive(old_pte))
2150 rmap_flags |= RMAP_EXCLUSIVE;
2151 /*
2152 * We currently only expect small !anon folios, which are either
2153 * fully exclusive or fully shared. If we ever get large folios
2154 * here, we have to be careful.
2155 */
2156 if (!folio_test_anon(folio)) {
2157 VM_WARN_ON_ONCE(folio_test_large(folio));
2158 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2159 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2160 } else {
2161 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2162 }
2163 } else { /* ksm created a completely new copy */
2164 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2165 folio_add_lru_vma(folio, vma);
2166 }
2167 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2168 if (pte_swp_soft_dirty(old_pte))
2169 new_pte = pte_mksoft_dirty(new_pte);
2170 if (pte_swp_uffd_wp(old_pte))
2171 new_pte = pte_mkuffd_wp(new_pte);
2172 setpte:
2173 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2174 swap_free(entry);
2175 out:
2176 if (pte)
2177 pte_unmap_unlock(pte, ptl);
2178 if (folio != swapcache) {
2179 folio_unlock(folio);
2180 folio_put(folio);
2181 }
2182 return ret;
2183 }
2184
unuse_swap_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)2185 int unuse_swap_pte(struct vm_area_struct *vma, pmd_t *pmd,
2186 unsigned long addr, swp_entry_t entry, struct folio *folio)
2187 {
2188 return unuse_pte(vma, pmd, addr, entry, folio);
2189 }
2190 EXPORT_SYMBOL_GPL(unuse_swap_pte);
2191
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2192 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2193 unsigned long addr, unsigned long end,
2194 unsigned int type)
2195 {
2196 pte_t *pte = NULL;
2197 struct swap_info_struct *si;
2198
2199 si = swap_info[type];
2200 do {
2201 struct folio *folio;
2202 unsigned long offset;
2203 unsigned char swp_count;
2204 swp_entry_t entry;
2205 int ret;
2206 pte_t ptent;
2207
2208 if (!pte++) {
2209 pte = pte_offset_map(pmd, addr);
2210 if (!pte)
2211 break;
2212 }
2213
2214 ptent = ptep_get_lockless(pte);
2215
2216 if (!is_swap_pte(ptent))
2217 continue;
2218
2219 entry = pte_to_swp_entry(ptent);
2220 if (swp_type(entry) != type)
2221 continue;
2222
2223 offset = swp_offset(entry);
2224 pte_unmap(pte);
2225 pte = NULL;
2226
2227 folio = swap_cache_get_folio(entry, vma, addr);
2228 if (!folio) {
2229 struct vm_fault vmf = {
2230 .vma = vma,
2231 .address = addr,
2232 .real_address = addr,
2233 .pmd = pmd,
2234 };
2235
2236 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2237 &vmf);
2238 }
2239 if (!folio) {
2240 swp_count = READ_ONCE(si->swap_map[offset]);
2241 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2242 continue;
2243 return -ENOMEM;
2244 }
2245
2246 folio_lock(folio);
2247 folio_wait_writeback(folio);
2248 ret = unuse_pte(vma, pmd, addr, entry, folio);
2249 if (ret < 0) {
2250 folio_unlock(folio);
2251 folio_put(folio);
2252 return ret;
2253 }
2254
2255 folio_free_swap(folio);
2256 folio_unlock(folio);
2257 folio_put(folio);
2258 } while (addr += PAGE_SIZE, addr != end);
2259
2260 if (pte)
2261 pte_unmap(pte);
2262 return 0;
2263 }
2264
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2265 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2266 unsigned long addr, unsigned long end,
2267 unsigned int type)
2268 {
2269 pmd_t *pmd;
2270 unsigned long next;
2271 int ret;
2272
2273 pmd = pmd_offset(pud, addr);
2274 do {
2275 cond_resched();
2276 next = pmd_addr_end(addr, end);
2277 ret = unuse_pte_range(vma, pmd, addr, next, type);
2278 if (ret)
2279 return ret;
2280 } while (pmd++, addr = next, addr != end);
2281 return 0;
2282 }
2283
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2284 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2285 unsigned long addr, unsigned long end,
2286 unsigned int type)
2287 {
2288 pud_t *pud;
2289 unsigned long next;
2290 int ret;
2291
2292 pud = pud_offset(p4d, addr);
2293 do {
2294 next = pud_addr_end(addr, end);
2295 if (pud_none_or_clear_bad(pud))
2296 continue;
2297 ret = unuse_pmd_range(vma, pud, addr, next, type);
2298 if (ret)
2299 return ret;
2300 } while (pud++, addr = next, addr != end);
2301 return 0;
2302 }
2303
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2304 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2305 unsigned long addr, unsigned long end,
2306 unsigned int type)
2307 {
2308 p4d_t *p4d;
2309 unsigned long next;
2310 int ret;
2311
2312 p4d = p4d_offset(pgd, addr);
2313 do {
2314 next = p4d_addr_end(addr, end);
2315 if (p4d_none_or_clear_bad(p4d))
2316 continue;
2317 ret = unuse_pud_range(vma, p4d, addr, next, type);
2318 if (ret)
2319 return ret;
2320 } while (p4d++, addr = next, addr != end);
2321 return 0;
2322 }
2323
unuse_vma(struct vm_area_struct * vma,unsigned int type)2324 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2325 {
2326 pgd_t *pgd;
2327 unsigned long addr, end, next;
2328 int ret;
2329
2330 addr = vma->vm_start;
2331 end = vma->vm_end;
2332
2333 pgd = pgd_offset(vma->vm_mm, addr);
2334 do {
2335 next = pgd_addr_end(addr, end);
2336 if (pgd_none_or_clear_bad(pgd))
2337 continue;
2338 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2339 if (ret)
2340 return ret;
2341 } while (pgd++, addr = next, addr != end);
2342 return 0;
2343 }
2344
unuse_mm(struct mm_struct * mm,unsigned int type)2345 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2346 {
2347 struct vm_area_struct *vma;
2348 int ret = 0;
2349 VMA_ITERATOR(vmi, mm, 0);
2350
2351 mmap_read_lock(mm);
2352 if (check_stable_address_space(mm))
2353 goto unlock;
2354 for_each_vma(vmi, vma) {
2355 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2356 ret = unuse_vma(vma, type);
2357 if (ret)
2358 break;
2359 }
2360
2361 cond_resched();
2362 }
2363 unlock:
2364 mmap_read_unlock(mm);
2365 return ret;
2366 }
2367
2368 /*
2369 * Scan swap_map from current position to next entry still in use.
2370 * Return 0 if there are no inuse entries after prev till end of
2371 * the map.
2372 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2373 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2374 unsigned int prev)
2375 {
2376 unsigned int i;
2377 unsigned char count;
2378
2379 /*
2380 * No need for swap_lock here: we're just looking
2381 * for whether an entry is in use, not modifying it; false
2382 * hits are okay, and sys_swapoff() has already prevented new
2383 * allocations from this area (while holding swap_lock).
2384 */
2385 for (i = prev + 1; i < si->max; i++) {
2386 count = READ_ONCE(si->swap_map[i]);
2387 if (count && swap_count(count) != SWAP_MAP_BAD)
2388 break;
2389 if ((i % LATENCY_LIMIT) == 0)
2390 cond_resched();
2391 }
2392
2393 if (i == si->max)
2394 i = 0;
2395
2396 return i;
2397 }
2398
try_to_unuse(unsigned int type)2399 static int try_to_unuse(unsigned int type)
2400 {
2401 struct mm_struct *prev_mm;
2402 struct mm_struct *mm;
2403 struct list_head *p;
2404 int retval = 0;
2405 struct swap_info_struct *si = swap_info[type];
2406 struct folio *folio;
2407 swp_entry_t entry;
2408 unsigned int i;
2409
2410 if (!READ_ONCE(si->inuse_pages))
2411 goto success;
2412
2413 retry:
2414 retval = shmem_unuse(type);
2415 if (retval)
2416 return retval;
2417
2418 prev_mm = &init_mm;
2419 mmget(prev_mm);
2420
2421 spin_lock(&mmlist_lock);
2422 p = &init_mm.mmlist;
2423 while (READ_ONCE(si->inuse_pages) &&
2424 !signal_pending(current) &&
2425 (p = p->next) != &init_mm.mmlist) {
2426
2427 mm = list_entry(p, struct mm_struct, mmlist);
2428 if (!mmget_not_zero(mm))
2429 continue;
2430 spin_unlock(&mmlist_lock);
2431 mmput(prev_mm);
2432 prev_mm = mm;
2433 retval = unuse_mm(mm, type);
2434 if (retval) {
2435 mmput(prev_mm);
2436 return retval;
2437 }
2438
2439 /*
2440 * Make sure that we aren't completely killing
2441 * interactive performance.
2442 */
2443 cond_resched();
2444 spin_lock(&mmlist_lock);
2445 }
2446 spin_unlock(&mmlist_lock);
2447
2448 mmput(prev_mm);
2449
2450 i = 0;
2451 while (READ_ONCE(si->inuse_pages) &&
2452 !signal_pending(current) &&
2453 (i = find_next_to_unuse(si, i)) != 0) {
2454
2455 entry = swp_entry(type, i);
2456 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2457 if (IS_ERR(folio))
2458 continue;
2459
2460 /*
2461 * It is conceivable that a racing task removed this folio from
2462 * swap cache just before we acquired the page lock. The folio
2463 * might even be back in swap cache on another swap area. But
2464 * that is okay, folio_free_swap() only removes stale folios.
2465 */
2466 folio_lock(folio);
2467 folio_wait_writeback(folio);
2468 folio_free_swap(folio);
2469 folio_unlock(folio);
2470 folio_put(folio);
2471 }
2472
2473 /*
2474 * Lets check again to see if there are still swap entries in the map.
2475 * If yes, we would need to do retry the unuse logic again.
2476 * Under global memory pressure, swap entries can be reinserted back
2477 * into process space after the mmlist loop above passes over them.
2478 *
2479 * Limit the number of retries? No: when mmget_not_zero()
2480 * above fails, that mm is likely to be freeing swap from
2481 * exit_mmap(), which proceeds at its own independent pace;
2482 * and even shmem_writepage() could have been preempted after
2483 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2484 * and robust (though cpu-intensive) just to keep retrying.
2485 */
2486 if (READ_ONCE(si->inuse_pages)) {
2487 if (!signal_pending(current))
2488 goto retry;
2489 return -EINTR;
2490 }
2491
2492 success:
2493 /*
2494 * Make sure that further cleanups after try_to_unuse() returns happen
2495 * after swap_range_free() reduces si->inuse_pages to 0.
2496 */
2497 smp_mb();
2498 return 0;
2499 }
2500
2501 /*
2502 * After a successful try_to_unuse, if no swap is now in use, we know
2503 * we can empty the mmlist. swap_lock must be held on entry and exit.
2504 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2505 * added to the mmlist just after page_duplicate - before would be racy.
2506 */
drain_mmlist(void)2507 static void drain_mmlist(void)
2508 {
2509 struct list_head *p, *next;
2510 unsigned int type;
2511
2512 for (type = 0; type < nr_swapfiles; type++)
2513 if (swap_info[type]->inuse_pages)
2514 return;
2515 spin_lock(&mmlist_lock);
2516 list_for_each_safe(p, next, &init_mm.mmlist)
2517 list_del_init(p);
2518 spin_unlock(&mmlist_lock);
2519 }
2520
2521 /*
2522 * Free all of a swapdev's extent information
2523 */
destroy_swap_extents(struct swap_info_struct * sis)2524 static void destroy_swap_extents(struct swap_info_struct *sis)
2525 {
2526 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2527 struct rb_node *rb = sis->swap_extent_root.rb_node;
2528 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2529
2530 rb_erase(rb, &sis->swap_extent_root);
2531 kfree(se);
2532 }
2533
2534 if (sis->flags & SWP_ACTIVATED) {
2535 struct file *swap_file = sis->swap_file;
2536 struct address_space *mapping = swap_file->f_mapping;
2537
2538 sis->flags &= ~SWP_ACTIVATED;
2539 if (mapping->a_ops->swap_deactivate)
2540 mapping->a_ops->swap_deactivate(swap_file);
2541 }
2542 }
2543
2544 /*
2545 * Add a block range (and the corresponding page range) into this swapdev's
2546 * extent tree.
2547 *
2548 * This function rather assumes that it is called in ascending page order.
2549 */
2550 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2551 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2552 unsigned long nr_pages, sector_t start_block)
2553 {
2554 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2555 struct swap_extent *se;
2556 struct swap_extent *new_se;
2557
2558 /*
2559 * place the new node at the right most since the
2560 * function is called in ascending page order.
2561 */
2562 while (*link) {
2563 parent = *link;
2564 link = &parent->rb_right;
2565 }
2566
2567 if (parent) {
2568 se = rb_entry(parent, struct swap_extent, rb_node);
2569 BUG_ON(se->start_page + se->nr_pages != start_page);
2570 if (se->start_block + se->nr_pages == start_block) {
2571 /* Merge it */
2572 se->nr_pages += nr_pages;
2573 return 0;
2574 }
2575 }
2576
2577 /* No merge, insert a new extent. */
2578 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2579 if (new_se == NULL)
2580 return -ENOMEM;
2581 new_se->start_page = start_page;
2582 new_se->nr_pages = nr_pages;
2583 new_se->start_block = start_block;
2584
2585 rb_link_node(&new_se->rb_node, parent, link);
2586 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2587 return 1;
2588 }
2589 EXPORT_SYMBOL_GPL(add_swap_extent);
2590
2591 /*
2592 * A `swap extent' is a simple thing which maps a contiguous range of pages
2593 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2594 * built at swapon time and is then used at swap_writepage/swap_read_folio
2595 * time for locating where on disk a page belongs.
2596 *
2597 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2598 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2599 * swap files identically.
2600 *
2601 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2602 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2603 * swapfiles are handled *identically* after swapon time.
2604 *
2605 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2606 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2607 * blocks are found which do not fall within the PAGE_SIZE alignment
2608 * requirements, they are simply tossed out - we will never use those blocks
2609 * for swapping.
2610 *
2611 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2612 * prevents users from writing to the swap device, which will corrupt memory.
2613 *
2614 * The amount of disk space which a single swap extent represents varies.
2615 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2616 * extents in the rbtree. - akpm.
2617 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2618 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2619 {
2620 struct file *swap_file = sis->swap_file;
2621 struct address_space *mapping = swap_file->f_mapping;
2622 struct inode *inode = mapping->host;
2623 int ret;
2624
2625 if (S_ISBLK(inode->i_mode)) {
2626 ret = add_swap_extent(sis, 0, sis->max, 0);
2627 *span = sis->pages;
2628 return ret;
2629 }
2630
2631 if (mapping->a_ops->swap_activate) {
2632 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2633 if (ret < 0)
2634 return ret;
2635 sis->flags |= SWP_ACTIVATED;
2636 if ((sis->flags & SWP_FS_OPS) &&
2637 sio_pool_init() != 0) {
2638 destroy_swap_extents(sis);
2639 return -ENOMEM;
2640 }
2641 return ret;
2642 }
2643
2644 return generic_swapfile_activate(sis, swap_file, span);
2645 }
2646
swap_node(struct swap_info_struct * si)2647 static int swap_node(struct swap_info_struct *si)
2648 {
2649 struct block_device *bdev;
2650
2651 if (si->bdev)
2652 bdev = si->bdev;
2653 else
2654 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2655
2656 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2657 }
2658
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2659 static void setup_swap_info(struct swap_info_struct *si, int prio,
2660 unsigned char *swap_map,
2661 struct swap_cluster_info *cluster_info,
2662 unsigned long *zeromap)
2663 {
2664 int i;
2665
2666 if (prio >= 0)
2667 si->prio = prio;
2668 else
2669 si->prio = --least_priority;
2670 /*
2671 * the plist prio is negated because plist ordering is
2672 * low-to-high, while swap ordering is high-to-low
2673 */
2674 si->list.prio = -si->prio;
2675 for_each_node(i) {
2676 if (si->prio >= 0)
2677 si->avail_lists[i].prio = -si->prio;
2678 else {
2679 if (swap_node(si) == i)
2680 si->avail_lists[i].prio = 1;
2681 else
2682 si->avail_lists[i].prio = -si->prio;
2683 }
2684 }
2685 si->swap_map = swap_map;
2686 si->cluster_info = cluster_info;
2687 si->zeromap = zeromap;
2688 }
2689
_enable_swap_info(struct swap_info_struct * si)2690 static void _enable_swap_info(struct swap_info_struct *si)
2691 {
2692 si->flags |= SWP_WRITEOK;
2693 atomic_long_add(si->pages, &nr_swap_pages);
2694 total_swap_pages += si->pages;
2695
2696 assert_spin_locked(&swap_lock);
2697 /*
2698 * both lists are plists, and thus priority ordered.
2699 * swap_active_head needs to be priority ordered for swapoff(),
2700 * which on removal of any swap_info_struct with an auto-assigned
2701 * (i.e. negative) priority increments the auto-assigned priority
2702 * of any lower-priority swap_info_structs.
2703 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2704 * which allocates swap pages from the highest available priority
2705 * swap_info_struct.
2706 */
2707 plist_add(&si->list, &swap_active_head);
2708
2709 /* add to available list iff swap device is not full */
2710 if (si->highest_bit)
2711 add_to_avail_list(si);
2712 }
2713
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2714 static void enable_swap_info(struct swap_info_struct *si, int prio,
2715 unsigned char *swap_map,
2716 struct swap_cluster_info *cluster_info,
2717 unsigned long *zeromap)
2718 {
2719 spin_lock(&swap_lock);
2720 spin_lock(&si->lock);
2721 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2722 spin_unlock(&si->lock);
2723 spin_unlock(&swap_lock);
2724 /*
2725 * Finished initializing swap device, now it's safe to reference it.
2726 */
2727 percpu_ref_resurrect(&si->users);
2728 spin_lock(&swap_lock);
2729 spin_lock(&si->lock);
2730 _enable_swap_info(si);
2731 spin_unlock(&si->lock);
2732 spin_unlock(&swap_lock);
2733 }
2734
reinsert_swap_info(struct swap_info_struct * si)2735 static void reinsert_swap_info(struct swap_info_struct *si)
2736 {
2737 spin_lock(&swap_lock);
2738 spin_lock(&si->lock);
2739 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2740 _enable_swap_info(si);
2741 spin_unlock(&si->lock);
2742 spin_unlock(&swap_lock);
2743 }
2744
__has_usable_swap(void)2745 static bool __has_usable_swap(void)
2746 {
2747 return !plist_head_empty(&swap_active_head);
2748 }
2749
has_usable_swap(void)2750 bool has_usable_swap(void)
2751 {
2752 bool ret;
2753
2754 spin_lock(&swap_lock);
2755 ret = __has_usable_swap();
2756 spin_unlock(&swap_lock);
2757 return ret;
2758 }
2759
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2760 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2761 {
2762 struct swap_info_struct *p = NULL;
2763 unsigned char *swap_map;
2764 unsigned long *zeromap;
2765 struct swap_cluster_info *cluster_info;
2766 struct file *swap_file, *victim;
2767 struct address_space *mapping;
2768 struct inode *inode;
2769 struct filename *pathname;
2770 int err, found = 0;
2771 bool hibernation_swap = false;
2772
2773 if (!capable(CAP_SYS_ADMIN))
2774 return -EPERM;
2775
2776 BUG_ON(!current->mm);
2777
2778 pathname = getname(specialfile);
2779 if (IS_ERR(pathname))
2780 return PTR_ERR(pathname);
2781
2782 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2783 err = PTR_ERR(victim);
2784 if (IS_ERR(victim))
2785 goto out;
2786
2787 mapping = victim->f_mapping;
2788 spin_lock(&swap_lock);
2789 plist_for_each_entry(p, &swap_active_head, list) {
2790 if (p->flags & SWP_WRITEOK) {
2791 if (p->swap_file->f_mapping == mapping) {
2792 found = 1;
2793 break;
2794 }
2795 }
2796 }
2797 if (!found) {
2798 err = -EINVAL;
2799 spin_unlock(&swap_lock);
2800 goto out_dput;
2801 }
2802 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2803 vm_unacct_memory(p->pages);
2804 else {
2805 err = -ENOMEM;
2806 spin_unlock(&swap_lock);
2807 goto out_dput;
2808 }
2809 spin_lock(&p->lock);
2810 del_from_avail_list(p);
2811 if (p->prio < 0) {
2812 struct swap_info_struct *si = p;
2813 int nid;
2814
2815 plist_for_each_entry_continue(si, &swap_active_head, list) {
2816 si->prio++;
2817 si->list.prio--;
2818 for_each_node(nid) {
2819 if (si->avail_lists[nid].prio != 1)
2820 si->avail_lists[nid].prio--;
2821 }
2822 }
2823 least_priority++;
2824 }
2825 plist_del(&p->list, &swap_active_head);
2826 atomic_long_sub(p->pages, &nr_swap_pages);
2827 total_swap_pages -= p->pages;
2828 p->flags &= ~SWP_WRITEOK;
2829 spin_unlock(&p->lock);
2830 spin_unlock(&swap_lock);
2831
2832 disable_swap_slots_cache_lock();
2833
2834 set_current_oom_origin();
2835 err = try_to_unuse(p->type);
2836 clear_current_oom_origin();
2837
2838 if (err) {
2839 /* re-insert swap space back into swap_list */
2840 reinsert_swap_info(p);
2841 reenable_swap_slots_cache_unlock();
2842 goto out_dput;
2843 }
2844
2845 reenable_swap_slots_cache_unlock();
2846
2847 /*
2848 * Wait for swap operations protected by get/put_swap_device()
2849 * to complete. Because of synchronize_rcu() here, all swap
2850 * operations protected by RCU reader side lock (including any
2851 * spinlock) will be waited too. This makes it easy to
2852 * prevent folio_test_swapcache() and the following swap cache
2853 * operations from racing with swapoff.
2854 */
2855 percpu_ref_kill(&p->users);
2856 synchronize_rcu();
2857 wait_for_completion(&p->comp);
2858
2859 flush_work(&p->discard_work);
2860 flush_work(&p->reclaim_work);
2861
2862 destroy_swap_extents(p);
2863
2864 trace_android_vh_check_hibernation_swap(p->swap_file, &hibernation_swap);
2865
2866 if (p->flags & SWP_CONTINUED)
2867 free_swap_count_continuations(p);
2868
2869 if (!p->bdev || hibernation_swap || !bdev_nonrot(p->bdev))
2870 atomic_dec(&nr_rotate_swap);
2871
2872 mutex_lock(&swapon_mutex);
2873 spin_lock(&swap_lock);
2874 spin_lock(&p->lock);
2875 drain_mmlist();
2876
2877 /* wait for anyone still in scan_swap_map_slots */
2878 p->highest_bit = 0; /* cuts scans short */
2879 while (p->flags >= SWP_SCANNING) {
2880 spin_unlock(&p->lock);
2881 spin_unlock(&swap_lock);
2882 schedule_timeout_uninterruptible(1);
2883 spin_lock(&swap_lock);
2884 spin_lock(&p->lock);
2885 }
2886
2887 swap_file = p->swap_file;
2888 p->swap_file = NULL;
2889 p->max = 0;
2890 swap_map = p->swap_map;
2891 p->swap_map = NULL;
2892 zeromap = p->zeromap;
2893 p->zeromap = NULL;
2894 cluster_info = p->cluster_info;
2895 p->cluster_info = NULL;
2896 spin_unlock(&p->lock);
2897 spin_unlock(&swap_lock);
2898 arch_swap_invalidate_area(p->type);
2899 zswap_swapoff(p->type);
2900 mutex_unlock(&swapon_mutex);
2901 free_percpu(p->percpu_cluster);
2902 p->percpu_cluster = NULL;
2903 free_percpu(p->cluster_next_cpu);
2904 p->cluster_next_cpu = NULL;
2905 vfree(swap_map);
2906 kvfree(zeromap);
2907 kvfree(cluster_info);
2908 /* Destroy swap account information */
2909 swap_cgroup_swapoff(p->type);
2910 exit_swap_address_space(p->type);
2911
2912 inode = mapping->host;
2913
2914 inode_lock(inode);
2915 inode->i_flags &= ~S_SWAPFILE;
2916 inode_unlock(inode);
2917 filp_close(swap_file, NULL);
2918
2919 /*
2920 * Clear the SWP_USED flag after all resources are freed so that swapon
2921 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2922 * not hold p->lock after we cleared its SWP_WRITEOK.
2923 */
2924 spin_lock(&swap_lock);
2925 p->flags = 0;
2926 spin_unlock(&swap_lock);
2927
2928 err = 0;
2929 atomic_inc(&proc_poll_event);
2930 wake_up_interruptible(&proc_poll_wait);
2931
2932 out_dput:
2933 filp_close(victim, NULL);
2934 out:
2935 putname(pathname);
2936 return err;
2937 }
2938
2939 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2940 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2941 {
2942 struct seq_file *seq = file->private_data;
2943
2944 poll_wait(file, &proc_poll_wait, wait);
2945
2946 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2947 seq->poll_event = atomic_read(&proc_poll_event);
2948 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2949 }
2950
2951 return EPOLLIN | EPOLLRDNORM;
2952 }
2953
2954 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2955 static void *swap_start(struct seq_file *swap, loff_t *pos)
2956 {
2957 struct swap_info_struct *si;
2958 int type;
2959 loff_t l = *pos;
2960
2961 mutex_lock(&swapon_mutex);
2962
2963 if (!l)
2964 return SEQ_START_TOKEN;
2965
2966 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2967 if (!(si->flags & SWP_USED) || !si->swap_map)
2968 continue;
2969 if (!--l)
2970 return si;
2971 }
2972
2973 return NULL;
2974 }
2975
swap_next(struct seq_file * swap,void * v,loff_t * pos)2976 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2977 {
2978 struct swap_info_struct *si = v;
2979 int type;
2980
2981 if (v == SEQ_START_TOKEN)
2982 type = 0;
2983 else
2984 type = si->type + 1;
2985
2986 ++(*pos);
2987 for (; (si = swap_type_to_swap_info(type)); type++) {
2988 if (!(si->flags & SWP_USED) || !si->swap_map)
2989 continue;
2990 return si;
2991 }
2992
2993 return NULL;
2994 }
2995
swap_stop(struct seq_file * swap,void * v)2996 static void swap_stop(struct seq_file *swap, void *v)
2997 {
2998 mutex_unlock(&swapon_mutex);
2999 }
3000
swap_show(struct seq_file * swap,void * v)3001 static int swap_show(struct seq_file *swap, void *v)
3002 {
3003 struct swap_info_struct *si = v;
3004 struct file *file;
3005 int len;
3006 unsigned long bytes, inuse;
3007
3008 if (si == SEQ_START_TOKEN) {
3009 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
3010 return 0;
3011 }
3012
3013 bytes = K(si->pages);
3014 inuse = K(READ_ONCE(si->inuse_pages));
3015
3016 file = si->swap_file;
3017 len = seq_file_path(swap, file, " \t\n\\");
3018 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3019 len < 40 ? 40 - len : 1, " ",
3020 S_ISBLK(file_inode(file)->i_mode) ?
3021 "partition" : "file\t",
3022 bytes, bytes < 10000000 ? "\t" : "",
3023 inuse, inuse < 10000000 ? "\t" : "",
3024 si->prio);
3025 return 0;
3026 }
3027
3028 static const struct seq_operations swaps_op = {
3029 .start = swap_start,
3030 .next = swap_next,
3031 .stop = swap_stop,
3032 .show = swap_show
3033 };
3034
swaps_open(struct inode * inode,struct file * file)3035 static int swaps_open(struct inode *inode, struct file *file)
3036 {
3037 struct seq_file *seq;
3038 int ret;
3039
3040 ret = seq_open(file, &swaps_op);
3041 if (ret)
3042 return ret;
3043
3044 seq = file->private_data;
3045 seq->poll_event = atomic_read(&proc_poll_event);
3046 return 0;
3047 }
3048
3049 static const struct proc_ops swaps_proc_ops = {
3050 .proc_flags = PROC_ENTRY_PERMANENT,
3051 .proc_open = swaps_open,
3052 .proc_read = seq_read,
3053 .proc_lseek = seq_lseek,
3054 .proc_release = seq_release,
3055 .proc_poll = swaps_poll,
3056 };
3057
procswaps_init(void)3058 static int __init procswaps_init(void)
3059 {
3060 proc_create("swaps", 0, NULL, &swaps_proc_ops);
3061 return 0;
3062 }
3063 __initcall(procswaps_init);
3064 #endif /* CONFIG_PROC_FS */
3065
3066 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)3067 static int __init max_swapfiles_check(void)
3068 {
3069 MAX_SWAPFILES_CHECK();
3070 return 0;
3071 }
3072 late_initcall(max_swapfiles_check);
3073 #endif
3074
alloc_swap_info(void)3075 static struct swap_info_struct *alloc_swap_info(void)
3076 {
3077 struct swap_info_struct *p;
3078 struct swap_info_struct *defer = NULL;
3079 unsigned int type;
3080 int i;
3081
3082 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3083 if (!p)
3084 return ERR_PTR(-ENOMEM);
3085
3086 if (percpu_ref_init(&p->users, swap_users_ref_free,
3087 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3088 kvfree(p);
3089 return ERR_PTR(-ENOMEM);
3090 }
3091
3092 spin_lock(&swap_lock);
3093 for (type = 0; type < nr_swapfiles; type++) {
3094 if (!(swap_info[type]->flags & SWP_USED))
3095 break;
3096 }
3097 if (type >= MAX_SWAPFILES) {
3098 spin_unlock(&swap_lock);
3099 percpu_ref_exit(&p->users);
3100 kvfree(p);
3101 return ERR_PTR(-EPERM);
3102 }
3103 if (type >= nr_swapfiles) {
3104 p->type = type;
3105 /*
3106 * Publish the swap_info_struct after initializing it.
3107 * Note that kvzalloc() above zeroes all its fields.
3108 */
3109 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3110 nr_swapfiles++;
3111 } else {
3112 defer = p;
3113 p = swap_info[type];
3114 /*
3115 * Do not memset this entry: a racing procfs swap_next()
3116 * would be relying on p->type to remain valid.
3117 */
3118 }
3119 p->swap_extent_root = RB_ROOT;
3120 plist_node_init(&p->list, 0);
3121 for_each_node(i)
3122 plist_node_init(&p->avail_lists[i], 0);
3123 p->flags = SWP_USED;
3124 spin_unlock(&swap_lock);
3125 if (defer) {
3126 percpu_ref_exit(&defer->users);
3127 kvfree(defer);
3128 }
3129 spin_lock_init(&p->lock);
3130 spin_lock_init(&p->cont_lock);
3131 init_completion(&p->comp);
3132
3133 return p;
3134 }
3135
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3136 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3137 {
3138 if (S_ISBLK(inode->i_mode)) {
3139 si->bdev = I_BDEV(inode);
3140 /*
3141 * Zoned block devices contain zones that have a sequential
3142 * write only restriction. Hence zoned block devices are not
3143 * suitable for swapping. Disallow them here.
3144 */
3145 if (bdev_is_zoned(si->bdev))
3146 return -EINVAL;
3147 si->flags |= SWP_BLKDEV;
3148 } else if (S_ISREG(inode->i_mode)) {
3149 si->bdev = inode->i_sb->s_bdev;
3150 }
3151
3152 return 0;
3153 }
3154
3155
3156 /*
3157 * Find out how many pages are allowed for a single swap device. There
3158 * are two limiting factors:
3159 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3160 * 2) the number of bits in the swap pte, as defined by the different
3161 * architectures.
3162 *
3163 * In order to find the largest possible bit mask, a swap entry with
3164 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3165 * decoded to a swp_entry_t again, and finally the swap offset is
3166 * extracted.
3167 *
3168 * This will mask all the bits from the initial ~0UL mask that can't
3169 * be encoded in either the swp_entry_t or the architecture definition
3170 * of a swap pte.
3171 */
generic_max_swapfile_size(void)3172 unsigned long generic_max_swapfile_size(void)
3173 {
3174 return swp_offset(pte_to_swp_entry(
3175 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3176 }
3177
3178 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3179 __weak unsigned long arch_max_swapfile_size(void)
3180 {
3181 return generic_max_swapfile_size();
3182 }
3183
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3184 static unsigned long read_swap_header(struct swap_info_struct *si,
3185 union swap_header *swap_header,
3186 struct inode *inode)
3187 {
3188 int i;
3189 unsigned long maxpages;
3190 unsigned long swapfilepages;
3191 unsigned long last_page;
3192
3193 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3194 pr_err("Unable to find swap-space signature\n");
3195 return 0;
3196 }
3197
3198 /* swap partition endianness hack... */
3199 if (swab32(swap_header->info.version) == 1) {
3200 swab32s(&swap_header->info.version);
3201 swab32s(&swap_header->info.last_page);
3202 swab32s(&swap_header->info.nr_badpages);
3203 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3204 return 0;
3205 for (i = 0; i < swap_header->info.nr_badpages; i++)
3206 swab32s(&swap_header->info.badpages[i]);
3207 }
3208 /* Check the swap header's sub-version */
3209 if (swap_header->info.version != 1) {
3210 pr_warn("Unable to handle swap header version %d\n",
3211 swap_header->info.version);
3212 return 0;
3213 }
3214
3215 si->lowest_bit = 1;
3216 si->cluster_next = 1;
3217 si->cluster_nr = 0;
3218
3219 maxpages = swapfile_maximum_size;
3220 last_page = swap_header->info.last_page;
3221 if (!last_page) {
3222 pr_warn("Empty swap-file\n");
3223 return 0;
3224 }
3225 if (last_page > maxpages) {
3226 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3227 K(maxpages), K(last_page));
3228 }
3229 if (maxpages > last_page) {
3230 maxpages = last_page + 1;
3231 /* p->max is an unsigned int: don't overflow it */
3232 if ((unsigned int)maxpages == 0)
3233 maxpages = UINT_MAX;
3234 }
3235 si->highest_bit = maxpages - 1;
3236
3237 if (!maxpages)
3238 return 0;
3239 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3240 if (swapfilepages && maxpages > swapfilepages) {
3241 pr_warn("Swap area shorter than signature indicates\n");
3242 return 0;
3243 }
3244 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3245 return 0;
3246 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3247 return 0;
3248
3249 return maxpages;
3250 }
3251
3252 #define SWAP_CLUSTER_INFO_COLS \
3253 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3254 #define SWAP_CLUSTER_SPACE_COLS \
3255 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3256 #define SWAP_CLUSTER_COLS \
3257 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3258
setup_swap_map(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages)3259 static int setup_swap_map(struct swap_info_struct *si,
3260 union swap_header *swap_header,
3261 unsigned char *swap_map,
3262 unsigned long maxpages)
3263 {
3264 unsigned long i;
3265
3266 swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3267 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3268 unsigned int page_nr = swap_header->info.badpages[i];
3269 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3270 return -EINVAL;
3271 if (page_nr < maxpages) {
3272 swap_map[page_nr] = SWAP_MAP_BAD;
3273 si->pages--;
3274 }
3275 }
3276
3277 if (!si->pages) {
3278 pr_warn("Empty swap-file\n");
3279 return -EINVAL;
3280 }
3281
3282 return 0;
3283 }
3284
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3285 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3286 union swap_header *swap_header,
3287 unsigned long maxpages)
3288 {
3289 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3290 unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3291 struct swap_cluster_info *cluster_info;
3292 unsigned long i, j, k, idx;
3293 int cpu, err = -ENOMEM;
3294
3295 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3296 if (!cluster_info)
3297 goto err;
3298
3299 for (i = 0; i < nr_clusters; i++)
3300 spin_lock_init(&cluster_info[i].lock);
3301
3302 si->cluster_next_cpu = alloc_percpu(unsigned int);
3303 if (!si->cluster_next_cpu)
3304 goto err_free;
3305
3306 /* Random start position to help with wear leveling */
3307 for_each_possible_cpu(cpu)
3308 per_cpu(*si->cluster_next_cpu, cpu) =
3309 get_random_u32_inclusive(1, si->highest_bit);
3310
3311 si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3312 if (!si->percpu_cluster)
3313 goto err_free;
3314
3315 for_each_possible_cpu(cpu) {
3316 struct percpu_cluster *cluster;
3317
3318 cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3319 for (i = 0; i < SWAP_NR_ORDERS; i++)
3320 cluster->next[i] = SWAP_NEXT_INVALID;
3321 }
3322
3323 /*
3324 * Mark unusable pages as unavailable. The clusters aren't
3325 * marked free yet, so no list operations are involved yet.
3326 *
3327 * See setup_swap_map(): header page, bad pages,
3328 * and the EOF part of the last cluster.
3329 */
3330 inc_cluster_info_page(si, cluster_info, 0);
3331 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3332 unsigned int page_nr = swap_header->info.badpages[i];
3333
3334 if (page_nr >= maxpages)
3335 continue;
3336 inc_cluster_info_page(si, cluster_info, page_nr);
3337 }
3338 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3339 inc_cluster_info_page(si, cluster_info, i);
3340
3341 INIT_LIST_HEAD(&si->free_clusters);
3342 INIT_LIST_HEAD(&si->full_clusters);
3343 INIT_LIST_HEAD(&si->discard_clusters);
3344
3345 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3346 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3347 INIT_LIST_HEAD(&si->frag_clusters[i]);
3348 si->frag_cluster_nr[i] = 0;
3349 }
3350
3351 /*
3352 * Reduce false cache line sharing between cluster_info and
3353 * sharing same address space.
3354 */
3355 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3356 j = (k + col) % SWAP_CLUSTER_COLS;
3357 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3358 struct swap_cluster_info *ci;
3359 idx = i * SWAP_CLUSTER_COLS + j;
3360 ci = cluster_info + idx;
3361 if (idx >= nr_clusters)
3362 continue;
3363 if (ci->count) {
3364 ci->flags = CLUSTER_FLAG_NONFULL;
3365 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3366 continue;
3367 }
3368 ci->flags = CLUSTER_FLAG_FREE;
3369 list_add_tail(&ci->list, &si->free_clusters);
3370 }
3371 }
3372
3373 return cluster_info;
3374
3375 err_free:
3376 kvfree(cluster_info);
3377 err:
3378 return ERR_PTR(err);
3379 }
3380
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3381 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3382 {
3383 struct swap_info_struct *si;
3384 struct filename *name;
3385 struct file *swap_file = NULL;
3386 struct address_space *mapping;
3387 struct dentry *dentry;
3388 int prio;
3389 int error;
3390 union swap_header *swap_header;
3391 int nr_extents;
3392 sector_t span;
3393 unsigned long maxpages;
3394 unsigned char *swap_map = NULL;
3395 unsigned long *zeromap = NULL;
3396 struct swap_cluster_info *cluster_info = NULL;
3397 struct folio *folio = NULL;
3398 struct inode *inode = NULL;
3399 bool inced_nr_rotate_swap = false;
3400 bool hibernation_swap = false;
3401
3402 if (swap_flags & ~SWAP_FLAGS_VALID)
3403 return -EINVAL;
3404
3405 if (!capable(CAP_SYS_ADMIN))
3406 return -EPERM;
3407
3408 if (!swap_avail_heads)
3409 return -ENOMEM;
3410
3411 si = alloc_swap_info();
3412 if (IS_ERR(si))
3413 return PTR_ERR(si);
3414
3415 INIT_WORK(&si->discard_work, swap_discard_work);
3416 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3417
3418 name = getname(specialfile);
3419 if (IS_ERR(name)) {
3420 error = PTR_ERR(name);
3421 name = NULL;
3422 goto bad_swap;
3423 }
3424 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3425 if (IS_ERR(swap_file)) {
3426 error = PTR_ERR(swap_file);
3427 swap_file = NULL;
3428 goto bad_swap;
3429 }
3430
3431 si->swap_file = swap_file;
3432 mapping = swap_file->f_mapping;
3433 dentry = swap_file->f_path.dentry;
3434 inode = mapping->host;
3435
3436 error = claim_swapfile(si, inode);
3437 if (unlikely(error))
3438 goto bad_swap;
3439
3440 inode_lock(inode);
3441 if (d_unlinked(dentry) || cant_mount(dentry)) {
3442 error = -ENOENT;
3443 goto bad_swap_unlock_inode;
3444 }
3445 if (IS_SWAPFILE(inode)) {
3446 error = -EBUSY;
3447 goto bad_swap_unlock_inode;
3448 }
3449
3450 /*
3451 * Read the swap header.
3452 */
3453 if (!mapping->a_ops->read_folio) {
3454 error = -EINVAL;
3455 goto bad_swap_unlock_inode;
3456 }
3457
3458 error = __fixup_swap_header(swap_file, mapping);
3459 if (error) {
3460 pgcompat_err("Failed __fixup_swap_header");
3461 goto bad_swap_unlock_inode;
3462 }
3463
3464 folio = read_mapping_folio(mapping, 0, swap_file);
3465 if (IS_ERR(folio)) {
3466 error = PTR_ERR(folio);
3467 goto bad_swap_unlock_inode;
3468 }
3469 swap_header = kmap_local_folio(folio, 0);
3470
3471 maxpages = read_swap_header(si, swap_header, inode);
3472 if (unlikely(!maxpages)) {
3473 error = -EINVAL;
3474 goto bad_swap_unlock_inode;
3475 }
3476
3477 si->max = maxpages;
3478 si->pages = maxpages - 1;
3479 nr_extents = setup_swap_extents(si, &span);
3480 if (nr_extents < 0) {
3481 error = nr_extents;
3482 goto bad_swap_unlock_inode;
3483 }
3484 if (si->pages != si->max - 1) {
3485 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3486 error = -EINVAL;
3487 goto bad_swap_unlock_inode;
3488 }
3489
3490 maxpages = si->max;
3491
3492 /* OK, set up the swap map and apply the bad block list */
3493 swap_map = vzalloc(maxpages);
3494 if (!swap_map) {
3495 error = -ENOMEM;
3496 goto bad_swap_unlock_inode;
3497 }
3498
3499 error = swap_cgroup_swapon(si->type, maxpages);
3500 if (error)
3501 goto bad_swap_unlock_inode;
3502
3503 trace_android_vh_check_hibernation_swap(si->swap_file, &hibernation_swap);
3504
3505 error = setup_swap_map(si, swap_header, swap_map, maxpages);
3506 if (error)
3507 goto bad_swap_unlock_inode;
3508
3509 /*
3510 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3511 * be above MAX_PAGE_ORDER incase of a large swap file.
3512 */
3513 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3514 GFP_KERNEL | __GFP_ZERO);
3515 if (!zeromap) {
3516 error = -ENOMEM;
3517 goto bad_swap_unlock_inode;
3518 }
3519
3520 if (si->bdev && bdev_stable_writes(si->bdev))
3521 si->flags |= SWP_STABLE_WRITES;
3522
3523 if (si->bdev && bdev_synchronous(si->bdev))
3524 si->flags |= SWP_SYNCHRONOUS_IO;
3525
3526 trace_android_vh_adjust_swap_info_flags(&si->flags);
3527
3528 if (si->bdev && !hibernation_swap && bdev_nonrot(si->bdev)) {
3529 si->flags |= SWP_SOLIDSTATE;
3530
3531 cluster_info = setup_clusters(si, swap_header, maxpages);
3532 if (IS_ERR(cluster_info)) {
3533 error = PTR_ERR(cluster_info);
3534 cluster_info = NULL;
3535 goto bad_swap_unlock_inode;
3536 }
3537 } else {
3538 atomic_inc(&nr_rotate_swap);
3539 inced_nr_rotate_swap = true;
3540 }
3541
3542 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3543 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3544 /*
3545 * When discard is enabled for swap with no particular
3546 * policy flagged, we set all swap discard flags here in
3547 * order to sustain backward compatibility with older
3548 * swapon(8) releases.
3549 */
3550 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3551 SWP_PAGE_DISCARD);
3552
3553 /*
3554 * By flagging sys_swapon, a sysadmin can tell us to
3555 * either do single-time area discards only, or to just
3556 * perform discards for released swap page-clusters.
3557 * Now it's time to adjust the p->flags accordingly.
3558 */
3559 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3560 si->flags &= ~SWP_PAGE_DISCARD;
3561 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3562 si->flags &= ~SWP_AREA_DISCARD;
3563
3564 /* issue a swapon-time discard if it's still required */
3565 if (si->flags & SWP_AREA_DISCARD) {
3566 int err = discard_swap(si);
3567 if (unlikely(err))
3568 pr_err("swapon: discard_swap(%p): %d\n",
3569 si, err);
3570 }
3571 }
3572
3573 error = init_swap_address_space(si->type, maxpages);
3574 if (error)
3575 goto bad_swap_unlock_inode;
3576
3577 error = zswap_swapon(si->type, maxpages);
3578 if (error)
3579 goto free_swap_address_space;
3580
3581 /*
3582 * Flush any pending IO and dirty mappings before we start using this
3583 * swap device.
3584 */
3585 inode->i_flags |= S_SWAPFILE;
3586 error = inode_drain_writes(inode);
3587 if (error) {
3588 inode->i_flags &= ~S_SWAPFILE;
3589 goto free_swap_zswap;
3590 }
3591
3592 mutex_lock(&swapon_mutex);
3593 prio = -1;
3594 if (swap_flags & SWAP_FLAG_PREFER)
3595 prio =
3596 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3597 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3598
3599 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3600 K(si->pages), name->name, si->prio, nr_extents,
3601 K((unsigned long long)span),
3602 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3603 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3604 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3605 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3606
3607 mutex_unlock(&swapon_mutex);
3608 atomic_inc(&proc_poll_event);
3609 wake_up_interruptible(&proc_poll_wait);
3610
3611 error = 0;
3612 goto out;
3613 free_swap_zswap:
3614 zswap_swapoff(si->type);
3615 free_swap_address_space:
3616 exit_swap_address_space(si->type);
3617 bad_swap_unlock_inode:
3618 inode_unlock(inode);
3619 bad_swap:
3620 free_percpu(si->percpu_cluster);
3621 si->percpu_cluster = NULL;
3622 free_percpu(si->cluster_next_cpu);
3623 si->cluster_next_cpu = NULL;
3624 inode = NULL;
3625 destroy_swap_extents(si);
3626 swap_cgroup_swapoff(si->type);
3627 spin_lock(&swap_lock);
3628 si->swap_file = NULL;
3629 si->flags = 0;
3630 spin_unlock(&swap_lock);
3631 vfree(swap_map);
3632 kvfree(zeromap);
3633 kvfree(cluster_info);
3634 if (inced_nr_rotate_swap)
3635 atomic_dec(&nr_rotate_swap);
3636 if (swap_file)
3637 filp_close(swap_file, NULL);
3638 out:
3639 if (!IS_ERR_OR_NULL(folio))
3640 folio_release_kmap(folio, swap_header);
3641 if (name)
3642 putname(name);
3643 if (inode)
3644 inode_unlock(inode);
3645 if (!error)
3646 enable_swap_slots_cache();
3647 return error;
3648 }
3649
si_swapinfo(struct sysinfo * val)3650 void si_swapinfo(struct sysinfo *val)
3651 {
3652 unsigned int type;
3653 unsigned long nr_to_be_unused = 0;
3654
3655 spin_lock(&swap_lock);
3656 for (type = 0; type < nr_swapfiles; type++) {
3657 struct swap_info_struct *si = swap_info[type];
3658
3659 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3660 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3661 }
3662 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3663 val->totalswap = total_swap_pages + nr_to_be_unused;
3664 spin_unlock(&swap_lock);
3665 }
3666 EXPORT_SYMBOL_NS_GPL(si_swapinfo, MINIDUMP);
3667
3668 /*
3669 * Verify that nr swap entries are valid and increment their swap map counts.
3670 *
3671 * Returns error code in following case.
3672 * - success -> 0
3673 * - swp_entry is invalid -> EINVAL
3674 * - swp_entry is migration entry -> EINVAL
3675 * - swap-cache reference is requested but there is already one. -> EEXIST
3676 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3677 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3678 */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3679 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3680 {
3681 struct swap_info_struct *si;
3682 struct swap_cluster_info *ci;
3683 unsigned long offset;
3684 unsigned char count;
3685 unsigned char has_cache;
3686 int err, i;
3687
3688 si = swp_swap_info(entry);
3689 if (WARN_ON_ONCE(!si)) {
3690 pr_err("%s%08lx\n", Bad_file, entry.val);
3691 return -EINVAL;
3692 }
3693
3694 offset = swp_offset(entry);
3695 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3696 VM_WARN_ON(usage == 1 && nr > 1);
3697 ci = lock_cluster_or_swap_info(si, offset);
3698
3699 err = 0;
3700 for (i = 0; i < nr; i++) {
3701 count = si->swap_map[offset + i];
3702
3703 /*
3704 * swapin_readahead() doesn't check if a swap entry is valid, so the
3705 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3706 */
3707 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3708 err = -ENOENT;
3709 goto unlock_out;
3710 }
3711
3712 has_cache = count & SWAP_HAS_CACHE;
3713 count &= ~SWAP_HAS_CACHE;
3714
3715 if (!count && !has_cache) {
3716 err = -ENOENT;
3717 } else if (usage == SWAP_HAS_CACHE) {
3718 if (has_cache)
3719 err = -EEXIST;
3720 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3721 err = -EINVAL;
3722 }
3723
3724 if (err)
3725 goto unlock_out;
3726 }
3727
3728 for (i = 0; i < nr; i++) {
3729 count = si->swap_map[offset + i];
3730 has_cache = count & SWAP_HAS_CACHE;
3731 count &= ~SWAP_HAS_CACHE;
3732
3733 if (usage == SWAP_HAS_CACHE)
3734 has_cache = SWAP_HAS_CACHE;
3735 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3736 count += usage;
3737 else if (swap_count_continued(si, offset + i, count))
3738 count = COUNT_CONTINUED;
3739 else {
3740 /*
3741 * Don't need to rollback changes, because if
3742 * usage == 1, there must be nr == 1.
3743 */
3744 err = -ENOMEM;
3745 goto unlock_out;
3746 }
3747
3748 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3749 }
3750
3751 unlock_out:
3752 unlock_cluster_or_swap_info(si, ci);
3753 return err;
3754 }
3755
3756 /*
3757 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3758 * (in which case its reference count is never incremented).
3759 */
swap_shmem_alloc(swp_entry_t entry,int nr)3760 void swap_shmem_alloc(swp_entry_t entry, int nr)
3761 {
3762 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3763 }
3764
3765 /*
3766 * Increase reference count of swap entry by 1.
3767 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3768 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3769 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3770 * might occur if a page table entry has got corrupted.
3771 */
swap_duplicate(swp_entry_t entry)3772 int swap_duplicate(swp_entry_t entry)
3773 {
3774 int err = 0;
3775
3776 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3777 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3778 return err;
3779 }
3780
3781 /*
3782 * @entry: first swap entry from which we allocate nr swap cache.
3783 *
3784 * Called when allocating swap cache for existing swap entries,
3785 * This can return error codes. Returns 0 at success.
3786 * -EEXIST means there is a swap cache.
3787 * Note: return code is different from swap_duplicate().
3788 */
swapcache_prepare(swp_entry_t entry,int nr)3789 int swapcache_prepare(swp_entry_t entry, int nr)
3790 {
3791 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3792 }
3793
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3794 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3795 {
3796 unsigned long offset = swp_offset(entry);
3797
3798 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3799 }
3800
swp_swap_info(swp_entry_t entry)3801 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3802 {
3803 return swap_type_to_swap_info(swp_type(entry));
3804 }
3805
3806 /*
3807 * out-of-line methods to avoid include hell.
3808 */
swapcache_mapping(struct folio * folio)3809 struct address_space *swapcache_mapping(struct folio *folio)
3810 {
3811 return swp_swap_info(folio->swap)->swap_file->f_mapping;
3812 }
3813 EXPORT_SYMBOL_GPL(swapcache_mapping);
3814
__folio_swap_cache_index(struct folio * folio)3815 pgoff_t __folio_swap_cache_index(struct folio *folio)
3816 {
3817 return swap_cache_index(folio->swap);
3818 }
3819 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3820
3821 /*
3822 * add_swap_count_continuation - called when a swap count is duplicated
3823 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3824 * page of the original vmalloc'ed swap_map, to hold the continuation count
3825 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3826 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3827 *
3828 * These continuation pages are seldom referenced: the common paths all work
3829 * on the original swap_map, only referring to a continuation page when the
3830 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3831 *
3832 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3833 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3834 * can be called after dropping locks.
3835 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3836 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3837 {
3838 struct swap_info_struct *si;
3839 struct swap_cluster_info *ci;
3840 struct page *head;
3841 struct page *page;
3842 struct page *list_page;
3843 pgoff_t offset;
3844 unsigned char count;
3845 int ret = 0;
3846
3847 /*
3848 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3849 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3850 */
3851 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3852
3853 si = get_swap_device(entry);
3854 if (!si) {
3855 /*
3856 * An acceptable race has occurred since the failing
3857 * __swap_duplicate(): the swap device may be swapoff
3858 */
3859 goto outer;
3860 }
3861 spin_lock(&si->lock);
3862
3863 offset = swp_offset(entry);
3864
3865 ci = lock_cluster(si, offset);
3866
3867 count = swap_count(si->swap_map[offset]);
3868
3869 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3870 /*
3871 * The higher the swap count, the more likely it is that tasks
3872 * will race to add swap count continuation: we need to avoid
3873 * over-provisioning.
3874 */
3875 goto out;
3876 }
3877
3878 if (!page) {
3879 ret = -ENOMEM;
3880 goto out;
3881 }
3882
3883 head = vmalloc_to_page(si->swap_map + offset);
3884 offset &= ~PAGE_MASK;
3885
3886 spin_lock(&si->cont_lock);
3887 /*
3888 * Page allocation does not initialize the page's lru field,
3889 * but it does always reset its private field.
3890 */
3891 if (!page_private(head)) {
3892 BUG_ON(count & COUNT_CONTINUED);
3893 INIT_LIST_HEAD(&head->lru);
3894 set_page_private(head, SWP_CONTINUED);
3895 si->flags |= SWP_CONTINUED;
3896 }
3897
3898 list_for_each_entry(list_page, &head->lru, lru) {
3899 unsigned char *map;
3900
3901 /*
3902 * If the previous map said no continuation, but we've found
3903 * a continuation page, free our allocation and use this one.
3904 */
3905 if (!(count & COUNT_CONTINUED))
3906 goto out_unlock_cont;
3907
3908 map = kmap_local_page(list_page) + offset;
3909 count = *map;
3910 kunmap_local(map);
3911
3912 /*
3913 * If this continuation count now has some space in it,
3914 * free our allocation and use this one.
3915 */
3916 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3917 goto out_unlock_cont;
3918 }
3919
3920 list_add_tail(&page->lru, &head->lru);
3921 page = NULL; /* now it's attached, don't free it */
3922 out_unlock_cont:
3923 spin_unlock(&si->cont_lock);
3924 out:
3925 unlock_cluster(ci);
3926 spin_unlock(&si->lock);
3927 put_swap_device(si);
3928 outer:
3929 if (page)
3930 __free_page(page);
3931 return ret;
3932 }
3933
3934 /*
3935 * swap_count_continued - when the original swap_map count is incremented
3936 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3937 * into, carry if so, or else fail until a new continuation page is allocated;
3938 * when the original swap_map count is decremented from 0 with continuation,
3939 * borrow from the continuation and report whether it still holds more.
3940 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3941 * lock.
3942 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3943 static bool swap_count_continued(struct swap_info_struct *si,
3944 pgoff_t offset, unsigned char count)
3945 {
3946 struct page *head;
3947 struct page *page;
3948 unsigned char *map;
3949 bool ret;
3950
3951 head = vmalloc_to_page(si->swap_map + offset);
3952 if (page_private(head) != SWP_CONTINUED) {
3953 BUG_ON(count & COUNT_CONTINUED);
3954 return false; /* need to add count continuation */
3955 }
3956
3957 spin_lock(&si->cont_lock);
3958 offset &= ~PAGE_MASK;
3959 page = list_next_entry(head, lru);
3960 map = kmap_local_page(page) + offset;
3961
3962 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3963 goto init_map; /* jump over SWAP_CONT_MAX checks */
3964
3965 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3966 /*
3967 * Think of how you add 1 to 999
3968 */
3969 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3970 kunmap_local(map);
3971 page = list_next_entry(page, lru);
3972 BUG_ON(page == head);
3973 map = kmap_local_page(page) + offset;
3974 }
3975 if (*map == SWAP_CONT_MAX) {
3976 kunmap_local(map);
3977 page = list_next_entry(page, lru);
3978 if (page == head) {
3979 ret = false; /* add count continuation */
3980 goto out;
3981 }
3982 map = kmap_local_page(page) + offset;
3983 init_map: *map = 0; /* we didn't zero the page */
3984 }
3985 *map += 1;
3986 kunmap_local(map);
3987 while ((page = list_prev_entry(page, lru)) != head) {
3988 map = kmap_local_page(page) + offset;
3989 *map = COUNT_CONTINUED;
3990 kunmap_local(map);
3991 }
3992 ret = true; /* incremented */
3993
3994 } else { /* decrementing */
3995 /*
3996 * Think of how you subtract 1 from 1000
3997 */
3998 BUG_ON(count != COUNT_CONTINUED);
3999 while (*map == COUNT_CONTINUED) {
4000 kunmap_local(map);
4001 page = list_next_entry(page, lru);
4002 BUG_ON(page == head);
4003 map = kmap_local_page(page) + offset;
4004 }
4005 BUG_ON(*map == 0);
4006 *map -= 1;
4007 if (*map == 0)
4008 count = 0;
4009 kunmap_local(map);
4010 while ((page = list_prev_entry(page, lru)) != head) {
4011 map = kmap_local_page(page) + offset;
4012 *map = SWAP_CONT_MAX | count;
4013 count = COUNT_CONTINUED;
4014 kunmap_local(map);
4015 }
4016 ret = count == COUNT_CONTINUED;
4017 }
4018 out:
4019 spin_unlock(&si->cont_lock);
4020 return ret;
4021 }
4022
4023 /*
4024 * free_swap_count_continuations - swapoff free all the continuation pages
4025 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
4026 */
free_swap_count_continuations(struct swap_info_struct * si)4027 static void free_swap_count_continuations(struct swap_info_struct *si)
4028 {
4029 pgoff_t offset;
4030
4031 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
4032 struct page *head;
4033 head = vmalloc_to_page(si->swap_map + offset);
4034 if (page_private(head)) {
4035 struct page *page, *next;
4036
4037 list_for_each_entry_safe(page, next, &head->lru, lru) {
4038 list_del(&page->lru);
4039 __free_page(page);
4040 }
4041 }
4042 }
4043 }
4044
4045 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)4046 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4047 {
4048 struct swap_info_struct *si, *next;
4049 int nid = folio_nid(folio);
4050
4051 if (!(gfp & __GFP_IO))
4052 return;
4053
4054 if (!__has_usable_swap())
4055 return;
4056
4057 if (!blk_cgroup_congested())
4058 return;
4059
4060 /*
4061 * We've already scheduled a throttle, avoid taking the global swap
4062 * lock.
4063 */
4064 if (current->throttle_disk)
4065 return;
4066
4067 spin_lock(&swap_avail_lock);
4068 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4069 avail_lists[nid]) {
4070 if (si->bdev) {
4071 blkcg_schedule_throttle(si->bdev->bd_disk, true);
4072 break;
4073 }
4074 }
4075 spin_unlock(&swap_avail_lock);
4076 }
4077 #endif
4078
swapfile_init(void)4079 static int __init swapfile_init(void)
4080 {
4081 int nid;
4082
4083 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4084 GFP_KERNEL);
4085 if (!swap_avail_heads) {
4086 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4087 return -ENOMEM;
4088 }
4089
4090 for_each_node(nid)
4091 plist_head_init(&swap_avail_heads[nid]);
4092
4093 swapfile_maximum_size = arch_max_swapfile_size();
4094
4095 #ifdef CONFIG_MIGRATION
4096 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4097 swap_migration_ad_supported = true;
4098 #endif /* CONFIG_MIGRATION */
4099
4100 return 0;
4101 }
4102 subsys_initcall(swapfile_init);
4103