1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 #include <linux/page_size_compat.h>
27
28 #include <linux/uaccess.h>
29
30 #include <kunit/visibility.h>
31
32 #include "internal.h"
33 #include "swap.h"
34
35 #ifndef __GENKSYMS__
36 #include <trace/hooks/syscall_check.h>
37 #include <trace/hooks/mm.h>
38 #endif
39
40 /**
41 * kfree_const - conditionally free memory
42 * @x: pointer to the memory
43 *
44 * Function calls kfree only if @x is not in .rodata section.
45 */
kfree_const(const void * x)46 void kfree_const(const void *x)
47 {
48 if (!is_kernel_rodata((unsigned long)x))
49 kfree(x);
50 }
51 EXPORT_SYMBOL(kfree_const);
52
53 /**
54 * kstrdup - allocate space for and copy an existing string
55 * @s: the string to duplicate
56 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
57 *
58 * Return: newly allocated copy of @s or %NULL in case of error
59 */
60 noinline
kstrdup(const char * s,gfp_t gfp)61 char *kstrdup(const char *s, gfp_t gfp)
62 {
63 size_t len;
64 char *buf;
65
66 if (!s)
67 return NULL;
68
69 len = strlen(s) + 1;
70 buf = kmalloc_track_caller(len, gfp);
71 if (buf)
72 memcpy(buf, s, len);
73 return buf;
74 }
75 EXPORT_SYMBOL(kstrdup);
76
77 /**
78 * kstrdup_const - conditionally duplicate an existing const string
79 * @s: the string to duplicate
80 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
81 *
82 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
83 * must not be passed to krealloc().
84 *
85 * Return: source string if it is in .rodata section otherwise
86 * fallback to kstrdup.
87 */
kstrdup_const(const char * s,gfp_t gfp)88 const char *kstrdup_const(const char *s, gfp_t gfp)
89 {
90 if (is_kernel_rodata((unsigned long)s))
91 return s;
92
93 return kstrdup(s, gfp);
94 }
95 EXPORT_SYMBOL(kstrdup_const);
96
97 /**
98 * kstrndup - allocate space for and copy an existing string
99 * @s: the string to duplicate
100 * @max: read at most @max chars from @s
101 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
102 *
103 * Note: Use kmemdup_nul() instead if the size is known exactly.
104 *
105 * Return: newly allocated copy of @s or %NULL in case of error
106 */
kstrndup(const char * s,size_t max,gfp_t gfp)107 char *kstrndup(const char *s, size_t max, gfp_t gfp)
108 {
109 size_t len;
110 char *buf;
111
112 if (!s)
113 return NULL;
114
115 len = strnlen(s, max);
116 buf = kmalloc_track_caller(len+1, gfp);
117 if (buf) {
118 memcpy(buf, s, len);
119 buf[len] = '\0';
120 }
121 return buf;
122 }
123 EXPORT_SYMBOL(kstrndup);
124
125 /**
126 * kmemdup - duplicate region of memory
127 *
128 * @src: memory region to duplicate
129 * @len: memory region length
130 * @gfp: GFP mask to use
131 *
132 * Return: newly allocated copy of @src or %NULL in case of error,
133 * result is physically contiguous. Use kfree() to free.
134 */
kmemdup_noprof(const void * src,size_t len,gfp_t gfp)135 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
136 {
137 void *p;
138
139 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
140 if (p)
141 memcpy(p, src, len);
142 return p;
143 }
144 EXPORT_SYMBOL(kmemdup_noprof);
145
146 /**
147 * kmemdup_array - duplicate a given array.
148 *
149 * @src: array to duplicate.
150 * @count: number of elements to duplicate from array.
151 * @element_size: size of each element of array.
152 * @gfp: GFP mask to use.
153 *
154 * Return: duplicated array of @src or %NULL in case of error,
155 * result is physically contiguous. Use kfree() to free.
156 */
kmemdup_array(const void * src,size_t count,size_t element_size,gfp_t gfp)157 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
158 {
159 return kmemdup(src, size_mul(element_size, count), gfp);
160 }
161 EXPORT_SYMBOL(kmemdup_array);
162
163 /**
164 * kvmemdup - duplicate region of memory
165 *
166 * @src: memory region to duplicate
167 * @len: memory region length
168 * @gfp: GFP mask to use
169 *
170 * Return: newly allocated copy of @src or %NULL in case of error,
171 * result may be not physically contiguous. Use kvfree() to free.
172 */
kvmemdup(const void * src,size_t len,gfp_t gfp)173 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
174 {
175 void *p;
176
177 p = kvmalloc(len, gfp);
178 if (p)
179 memcpy(p, src, len);
180 return p;
181 }
182 EXPORT_SYMBOL(kvmemdup);
183
184 /**
185 * kmemdup_nul - Create a NUL-terminated string from unterminated data
186 * @s: The data to stringify
187 * @len: The size of the data
188 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
189 *
190 * Return: newly allocated copy of @s with NUL-termination or %NULL in
191 * case of error
192 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)193 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
194 {
195 char *buf;
196
197 if (!s)
198 return NULL;
199
200 buf = kmalloc_track_caller(len + 1, gfp);
201 if (buf) {
202 memcpy(buf, s, len);
203 buf[len] = '\0';
204 }
205 return buf;
206 }
207 EXPORT_SYMBOL(kmemdup_nul);
208
209 static kmem_buckets *user_buckets __ro_after_init;
210
init_user_buckets(void)211 static int __init init_user_buckets(void)
212 {
213 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
214
215 return 0;
216 }
217 subsys_initcall(init_user_buckets);
218
219 /**
220 * memdup_user - duplicate memory region from user space
221 *
222 * @src: source address in user space
223 * @len: number of bytes to copy
224 *
225 * Return: an ERR_PTR() on failure. Result is physically
226 * contiguous, to be freed by kfree().
227 */
memdup_user(const void __user * src,size_t len)228 void *memdup_user(const void __user *src, size_t len)
229 {
230 void *p;
231
232 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
233 if (!p)
234 return ERR_PTR(-ENOMEM);
235
236 if (copy_from_user(p, src, len)) {
237 kfree(p);
238 return ERR_PTR(-EFAULT);
239 }
240
241 return p;
242 }
243 EXPORT_SYMBOL(memdup_user);
244
245 /**
246 * vmemdup_user - duplicate memory region from user space
247 *
248 * @src: source address in user space
249 * @len: number of bytes to copy
250 *
251 * Return: an ERR_PTR() on failure. Result may be not
252 * physically contiguous. Use kvfree() to free.
253 */
vmemdup_user(const void __user * src,size_t len)254 void *vmemdup_user(const void __user *src, size_t len)
255 {
256 void *p;
257
258 p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
259 if (!p)
260 return ERR_PTR(-ENOMEM);
261
262 if (copy_from_user(p, src, len)) {
263 kvfree(p);
264 return ERR_PTR(-EFAULT);
265 }
266
267 return p;
268 }
269 EXPORT_SYMBOL(vmemdup_user);
270
271 /**
272 * strndup_user - duplicate an existing string from user space
273 * @s: The string to duplicate
274 * @n: Maximum number of bytes to copy, including the trailing NUL.
275 *
276 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
277 */
strndup_user(const char __user * s,long n)278 char *strndup_user(const char __user *s, long n)
279 {
280 char *p;
281 long length;
282
283 length = strnlen_user(s, n);
284
285 if (!length)
286 return ERR_PTR(-EFAULT);
287
288 if (length > n)
289 return ERR_PTR(-EINVAL);
290
291 p = memdup_user(s, length);
292
293 if (IS_ERR(p))
294 return p;
295
296 p[length - 1] = '\0';
297
298 return p;
299 }
300 EXPORT_SYMBOL(strndup_user);
301
302 /**
303 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
304 *
305 * @src: source address in user space
306 * @len: number of bytes to copy
307 *
308 * Return: an ERR_PTR() on failure.
309 */
memdup_user_nul(const void __user * src,size_t len)310 void *memdup_user_nul(const void __user *src, size_t len)
311 {
312 char *p;
313
314 /*
315 * Always use GFP_KERNEL, since copy_from_user() can sleep and
316 * cause pagefault, which makes it pointless to use GFP_NOFS
317 * or GFP_ATOMIC.
318 */
319 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
320 if (!p)
321 return ERR_PTR(-ENOMEM);
322
323 if (copy_from_user(p, src, len)) {
324 kfree(p);
325 return ERR_PTR(-EFAULT);
326 }
327 p[len] = '\0';
328
329 return p;
330 }
331 EXPORT_SYMBOL(memdup_user_nul);
332
333 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)334 int vma_is_stack_for_current(struct vm_area_struct *vma)
335 {
336 struct task_struct * __maybe_unused t = current;
337
338 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
339 }
340
341 /*
342 * Change backing file, only valid to use during initial VMA setup.
343 */
vma_set_file(struct vm_area_struct * vma,struct file * file)344 void vma_set_file(struct vm_area_struct *vma, struct file *file)
345 {
346 /* Changing an anonymous vma with this is illegal */
347 get_file(file);
348 swap(vma->vm_file, file);
349 fput(file);
350 }
351 EXPORT_SYMBOL(vma_set_file);
352
353 #ifndef STACK_RND_MASK
354 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
355 #endif
356
randomize_stack_top(unsigned long stack_top)357 unsigned long randomize_stack_top(unsigned long stack_top)
358 {
359 unsigned long random_variable = 0;
360
361 if (current->flags & PF_RANDOMIZE) {
362 random_variable = get_random_long();
363 random_variable &= STACK_RND_MASK;
364 random_variable <<= __PAGE_SHIFT;
365 }
366 #ifdef CONFIG_STACK_GROWSUP
367 return __PAGE_ALIGN(stack_top) + random_variable;
368 #else
369 return __PAGE_ALIGN(stack_top) - random_variable;
370 #endif
371 }
372
373 /**
374 * randomize_page - Generate a random, page aligned address
375 * @start: The smallest acceptable address the caller will take.
376 * @range: The size of the area, starting at @start, within which the
377 * random address must fall.
378 *
379 * If @start + @range would overflow, @range is capped.
380 *
381 * NOTE: Historical use of randomize_range, which this replaces, presumed that
382 * @start was already page aligned. We now align it regardless.
383 *
384 * Return: A page aligned address within [start, start + range). On error,
385 * @start is returned.
386 */
randomize_page(unsigned long start,unsigned long range)387 unsigned long randomize_page(unsigned long start, unsigned long range)
388 {
389 if (__offset_in_page(start)) {
390 range -= __PAGE_ALIGN(start) - start;
391 start = __PAGE_ALIGN(start);
392 }
393
394 if (start > ULONG_MAX - range)
395 range = ULONG_MAX - start;
396
397 range >>= __PAGE_SHIFT;
398
399 if (range == 0)
400 return start;
401
402 return start + (get_random_long() % range << __PAGE_SHIFT);
403 }
404
405 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)406 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
407 {
408 /* Is the current task 32bit ? */
409 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
410 return randomize_page(mm->brk, SZ_32M);
411
412 return randomize_page(mm->brk, SZ_1G);
413 }
414
arch_mmap_rnd(void)415 unsigned long arch_mmap_rnd(void)
416 {
417 unsigned long rnd;
418
419 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
420 if (is_compat_task())
421 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
422 else
423 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
424 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
425
426 return rnd << PAGE_SHIFT;
427 }
428
mmap_is_legacy(struct rlimit * rlim_stack)429 static int mmap_is_legacy(struct rlimit *rlim_stack)
430 {
431 if (current->personality & ADDR_COMPAT_LAYOUT)
432 return 1;
433
434 /* On parisc the stack always grows up - so a unlimited stack should
435 * not be an indicator to use the legacy memory layout. */
436 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
437 !IS_ENABLED(CONFIG_STACK_GROWSUP))
438 return 1;
439
440 return sysctl_legacy_va_layout;
441 }
442
443 /*
444 * Leave enough space between the mmap area and the stack to honour ulimit in
445 * the face of randomisation.
446 */
447 #define MIN_GAP (SZ_128M)
448 #define MAX_GAP (STACK_TOP / 6 * 5)
449
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)450 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
451 {
452 #ifdef CONFIG_STACK_GROWSUP
453 /*
454 * For an upwards growing stack the calculation is much simpler.
455 * Memory for the maximum stack size is reserved at the top of the
456 * task. mmap_base starts directly below the stack and grows
457 * downwards.
458 */
459 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
460 #else
461 unsigned long gap = rlim_stack->rlim_cur;
462 unsigned long pad = stack_guard_gap;
463
464 /* Account for stack randomization if necessary */
465 if (current->flags & PF_RANDOMIZE)
466 pad += (STACK_RND_MASK << PAGE_SHIFT);
467
468 /* Values close to RLIM_INFINITY can overflow. */
469 if (gap + pad > gap)
470 gap += pad;
471
472 if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
473 gap = MIN_GAP;
474 else if (gap > MAX_GAP)
475 gap = MAX_GAP;
476
477 return PAGE_ALIGN(STACK_TOP - gap - rnd);
478 #endif
479 }
480
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)481 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
482 {
483 unsigned long random_factor = 0UL;
484
485 if (current->flags & PF_RANDOMIZE)
486 random_factor = arch_mmap_rnd();
487
488 if (mmap_is_legacy(rlim_stack)) {
489 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
490 clear_bit(MMF_TOPDOWN, &mm->flags);
491 } else {
492 mm->mmap_base = mmap_base(random_factor, rlim_stack);
493 set_bit(MMF_TOPDOWN, &mm->flags);
494 }
495 }
496 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)497 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
498 {
499 mm->mmap_base = TASK_UNMAPPED_BASE;
500 clear_bit(MMF_TOPDOWN, &mm->flags);
501 }
502 #endif
503 #ifdef CONFIG_MMU
504 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
505 #endif
506
507 /**
508 * __account_locked_vm - account locked pages to an mm's locked_vm
509 * @mm: mm to account against
510 * @pages: number of pages to account
511 * @inc: %true if @pages should be considered positive, %false if not
512 * @task: task used to check RLIMIT_MEMLOCK
513 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
514 *
515 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
516 * that mmap_lock is held as writer.
517 *
518 * Return:
519 * * 0 on success
520 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
521 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)522 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
523 struct task_struct *task, bool bypass_rlim)
524 {
525 unsigned long locked_vm, limit;
526 int ret = 0;
527
528 mmap_assert_write_locked(mm);
529
530 locked_vm = mm->locked_vm;
531 if (inc) {
532 if (!bypass_rlim) {
533 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
534 if (locked_vm + pages > limit)
535 ret = -ENOMEM;
536 }
537 if (!ret)
538 mm->locked_vm = locked_vm + pages;
539 } else {
540 WARN_ON_ONCE(pages > locked_vm);
541 mm->locked_vm = locked_vm - pages;
542 }
543
544 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
545 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
546 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
547 ret ? " - exceeded" : "");
548
549 return ret;
550 }
551 EXPORT_SYMBOL_GPL(__account_locked_vm);
552
553 /**
554 * account_locked_vm - account locked pages to an mm's locked_vm
555 * @mm: mm to account against, may be NULL
556 * @pages: number of pages to account
557 * @inc: %true if @pages should be considered positive, %false if not
558 *
559 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
560 *
561 * Return:
562 * * 0 on success, or if mm is NULL
563 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
564 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)565 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
566 {
567 int ret;
568
569 if (pages == 0 || !mm)
570 return 0;
571
572 mmap_write_lock(mm);
573 ret = __account_locked_vm(mm, pages, inc, current,
574 capable(CAP_IPC_LOCK));
575 mmap_write_unlock(mm);
576
577 return ret;
578 }
579 EXPORT_SYMBOL_GPL(account_locked_vm);
580
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)581 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
582 unsigned long len, unsigned long prot,
583 unsigned long flag, unsigned long pgoff)
584 {
585 unsigned long ret;
586 struct mm_struct *mm = current->mm;
587 unsigned long populate;
588 LIST_HEAD(uf);
589
590 ret = security_mmap_file(file, prot, flag);
591 if (!ret) {
592 if (mmap_write_lock_killable(mm))
593 return -EINTR;
594 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
595 &uf);
596 mmap_write_unlock(mm);
597 userfaultfd_unmap_complete(mm, &uf);
598 if (populate)
599 mm_populate(ret, populate);
600 }
601 trace_android_vh_check_mmap_file(file, prot, flag, ret);
602 return ret;
603 }
604
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)605 unsigned long vm_mmap(struct file *file, unsigned long addr,
606 unsigned long len, unsigned long prot,
607 unsigned long flag, unsigned long offset)
608 {
609 if (unlikely(offset + PAGE_ALIGN(len) < offset))
610 return -EINVAL;
611 if (unlikely(offset_in_page(offset)))
612 return -EINVAL;
613
614 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
615 }
616 EXPORT_SYMBOL(vm_mmap);
617
kmalloc_gfp_adjust(gfp_t flags,size_t size)618 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
619 {
620 /*
621 * We want to attempt a large physically contiguous block first because
622 * it is less likely to fragment multiple larger blocks and therefore
623 * contribute to a long term fragmentation less than vmalloc fallback.
624 * However make sure that larger requests are not too disruptive - no
625 * OOM killer and no allocation failure warnings as we have a fallback.
626 */
627 if (size > PAGE_SIZE) {
628 flags |= __GFP_NOWARN;
629
630 if (!(flags & __GFP_RETRY_MAYFAIL))
631 flags |= __GFP_NORETRY;
632
633 /* nofail semantic is implemented by the vmalloc fallback */
634 flags &= ~__GFP_NOFAIL;
635 }
636
637 trace_android_vh_adjust_kvmalloc_flags(get_order(size), &flags);
638
639 return flags;
640 }
641
642 /**
643 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
644 * failure, fall back to non-contiguous (vmalloc) allocation.
645 * @size: size of the request.
646 * @b: which set of kmalloc buckets to allocate from.
647 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
648 * @node: numa node to allocate from
649 *
650 * Uses kmalloc to get the memory but if the allocation fails then falls back
651 * to the vmalloc allocator. Use kvfree for freeing the memory.
652 *
653 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
654 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
655 * preferable to the vmalloc fallback, due to visible performance drawbacks.
656 *
657 * Return: pointer to the allocated memory of %NULL in case of failure
658 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)659 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
660 {
661 void *ret;
662 bool use_vmalloc = false;
663
664 trace_android_vh_kvmalloc_node_use_vmalloc(size, &flags, &use_vmalloc);
665 if (use_vmalloc)
666 goto use_vmalloc_node;
667 /*
668 * It doesn't really make sense to fallback to vmalloc for sub page
669 * requests
670 */
671 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
672 kmalloc_gfp_adjust(flags, size),
673 node);
674 if (ret || size <= PAGE_SIZE)
675 return ret;
676
677 /* non-sleeping allocations are not supported by vmalloc */
678 if (!gfpflags_allow_blocking(flags))
679 return NULL;
680
681 /* Don't even allow crazy sizes */
682 if (unlikely(size > INT_MAX)) {
683 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
684 return NULL;
685 }
686
687 /*
688 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
689 * since the callers already cannot assume anything
690 * about the resulting pointer, and cannot play
691 * protection games.
692 */
693 use_vmalloc_node:
694 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
695 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
696 node, __builtin_return_address(0));
697 }
698 EXPORT_SYMBOL(__kvmalloc_node_noprof);
699
700 /**
701 * kvfree() - Free memory.
702 * @addr: Pointer to allocated memory.
703 *
704 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
705 * It is slightly more efficient to use kfree() or vfree() if you are certain
706 * that you know which one to use.
707 *
708 * Context: Either preemptible task context or not-NMI interrupt.
709 */
kvfree(const void * addr)710 void kvfree(const void *addr)
711 {
712 if (is_vmalloc_addr(addr))
713 vfree(addr);
714 else
715 kfree(addr);
716 }
717 EXPORT_SYMBOL(kvfree);
718
719 /**
720 * kvfree_sensitive - Free a data object containing sensitive information.
721 * @addr: address of the data object to be freed.
722 * @len: length of the data object.
723 *
724 * Use the special memzero_explicit() function to clear the content of a
725 * kvmalloc'ed object containing sensitive data to make sure that the
726 * compiler won't optimize out the data clearing.
727 */
kvfree_sensitive(const void * addr,size_t len)728 void kvfree_sensitive(const void *addr, size_t len)
729 {
730 if (likely(!ZERO_OR_NULL_PTR(addr))) {
731 memzero_explicit((void *)addr, len);
732 kvfree(addr);
733 }
734 }
735 EXPORT_SYMBOL(kvfree_sensitive);
736
737 /**
738 * kvrealloc - reallocate memory; contents remain unchanged
739 * @p: object to reallocate memory for
740 * @size: the size to reallocate
741 * @flags: the flags for the page level allocator
742 *
743 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
744 * and @p is not a %NULL pointer, the object pointed to is freed.
745 *
746 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
747 * initial memory allocation, every subsequent call to this API for the same
748 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
749 * __GFP_ZERO is not fully honored by this API.
750 *
751 * In any case, the contents of the object pointed to are preserved up to the
752 * lesser of the new and old sizes.
753 *
754 * This function must not be called concurrently with itself or kvfree() for the
755 * same memory allocation.
756 *
757 * Return: pointer to the allocated memory or %NULL in case of error
758 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)759 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
760 {
761 void *n;
762
763 if (is_vmalloc_addr(p))
764 return vrealloc_noprof(p, size, flags);
765
766 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
767 if (!n) {
768 /* We failed to krealloc(), fall back to kvmalloc(). */
769 n = kvmalloc_noprof(size, flags);
770 if (!n)
771 return NULL;
772
773 if (p) {
774 /* We already know that `p` is not a vmalloc address. */
775 kasan_disable_current();
776 memcpy(n, kasan_reset_tag(p), ksize(p));
777 kasan_enable_current();
778
779 kfree(p);
780 }
781 }
782
783 return n;
784 }
785 EXPORT_SYMBOL(kvrealloc_noprof);
786
787 /**
788 * __vmalloc_array - allocate memory for a virtually contiguous array.
789 * @n: number of elements.
790 * @size: element size.
791 * @flags: the type of memory to allocate (see kmalloc).
792 */
__vmalloc_array_noprof(size_t n,size_t size,gfp_t flags)793 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
794 {
795 size_t bytes;
796
797 if (unlikely(check_mul_overflow(n, size, &bytes)))
798 return NULL;
799 return __vmalloc_noprof(bytes, flags);
800 }
801 EXPORT_SYMBOL(__vmalloc_array_noprof);
802
803 /**
804 * vmalloc_array - allocate memory for a virtually contiguous array.
805 * @n: number of elements.
806 * @size: element size.
807 */
vmalloc_array_noprof(size_t n,size_t size)808 void *vmalloc_array_noprof(size_t n, size_t size)
809 {
810 return __vmalloc_array_noprof(n, size, GFP_KERNEL);
811 }
812 EXPORT_SYMBOL(vmalloc_array_noprof);
813
814 /**
815 * __vcalloc - allocate and zero memory for a virtually contiguous array.
816 * @n: number of elements.
817 * @size: element size.
818 * @flags: the type of memory to allocate (see kmalloc).
819 */
__vcalloc_noprof(size_t n,size_t size,gfp_t flags)820 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
821 {
822 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
823 }
824 EXPORT_SYMBOL(__vcalloc_noprof);
825
826 /**
827 * vcalloc - allocate and zero memory for a virtually contiguous array.
828 * @n: number of elements.
829 * @size: element size.
830 */
vcalloc_noprof(size_t n,size_t size)831 void *vcalloc_noprof(size_t n, size_t size)
832 {
833 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
834 }
835 EXPORT_SYMBOL(vcalloc_noprof);
836
folio_anon_vma(struct folio * folio)837 struct anon_vma *folio_anon_vma(struct folio *folio)
838 {
839 unsigned long mapping = (unsigned long)folio->mapping;
840
841 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
842 return NULL;
843 return (void *)(mapping - PAGE_MAPPING_ANON);
844 }
845
846 /**
847 * folio_mapping - Find the mapping where this folio is stored.
848 * @folio: The folio.
849 *
850 * For folios which are in the page cache, return the mapping that this
851 * page belongs to. Folios in the swap cache return the swap mapping
852 * this page is stored in (which is different from the mapping for the
853 * swap file or swap device where the data is stored).
854 *
855 * You can call this for folios which aren't in the swap cache or page
856 * cache and it will return NULL.
857 */
folio_mapping(struct folio * folio)858 struct address_space *folio_mapping(struct folio *folio)
859 {
860 struct address_space *mapping;
861
862 /* This happens if someone calls flush_dcache_page on slab page */
863 if (unlikely(folio_test_slab(folio)))
864 return NULL;
865
866 if (unlikely(folio_test_swapcache(folio)))
867 return swap_address_space(folio->swap);
868
869 mapping = folio->mapping;
870 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
871 return NULL;
872
873 return mapping;
874 }
875 EXPORT_SYMBOL(folio_mapping);
876
877 /**
878 * folio_copy - Copy the contents of one folio to another.
879 * @dst: Folio to copy to.
880 * @src: Folio to copy from.
881 *
882 * The bytes in the folio represented by @src are copied to @dst.
883 * Assumes the caller has validated that @dst is at least as large as @src.
884 * Can be called in atomic context for order-0 folios, but if the folio is
885 * larger, it may sleep.
886 */
folio_copy(struct folio * dst,struct folio * src)887 void folio_copy(struct folio *dst, struct folio *src)
888 {
889 long i = 0;
890 long nr = folio_nr_pages(src);
891
892 for (;;) {
893 copy_highpage(folio_page(dst, i), folio_page(src, i));
894 if (++i == nr)
895 break;
896 cond_resched();
897 }
898 }
899 EXPORT_SYMBOL(folio_copy);
900
folio_mc_copy(struct folio * dst,struct folio * src)901 int folio_mc_copy(struct folio *dst, struct folio *src)
902 {
903 long nr = folio_nr_pages(src);
904 long i = 0;
905
906 for (;;) {
907 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
908 return -EHWPOISON;
909 if (++i == nr)
910 break;
911 cond_resched();
912 }
913
914 return 0;
915 }
916 EXPORT_SYMBOL(folio_mc_copy);
917
918 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
919 int sysctl_overcommit_ratio __read_mostly = 50;
920 unsigned long sysctl_overcommit_kbytes __read_mostly;
921 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
922 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
923 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
924
overcommit_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)925 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
926 size_t *lenp, loff_t *ppos)
927 {
928 int ret;
929
930 ret = proc_dointvec(table, write, buffer, lenp, ppos);
931 if (ret == 0 && write)
932 sysctl_overcommit_kbytes = 0;
933 return ret;
934 }
935
sync_overcommit_as(struct work_struct * dummy)936 static void sync_overcommit_as(struct work_struct *dummy)
937 {
938 percpu_counter_sync(&vm_committed_as);
939 }
940
overcommit_policy_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)941 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
942 size_t *lenp, loff_t *ppos)
943 {
944 struct ctl_table t;
945 int new_policy = -1;
946 int ret;
947
948 /*
949 * The deviation of sync_overcommit_as could be big with loose policy
950 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
951 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
952 * with the strict "NEVER", and to avoid possible race condition (even
953 * though user usually won't too frequently do the switching to policy
954 * OVERCOMMIT_NEVER), the switch is done in the following order:
955 * 1. changing the batch
956 * 2. sync percpu count on each CPU
957 * 3. switch the policy
958 */
959 if (write) {
960 t = *table;
961 t.data = &new_policy;
962 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
963 if (ret || new_policy == -1)
964 return ret;
965
966 mm_compute_batch(new_policy);
967 if (new_policy == OVERCOMMIT_NEVER)
968 schedule_on_each_cpu(sync_overcommit_as);
969 sysctl_overcommit_memory = new_policy;
970 } else {
971 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
972 }
973
974 return ret;
975 }
976
overcommit_kbytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)977 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
978 size_t *lenp, loff_t *ppos)
979 {
980 int ret;
981
982 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
983 if (ret == 0 && write)
984 sysctl_overcommit_ratio = 0;
985 return ret;
986 }
987
988 /*
989 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
990 */
vm_commit_limit(void)991 unsigned long vm_commit_limit(void)
992 {
993 unsigned long allowed;
994
995 if (sysctl_overcommit_kbytes)
996 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
997 else
998 allowed = ((totalram_pages() - hugetlb_total_pages())
999 * sysctl_overcommit_ratio / 100);
1000 allowed += total_swap_pages;
1001
1002 return allowed;
1003 }
1004
1005 /*
1006 * Make sure vm_committed_as in one cacheline and not cacheline shared with
1007 * other variables. It can be updated by several CPUs frequently.
1008 */
1009 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
1010
1011 /*
1012 * The global memory commitment made in the system can be a metric
1013 * that can be used to drive ballooning decisions when Linux is hosted
1014 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
1015 * balancing memory across competing virtual machines that are hosted.
1016 * Several metrics drive this policy engine including the guest reported
1017 * memory commitment.
1018 *
1019 * The time cost of this is very low for small platforms, and for big
1020 * platform like a 2S/36C/72T Skylake server, in worst case where
1021 * vm_committed_as's spinlock is under severe contention, the time cost
1022 * could be about 30~40 microseconds.
1023 */
vm_memory_committed(void)1024 unsigned long vm_memory_committed(void)
1025 {
1026 return percpu_counter_sum_positive(&vm_committed_as);
1027 }
1028 EXPORT_SYMBOL_GPL(vm_memory_committed);
1029
1030 /*
1031 * Check that a process has enough memory to allocate a new virtual
1032 * mapping. 0 means there is enough memory for the allocation to
1033 * succeed and -ENOMEM implies there is not.
1034 *
1035 * We currently support three overcommit policies, which are set via the
1036 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
1037 *
1038 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1039 * Additional code 2002 Jul 20 by Robert Love.
1040 *
1041 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1042 *
1043 * Note this is a helper function intended to be used by LSMs which
1044 * wish to use this logic.
1045 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1046 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1047 {
1048 long allowed;
1049 unsigned long bytes_failed;
1050
1051 vm_acct_memory(pages);
1052
1053 /*
1054 * Sometimes we want to use more memory than we have
1055 */
1056 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1057 return 0;
1058
1059 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1060 if (pages > totalram_pages() + total_swap_pages)
1061 goto error;
1062 return 0;
1063 }
1064
1065 allowed = vm_commit_limit();
1066 /*
1067 * Reserve some for root
1068 */
1069 if (!cap_sys_admin)
1070 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1071
1072 /*
1073 * Don't let a single process grow so big a user can't recover
1074 */
1075 if (mm) {
1076 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1077
1078 allowed -= min_t(long, mm->total_vm / 32, reserve);
1079 }
1080
1081 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1082 return 0;
1083 error:
1084 bytes_failed = pages << PAGE_SHIFT;
1085 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1086 __func__, current->pid, current->comm, bytes_failed);
1087 vm_unacct_memory(pages);
1088
1089 return -ENOMEM;
1090 }
1091
1092 /**
1093 * get_cmdline() - copy the cmdline value to a buffer.
1094 * @task: the task whose cmdline value to copy.
1095 * @buffer: the buffer to copy to.
1096 * @buflen: the length of the buffer. Larger cmdline values are truncated
1097 * to this length.
1098 *
1099 * Return: the size of the cmdline field copied. Note that the copy does
1100 * not guarantee an ending NULL byte.
1101 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1102 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1103 {
1104 int res = 0;
1105 unsigned int len;
1106 struct mm_struct *mm = get_task_mm(task);
1107 unsigned long arg_start, arg_end, env_start, env_end;
1108 if (!mm)
1109 goto out;
1110 if (!mm->arg_end)
1111 goto out_mm; /* Shh! No looking before we're done */
1112
1113 spin_lock(&mm->arg_lock);
1114 arg_start = mm->arg_start;
1115 arg_end = mm->arg_end;
1116 env_start = mm->env_start;
1117 env_end = mm->env_end;
1118 spin_unlock(&mm->arg_lock);
1119
1120 len = arg_end - arg_start;
1121
1122 if (len > buflen)
1123 len = buflen;
1124
1125 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1126
1127 /*
1128 * If the nul at the end of args has been overwritten, then
1129 * assume application is using setproctitle(3).
1130 */
1131 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1132 len = strnlen(buffer, res);
1133 if (len < res) {
1134 res = len;
1135 } else {
1136 len = env_end - env_start;
1137 if (len > buflen - res)
1138 len = buflen - res;
1139 res += access_process_vm(task, env_start,
1140 buffer+res, len,
1141 FOLL_FORCE);
1142 res = strnlen(buffer, res);
1143 }
1144 }
1145 out_mm:
1146 mmput(mm);
1147 out:
1148 return res;
1149 }
1150
memcmp_pages(struct page * page1,struct page * page2)1151 int __weak memcmp_pages(struct page *page1, struct page *page2)
1152 {
1153 char *addr1, *addr2;
1154 int ret;
1155
1156 addr1 = kmap_local_page(page1);
1157 addr2 = kmap_local_page(page2);
1158 ret = memcmp(addr1, addr2, PAGE_SIZE);
1159 kunmap_local(addr2);
1160 kunmap_local(addr1);
1161 return ret;
1162 }
1163
1164 #ifdef CONFIG_PRINTK
1165 /**
1166 * mem_dump_obj - Print available provenance information
1167 * @object: object for which to find provenance information.
1168 *
1169 * This function uses pr_cont(), so that the caller is expected to have
1170 * printed out whatever preamble is appropriate. The provenance information
1171 * depends on the type of object and on how much debugging is enabled.
1172 * For example, for a slab-cache object, the slab name is printed, and,
1173 * if available, the return address and stack trace from the allocation
1174 * and last free path of that object.
1175 */
mem_dump_obj(void * object)1176 void mem_dump_obj(void *object)
1177 {
1178 const char *type;
1179
1180 if (kmem_dump_obj(object))
1181 return;
1182
1183 if (vmalloc_dump_obj(object))
1184 return;
1185
1186 if (is_vmalloc_addr(object))
1187 type = "vmalloc memory";
1188 else if (virt_addr_valid(object))
1189 type = "non-slab/vmalloc memory";
1190 else if (object == NULL)
1191 type = "NULL pointer";
1192 else if (object == ZERO_SIZE_PTR)
1193 type = "zero-size pointer";
1194 else
1195 type = "non-paged memory";
1196
1197 pr_cont(" %s\n", type);
1198 }
1199 EXPORT_SYMBOL_GPL(mem_dump_obj);
1200 #endif
1201
1202 /*
1203 * A driver might set a page logically offline -- PageOffline() -- and
1204 * turn the page inaccessible in the hypervisor; after that, access to page
1205 * content can be fatal.
1206 *
1207 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1208 * pages after checking PageOffline(); however, these PFN walkers can race
1209 * with drivers that set PageOffline().
1210 *
1211 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1212 * synchronize with such drivers, achieving that a page cannot be set
1213 * PageOffline() while frozen.
1214 *
1215 * page_offline_begin()/page_offline_end() is used by drivers that care about
1216 * such races when setting a page PageOffline().
1217 */
1218 static DECLARE_RWSEM(page_offline_rwsem);
1219
page_offline_freeze(void)1220 void page_offline_freeze(void)
1221 {
1222 down_read(&page_offline_rwsem);
1223 }
1224
page_offline_thaw(void)1225 void page_offline_thaw(void)
1226 {
1227 up_read(&page_offline_rwsem);
1228 }
1229
page_offline_begin(void)1230 void page_offline_begin(void)
1231 {
1232 down_write(&page_offline_rwsem);
1233 }
1234 EXPORT_SYMBOL(page_offline_begin);
1235
page_offline_end(void)1236 void page_offline_end(void)
1237 {
1238 up_write(&page_offline_rwsem);
1239 }
1240 EXPORT_SYMBOL(page_offline_end);
1241
1242 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1243 void flush_dcache_folio(struct folio *folio)
1244 {
1245 long i, nr = folio_nr_pages(folio);
1246
1247 for (i = 0; i < nr; i++)
1248 flush_dcache_page(folio_page(folio, i));
1249 }
1250 EXPORT_SYMBOL(flush_dcache_folio);
1251 #endif
1252