1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * VMA-specific functions.
5 */
6
7 #include <linux/pgsize_migration.h>
8
9 #include "vma_internal.h"
10 #include "vma.h"
11
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)12 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
13 {
14 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
15
16 if (!mpol_equal(vmg->policy, vma_policy(vma)))
17 return false;
18 /*
19 * VM_SOFTDIRTY should not prevent from VMA merging, if we
20 * match the flags but dirty bit -- the caller should mark
21 * merged VMA as dirty. If dirty bit won't be excluded from
22 * comparison, we increase pressure on the memory system forcing
23 * the kernel to generate new VMAs when old one could be
24 * extended instead.
25 */
26 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
27 return false;
28 if (vma->vm_file != vmg->file)
29 return false;
30 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
31 return false;
32 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
33 return false;
34 if (!is_mergable_pad_vma(vma, vmg->flags))
35 return false;
36 return true;
37 }
38
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)39 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
40 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
41 {
42 /*
43 * The list_is_singular() test is to avoid merging VMA cloned from
44 * parents. This can improve scalability caused by anon_vma lock.
45 */
46 if ((!anon_vma1 || !anon_vma2) && (!vma ||
47 list_is_singular(&vma->anon_vma_chain)))
48 return true;
49 return anon_vma1 == anon_vma2;
50 }
51
52 /* Are the anon_vma's belonging to each VMA compatible with one another? */
are_anon_vmas_compatible(struct vm_area_struct * vma1,struct vm_area_struct * vma2)53 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
54 struct vm_area_struct *vma2)
55 {
56 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
57 }
58
59 /*
60 * init_multi_vma_prep() - Initializer for struct vma_prepare
61 * @vp: The vma_prepare struct
62 * @vma: The vma that will be altered once locked
63 * @next: The next vma if it is to be adjusted
64 * @remove: The first vma to be removed
65 * @remove2: The second vma to be removed
66 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vm_area_struct * next,struct vm_area_struct * remove,struct vm_area_struct * remove2)67 static void init_multi_vma_prep(struct vma_prepare *vp,
68 struct vm_area_struct *vma,
69 struct vm_area_struct *next,
70 struct vm_area_struct *remove,
71 struct vm_area_struct *remove2)
72 {
73 memset(vp, 0, sizeof(struct vma_prepare));
74 vp->vma = vma;
75 vp->anon_vma = vma->anon_vma;
76 vp->remove = remove;
77 vp->remove2 = remove2;
78 vp->adj_next = next;
79 if (!vp->anon_vma && next)
80 vp->anon_vma = next->anon_vma;
81
82 vp->file = vma->vm_file;
83 if (vp->file)
84 vp->mapping = vma->vm_file->f_mapping;
85
86 }
87
88 /*
89 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
90 * in front of (at a lower virtual address and file offset than) the vma.
91 *
92 * We cannot merge two vmas if they have differently assigned (non-NULL)
93 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
94 *
95 * We don't check here for the merged mmap wrapping around the end of pagecache
96 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
97 * wrap, nor mmaps which cover the final page at index -1UL.
98 *
99 * We assume the vma may be removed as part of the merge.
100 */
can_vma_merge_before(struct vma_merge_struct * vmg)101 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
102 {
103 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
104
105 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
106 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
107 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
108 return true;
109 }
110
111 return false;
112 }
113
114 /*
115 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
116 * beyond (at a higher virtual address and file offset than) the vma.
117 *
118 * We cannot merge two vmas if they have differently assigned (non-NULL)
119 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
120 *
121 * We assume that vma is not removed as part of the merge.
122 */
can_vma_merge_after(struct vma_merge_struct * vmg)123 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
124 {
125 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
126 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
127 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
128 return true;
129 }
130 return false;
131 }
132
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)133 static void __vma_link_file(struct vm_area_struct *vma,
134 struct address_space *mapping)
135 {
136 if (vma_is_shared_maywrite(vma))
137 mapping_allow_writable(mapping);
138
139 flush_dcache_mmap_lock(mapping);
140 vma_interval_tree_insert(vma, &mapping->i_mmap);
141 flush_dcache_mmap_unlock(mapping);
142 }
143
144 /*
145 * Requires inode->i_mapping->i_mmap_rwsem
146 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)147 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
148 struct address_space *mapping)
149 {
150 if (vma_is_shared_maywrite(vma))
151 mapping_unmap_writable(mapping);
152
153 flush_dcache_mmap_lock(mapping);
154 vma_interval_tree_remove(vma, &mapping->i_mmap);
155 flush_dcache_mmap_unlock(mapping);
156 }
157
158 /*
159 * vma_prepare() - Helper function for handling locking VMAs prior to altering
160 * @vp: The initialized vma_prepare struct
161 */
vma_prepare(struct vma_prepare * vp)162 static void vma_prepare(struct vma_prepare *vp)
163 {
164 if (vp->file) {
165 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
166
167 if (vp->adj_next)
168 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
169 vp->adj_next->vm_end);
170
171 i_mmap_lock_write(vp->mapping);
172 if (vp->insert && vp->insert->vm_file) {
173 /*
174 * Put into interval tree now, so instantiated pages
175 * are visible to arm/parisc __flush_dcache_page
176 * throughout; but we cannot insert into address
177 * space until vma start or end is updated.
178 */
179 __vma_link_file(vp->insert,
180 vp->insert->vm_file->f_mapping);
181 }
182 }
183
184 if (vp->anon_vma) {
185 anon_vma_lock_write(vp->anon_vma);
186 anon_vma_interval_tree_pre_update_vma(vp->vma);
187 if (vp->adj_next)
188 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
189 }
190
191 if (vp->file) {
192 flush_dcache_mmap_lock(vp->mapping);
193 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
194 if (vp->adj_next)
195 vma_interval_tree_remove(vp->adj_next,
196 &vp->mapping->i_mmap);
197 }
198
199 }
200
201 /*
202 * vma_complete- Helper function for handling the unlocking after altering VMAs,
203 * or for inserting a VMA.
204 *
205 * @vp: The vma_prepare struct
206 * @vmi: The vma iterator
207 * @mm: The mm_struct
208 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)209 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
210 struct mm_struct *mm)
211 {
212 if (vp->file) {
213 if (vp->adj_next)
214 vma_interval_tree_insert(vp->adj_next,
215 &vp->mapping->i_mmap);
216 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
217 flush_dcache_mmap_unlock(vp->mapping);
218 }
219
220 if (vp->remove && vp->file) {
221 __remove_shared_vm_struct(vp->remove, vp->mapping);
222 if (vp->remove2)
223 __remove_shared_vm_struct(vp->remove2, vp->mapping);
224 } else if (vp->insert) {
225 /*
226 * split_vma has split insert from vma, and needs
227 * us to insert it before dropping the locks
228 * (it may either follow vma or precede it).
229 */
230 vma_iter_store_new(vmi, vp->insert);
231 mm->map_count++;
232 }
233
234 if (vp->anon_vma) {
235 anon_vma_interval_tree_post_update_vma(vp->vma);
236 if (vp->adj_next)
237 anon_vma_interval_tree_post_update_vma(vp->adj_next);
238 anon_vma_unlock_write(vp->anon_vma);
239 }
240
241 if (vp->file) {
242 i_mmap_unlock_write(vp->mapping);
243 uprobe_mmap(vp->vma);
244
245 if (vp->adj_next)
246 uprobe_mmap(vp->adj_next);
247 }
248
249 if (vp->remove) {
250 again:
251 vma_mark_detached(vp->remove);
252 if (vp->file) {
253 uprobe_munmap(vp->remove, vp->remove->vm_start,
254 vp->remove->vm_end);
255 fput(vp->file);
256 }
257 if (vp->remove->anon_vma)
258 anon_vma_merge(vp->vma, vp->remove);
259 mm->map_count--;
260 mpol_put(vma_policy(vp->remove));
261 if (!vp->remove2)
262 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
263 vm_area_free(vp->remove);
264
265 /*
266 * In mprotect's case 6 (see comments on vma_merge),
267 * we are removing both mid and next vmas
268 */
269 if (vp->remove2) {
270 vp->remove = vp->remove2;
271 vp->remove2 = NULL;
272 goto again;
273 }
274 }
275 if (vp->insert && vp->file)
276 uprobe_mmap(vp->insert);
277 }
278
279 /*
280 * init_vma_prep() - Initializer wrapper for vma_prepare struct
281 * @vp: The vma_prepare struct
282 * @vma: The vma that will be altered once locked
283 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)284 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
285 {
286 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
287 }
288
289 /*
290 * Can the proposed VMA be merged with the left (previous) VMA taking into
291 * account the start position of the proposed range.
292 */
can_vma_merge_left(struct vma_merge_struct * vmg)293 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
294
295 {
296 return vmg->prev && vmg->prev->vm_end == vmg->start &&
297 can_vma_merge_after(vmg);
298 }
299
300 /*
301 * Can the proposed VMA be merged with the right (next) VMA taking into
302 * account the end position of the proposed range.
303 *
304 * In addition, if we can merge with the left VMA, ensure that left and right
305 * anon_vma's are also compatible.
306 */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)307 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
308 bool can_merge_left)
309 {
310 if (!vmg->next || vmg->end != vmg->next->vm_start ||
311 !can_vma_merge_before(vmg))
312 return false;
313
314 if (!can_merge_left)
315 return true;
316
317 /*
318 * If we can merge with prev (left) and next (right), indicating that
319 * each VMA's anon_vma is compatible with the proposed anon_vma, this
320 * does not mean prev and next are compatible with EACH OTHER.
321 *
322 * We therefore check this in addition to mergeability to either side.
323 */
324 return are_anon_vmas_compatible(vmg->prev, vmg->next);
325 }
326
327 /*
328 * Close a vm structure and free it.
329 */
remove_vma(struct vm_area_struct * vma)330 void remove_vma(struct vm_area_struct *vma)
331 {
332 might_sleep();
333 vma_close(vma);
334 if (vma->vm_file)
335 fput(vma->vm_file);
336 mpol_put(vma_policy(vma));
337 vm_area_free(vma);
338 }
339
340 /*
341 * Get rid of page table information in the indicated region.
342 *
343 * Called with the mm semaphore held.
344 */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)345 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
346 struct vm_area_struct *prev, struct vm_area_struct *next)
347 {
348 struct mm_struct *mm = vma->vm_mm;
349 struct mmu_gather tlb;
350
351 lru_add_drain();
352 tlb_gather_mmu(&tlb, mm);
353 update_hiwater_rss(mm);
354 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
355 /* mm_wr_locked = */ true);
356 mas_set(mas, vma->vm_end);
357 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
358 next ? next->vm_start : USER_PGTABLES_CEILING,
359 /* mm_wr_locked = */ true);
360 tlb_finish_mmu(&tlb);
361 }
362
363 /*
364 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
365 * has already been checked or doesn't make sense to fail.
366 * VMA Iterator will point to the original VMA.
367 */
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
369 unsigned long addr, int new_below)
370 {
371 struct vma_prepare vp;
372 struct vm_area_struct *new;
373 int err;
374
375 WARN_ON(vma->vm_start >= addr);
376 WARN_ON(vma->vm_end <= addr);
377
378 if (vma->vm_ops && vma->vm_ops->may_split) {
379 err = vma->vm_ops->may_split(vma, addr);
380 if (err)
381 return err;
382 }
383
384 new = vm_area_dup(vma);
385 if (!new)
386 return -ENOMEM;
387
388 if (new_below) {
389 new->vm_end = addr;
390 } else {
391 new->vm_start = addr;
392 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
393 }
394
395 err = -ENOMEM;
396 vma_iter_config(vmi, new->vm_start, new->vm_end);
397 if (vma_iter_prealloc(vmi, new))
398 goto out_free_vma;
399
400 err = vma_dup_policy(vma, new);
401 if (err)
402 goto out_free_vmi;
403
404 err = anon_vma_clone(new, vma);
405 if (err)
406 goto out_free_mpol;
407
408 if (new->vm_file)
409 get_file(new->vm_file);
410
411 if (new->vm_ops && new->vm_ops->open)
412 new->vm_ops->open(new);
413
414 vma_start_write(vma);
415 vma_start_write(new);
416
417 init_vma_prep(&vp, vma);
418 vp.insert = new;
419 vma_prepare(&vp);
420
421 /*
422 * Get rid of huge pages and shared page tables straddling the split
423 * boundary.
424 */
425 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
426 if (is_vm_hugetlb_page(vma))
427 hugetlb_split(vma, addr);
428
429 if (new_below) {
430 vma->vm_start = addr;
431 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
432 } else {
433 vma->vm_end = addr;
434 }
435
436 /* vma_complete stores the new vma */
437 vma_complete(&vp, vmi, vma->vm_mm);
438 validate_mm(vma->vm_mm);
439
440 /* Success. */
441 if (new_below)
442 vma_next(vmi);
443 else
444 vma_prev(vmi);
445
446 split_pad_vma(vma, new, addr, new_below);
447 return 0;
448
449 out_free_mpol:
450 mpol_put(vma_policy(new));
451 out_free_vmi:
452 vma_iter_free(vmi);
453 out_free_vma:
454 vm_area_free(new);
455 return err;
456 }
457
458 /*
459 * Split a vma into two pieces at address 'addr', a new vma is allocated
460 * either for the first part or the tail.
461 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)462 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
463 unsigned long addr, int new_below)
464 {
465 if (vma->vm_mm->map_count >= sysctl_max_map_count)
466 return -ENOMEM;
467
468 return __split_vma(vmi, vma, addr, new_below);
469 }
470
471 /*
472 * vma has some anon_vma assigned, and is already inserted on that
473 * anon_vma's interval trees.
474 *
475 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
476 * vma must be removed from the anon_vma's interval trees using
477 * anon_vma_interval_tree_pre_update_vma().
478 *
479 * After the update, the vma will be reinserted using
480 * anon_vma_interval_tree_post_update_vma().
481 *
482 * The entire update must be protected by exclusive mmap_lock and by
483 * the root anon_vma's mutex.
484 */
485 void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)486 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
487 {
488 struct anon_vma_chain *avc;
489
490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
492 }
493
494 void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)495 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
496 {
497 struct anon_vma_chain *avc;
498
499 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
500 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
501 }
502
503 /*
504 * dup_anon_vma() - Helper function to duplicate anon_vma
505 * @dst: The destination VMA
506 * @src: The source VMA
507 * @dup: Pointer to the destination VMA when successful.
508 *
509 * Returns: 0 on success.
510 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)511 static int dup_anon_vma(struct vm_area_struct *dst,
512 struct vm_area_struct *src, struct vm_area_struct **dup)
513 {
514 /*
515 * Easily overlooked: when mprotect shifts the boundary, make sure the
516 * expanding vma has anon_vma set if the shrinking vma had, to cover any
517 * anon pages imported.
518 */
519 if (src->anon_vma && !dst->anon_vma) {
520 int ret;
521
522 vma_assert_write_locked(dst);
523 dst->anon_vma = src->anon_vma;
524 ret = anon_vma_clone(dst, src);
525 if (ret)
526 return ret;
527
528 *dup = dst;
529 }
530
531 return 0;
532 }
533
534 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)535 void validate_mm(struct mm_struct *mm)
536 {
537 int bug = 0;
538 int i = 0;
539 struct vm_area_struct *vma;
540 VMA_ITERATOR(vmi, mm, 0);
541
542 mt_validate(&mm->mm_mt);
543 for_each_vma(vmi, vma) {
544 #ifdef CONFIG_DEBUG_VM_RB
545 struct anon_vma *anon_vma = vma->anon_vma;
546 struct anon_vma_chain *avc;
547 #endif
548 unsigned long vmi_start, vmi_end;
549 bool warn = 0;
550
551 vmi_start = vma_iter_addr(&vmi);
552 vmi_end = vma_iter_end(&vmi);
553 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
554 warn = 1;
555
556 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
557 warn = 1;
558
559 if (warn) {
560 pr_emerg("issue in %s\n", current->comm);
561 dump_stack();
562 dump_vma(vma);
563 pr_emerg("tree range: %px start %lx end %lx\n", vma,
564 vmi_start, vmi_end - 1);
565 vma_iter_dump_tree(&vmi);
566 }
567
568 #ifdef CONFIG_DEBUG_VM_RB
569 if (anon_vma) {
570 anon_vma_lock_read(anon_vma);
571 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
572 anon_vma_interval_tree_verify(avc);
573 anon_vma_unlock_read(anon_vma);
574 }
575 #endif
576 i++;
577 }
578 if (i != mm->map_count) {
579 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
580 bug = 1;
581 }
582 VM_BUG_ON_MM(bug, mm);
583 }
584 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
585
586 /* Actually perform the VMA merge operation. */
commit_merge(struct vma_merge_struct * vmg,struct vm_area_struct * adjust,struct vm_area_struct * remove,struct vm_area_struct * remove2,long adj_start,bool expanded)587 static int commit_merge(struct vma_merge_struct *vmg,
588 struct vm_area_struct *adjust,
589 struct vm_area_struct *remove,
590 struct vm_area_struct *remove2,
591 long adj_start,
592 bool expanded)
593 {
594 struct vma_prepare vp;
595
596 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
597
598 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
599 vp.anon_vma != adjust->anon_vma);
600
601 if (expanded) {
602 /* Note: vma iterator must be pointing to 'start'. */
603 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
604 } else {
605 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
606 adjust->vm_end);
607 }
608
609 if (vma_iter_prealloc(vmg->vmi, vmg->vma))
610 return -ENOMEM;
611
612 vma_prepare(&vp);
613 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
614 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
615
616 if (expanded)
617 vma_iter_store_overwrite(vmg->vmi, vmg->vma);
618
619 if (adj_start) {
620 adjust->vm_start += adj_start;
621 adjust->vm_pgoff += PHYS_PFN(adj_start);
622 if (adj_start < 0) {
623 WARN_ON(expanded);
624 vma_iter_store_overwrite(vmg->vmi, adjust);
625 }
626 }
627
628 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
629
630 return 0;
631 }
632
633 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)634 static bool can_merge_remove_vma(struct vm_area_struct *vma)
635 {
636 return !vma->vm_ops || !vma->vm_ops->close;
637 }
638
639 /*
640 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
641 * attributes modified.
642 *
643 * @vmg: Describes the modifications being made to a VMA and associated
644 * metadata.
645 *
646 * When the attributes of a range within a VMA change, then it might be possible
647 * for immediately adjacent VMAs to be merged into that VMA due to having
648 * identical properties.
649 *
650 * This function checks for the existence of any such mergeable VMAs and updates
651 * the maple tree describing the @vmg->vma->vm_mm address space to account for
652 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
653 *
654 * As part of this operation, if a merge occurs, the @vmg object will have its
655 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
656 * calls to this function should reset these fields.
657 *
658 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
659 *
660 * ASSUMPTIONS:
661 * - The caller must assign the VMA to be modifed to @vmg->vma.
662 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
663 * - The caller must not set @vmg->next, as we determine this.
664 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
665 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
666 */
vma_merge_existing_range(struct vma_merge_struct * vmg)667 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
668 {
669 struct vm_area_struct *vma = vmg->vma;
670 struct vm_area_struct *prev = vmg->prev;
671 struct vm_area_struct *next, *res;
672 struct vm_area_struct *anon_dup = NULL;
673 struct vm_area_struct *adjust = NULL;
674 unsigned long start = vmg->start;
675 unsigned long end = vmg->end;
676 bool left_side = vma && start == vma->vm_start;
677 bool right_side = vma && end == vma->vm_end;
678 int err = 0;
679 long adj_start = 0;
680 bool merge_will_delete_vma, merge_will_delete_next;
681 bool merge_left, merge_right, merge_both;
682 bool expanded;
683
684 mmap_assert_write_locked(vmg->mm);
685 VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
686 VM_WARN_ON(vmg->next); /* We set this. */
687 VM_WARN_ON(prev && start <= prev->vm_start);
688 VM_WARN_ON(start >= end);
689 /*
690 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
691 * not, we must span a portion of the VMA.
692 */
693 VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
694 vmg->end > vma->vm_end));
695 /* The vmi must be positioned within vmg->vma. */
696 VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
697 vma_iter_addr(vmg->vmi) < vma->vm_end));
698
699 vmg->state = VMA_MERGE_NOMERGE;
700
701 /*
702 * If a special mapping or if the range being modified is neither at the
703 * furthermost left or right side of the VMA, then we have no chance of
704 * merging and should abort.
705 */
706 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
707 return NULL;
708
709 if (left_side)
710 merge_left = can_vma_merge_left(vmg);
711 else
712 merge_left = false;
713
714 if (right_side) {
715 next = vmg->next = vma_iter_next_range(vmg->vmi);
716 vma_iter_prev_range(vmg->vmi);
717
718 merge_right = can_vma_merge_right(vmg, merge_left);
719 } else {
720 merge_right = false;
721 next = NULL;
722 }
723
724 if (merge_left) /* If merging prev, position iterator there. */
725 vma_prev(vmg->vmi);
726 else if (!merge_right) /* If we have nothing to merge, abort. */
727 return NULL;
728
729 merge_both = merge_left && merge_right;
730 /* If we span the entire VMA, a merge implies it will be deleted. */
731 merge_will_delete_vma = left_side && right_side;
732
733 /*
734 * If we need to remove vma in its entirety but are unable to do so,
735 * we have no sensible recourse but to abort the merge.
736 */
737 if (merge_will_delete_vma && !can_merge_remove_vma(vma))
738 return NULL;
739
740 /*
741 * If we merge both VMAs, then next is also deleted. This implies
742 * merge_will_delete_vma also.
743 */
744 merge_will_delete_next = merge_both;
745
746 /*
747 * If we cannot delete next, then we can reduce the operation to merging
748 * prev and vma (thereby deleting vma).
749 */
750 if (merge_will_delete_next && !can_merge_remove_vma(next)) {
751 merge_will_delete_next = false;
752 merge_right = false;
753 merge_both = false;
754 }
755
756 /* No matter what happens, we will be adjusting vma. */
757 vma_start_write(vma);
758
759 if (merge_left)
760 vma_start_write(prev);
761
762 if (merge_right)
763 vma_start_write(next);
764
765 if (merge_both) {
766 /*
767 * |<----->|
768 * |-------*********-------|
769 * prev vma next
770 * extend delete delete
771 */
772
773 vmg->vma = prev;
774 vmg->start = prev->vm_start;
775 vmg->end = next->vm_end;
776 vmg->pgoff = prev->vm_pgoff;
777
778 /*
779 * We already ensured anon_vma compatibility above, so now it's
780 * simply a case of, if prev has no anon_vma object, which of
781 * next or vma contains the anon_vma we must duplicate.
782 */
783 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
784 } else if (merge_left) {
785 /*
786 * |<----->| OR
787 * |<--------->|
788 * |-------*************
789 * prev vma
790 * extend shrink/delete
791 */
792
793 vmg->vma = prev;
794 vmg->start = prev->vm_start;
795 vmg->pgoff = prev->vm_pgoff;
796
797 if (!merge_will_delete_vma) {
798 adjust = vma;
799 adj_start = vmg->end - vma->vm_start;
800 }
801
802 err = dup_anon_vma(prev, vma, &anon_dup);
803 } else { /* merge_right */
804 /*
805 * |<----->| OR
806 * |<--------->|
807 * *************-------|
808 * vma next
809 * shrink/delete extend
810 */
811
812 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
813
814 VM_WARN_ON(!merge_right);
815 /* If we are offset into a VMA, then prev must be vma. */
816 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
817
818 if (merge_will_delete_vma) {
819 vmg->vma = next;
820 vmg->end = next->vm_end;
821 vmg->pgoff = next->vm_pgoff - pglen;
822 } else {
823 /*
824 * We shrink vma and expand next.
825 *
826 * IMPORTANT: This is the ONLY case where the final
827 * merged VMA is NOT vmg->vma, but rather vmg->next.
828 */
829
830 vmg->start = vma->vm_start;
831 vmg->end = start;
832 vmg->pgoff = vma->vm_pgoff;
833
834 adjust = next;
835 adj_start = -(vma->vm_end - start);
836 }
837
838 err = dup_anon_vma(next, vma, &anon_dup);
839 }
840
841 /*
842 * In nearly all cases, we expand vmg->vma. There is one exception -
843 * merge_right where we partially span the VMA. In this case we shrink
844 * the end of vmg->vma and adjust the start of vmg->next accordingly.
845 */
846 expanded = !merge_right || merge_will_delete_vma;
847
848 if (err || commit_merge(vmg, adjust,
849 merge_will_delete_vma ? vma : NULL,
850 merge_will_delete_next ? next : NULL,
851 adj_start, expanded))
852 goto abort;
853
854 res = merge_left ? prev : next;
855 khugepaged_enter_vma(res, vmg->flags);
856
857 vmg->state = VMA_MERGE_SUCCESS;
858 return res;
859
860 abort:
861 vma_iter_set(vmg->vmi, start);
862 vma_iter_load(vmg->vmi);
863
864 if (anon_dup)
865 unlink_anon_vmas(anon_dup);
866
867 /*
868 * This means we have failed to clone anon_vma's correctly, but no
869 * actual changes to VMAs have occurred, so no harm no foul - if the
870 * user doesn't want this reported and instead just wants to give up on
871 * the merge, allow it.
872 */
873 if (!vmg->give_up_on_oom)
874 vmg->state = VMA_MERGE_ERROR_NOMEM;
875 return NULL;
876 }
877
878 /*
879 * vma_merge_new_range - Attempt to merge a new VMA into address space
880 *
881 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
882 * (exclusive), which we try to merge with any adjacent VMAs if possible.
883 *
884 * We are about to add a VMA to the address space starting at @vmg->start and
885 * ending at @vmg->end. There are three different possible scenarios:
886 *
887 * 1. There is a VMA with identical properties immediately adjacent to the
888 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
889 * EXPAND that VMA:
890 *
891 * Proposed: |-----| or |-----|
892 * Existing: |----| |----|
893 *
894 * 2. There are VMAs with identical properties immediately adjacent to the
895 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
896 * EXPAND the former and REMOVE the latter:
897 *
898 * Proposed: |-----|
899 * Existing: |----| |----|
900 *
901 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
902 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
903 *
904 * In instances where we can merge, this function returns the expanded VMA which
905 * will have its range adjusted accordingly and the underlying maple tree also
906 * adjusted.
907 *
908 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
909 * to the VMA we expanded.
910 *
911 * This function adjusts @vmg to provide @vmg->next if not already specified,
912 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
913 *
914 * ASSUMPTIONS:
915 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
916 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
917 other than VMAs that will be unmapped should the operation succeed.
918 * - The caller must have specified the previous vma in @vmg->prev.
919 * - The caller must have specified the next vma in @vmg->next.
920 * - The caller must have positioned the vmi at or before the gap.
921 */
vma_merge_new_range(struct vma_merge_struct * vmg)922 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
923 {
924 struct vm_area_struct *prev = vmg->prev;
925 struct vm_area_struct *next = vmg->next;
926 unsigned long start = vmg->start;
927 unsigned long end = vmg->end;
928 pgoff_t pgoff = vmg->pgoff;
929 pgoff_t pglen = PHYS_PFN(end - start);
930 bool can_merge_left, can_merge_right;
931 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
932
933 mmap_assert_write_locked(vmg->mm);
934 VM_WARN_ON(vmg->vma);
935 /* vmi must point at or before the gap. */
936 VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
937
938 vmg->state = VMA_MERGE_NOMERGE;
939
940 /* Special VMAs are unmergeable, also if no prev/next. */
941 if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
942 return NULL;
943
944 can_merge_left = can_vma_merge_left(vmg);
945 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
946
947 /* If we can merge with the next VMA, adjust vmg accordingly. */
948 if (can_merge_right) {
949 vmg->end = next->vm_end;
950 vmg->vma = next;
951 vmg->pgoff = next->vm_pgoff - pglen;
952 }
953
954 /* If we can merge with the previous VMA, adjust vmg accordingly. */
955 if (can_merge_left) {
956 vmg->start = prev->vm_start;
957 vmg->vma = prev;
958 vmg->pgoff = prev->vm_pgoff;
959
960 /*
961 * If this merge would result in removal of the next VMA but we
962 * are not permitted to do so, reduce the operation to merging
963 * prev and vma.
964 */
965 if (can_merge_right && !can_merge_remove_vma(next))
966 vmg->end = end;
967
968 /* In expand-only case we are already positioned at prev. */
969 if (!just_expand) {
970 /* Equivalent to going to the previous range. */
971 vma_prev(vmg->vmi);
972 }
973 }
974
975 /*
976 * Now try to expand adjacent VMA(s). This takes care of removing the
977 * following VMA if we have VMAs on both sides.
978 */
979 if (vmg->vma && !vma_expand(vmg)) {
980 khugepaged_enter_vma(vmg->vma, vmg->flags);
981 vmg->state = VMA_MERGE_SUCCESS;
982 return vmg->vma;
983 }
984
985 /* If expansion failed, reset state. Allows us to retry merge later. */
986 if (!just_expand) {
987 vmg->vma = NULL;
988 vmg->start = start;
989 vmg->end = end;
990 vmg->pgoff = pgoff;
991 if (vmg->vma == prev)
992 vma_iter_set(vmg->vmi, start);
993 }
994
995 return NULL;
996 }
997
998 /*
999 * vma_expand - Expand an existing VMA
1000 *
1001 * @vmg: Describes a VMA expansion operation.
1002 *
1003 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1004 * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
1005 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with
1006 * vmg->next needs to be handled by the caller.
1007 *
1008 * Returns: 0 on success.
1009 *
1010 * ASSUMPTIONS:
1011 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1012 * - The caller must have set @vmg->vma and @vmg->next.
1013 */
vma_expand(struct vma_merge_struct * vmg)1014 int vma_expand(struct vma_merge_struct *vmg)
1015 {
1016 struct vm_area_struct *anon_dup = NULL;
1017 bool remove_next = false;
1018 struct vm_area_struct *vma = vmg->vma;
1019 struct vm_area_struct *next = vmg->next;
1020
1021 mmap_assert_write_locked(vmg->mm);
1022
1023 vma_start_write(vma);
1024 if (next && (vma != next) && (vmg->end == next->vm_end)) {
1025 int ret;
1026
1027 remove_next = true;
1028 /* This should already have been checked by this point. */
1029 VM_WARN_ON(!can_merge_remove_vma(next));
1030 vma_start_write(next);
1031 ret = dup_anon_vma(vma, next, &anon_dup);
1032 if (ret)
1033 return ret;
1034 }
1035
1036 /* Not merging but overwriting any part of next is not handled. */
1037 VM_WARN_ON(next && !remove_next &&
1038 next != vma && vmg->end > next->vm_start);
1039 /* Only handles expanding */
1040 VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1041
1042 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1043 goto nomem;
1044
1045 return 0;
1046
1047 nomem:
1048 if (anon_dup)
1049 unlink_anon_vmas(anon_dup);
1050 /*
1051 * If the user requests that we just give upon OOM, we are safe to do so
1052 * here, as commit merge provides this contract to us. Nothing has been
1053 * changed - no harm no foul, just don't report it.
1054 */
1055 if (!vmg->give_up_on_oom)
1056 vmg->state = VMA_MERGE_ERROR_NOMEM;
1057 return -ENOMEM;
1058 }
1059
1060 /*
1061 * vma_shrink() - Reduce an existing VMAs memory area
1062 * @vmi: The vma iterator
1063 * @vma: The VMA to modify
1064 * @start: The new start
1065 * @end: The new end
1066 *
1067 * Returns: 0 on success, -ENOMEM otherwise
1068 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1069 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1070 unsigned long start, unsigned long end, pgoff_t pgoff)
1071 {
1072 struct vma_prepare vp;
1073
1074 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1075
1076 if (vma->vm_start < start)
1077 vma_iter_config(vmi, vma->vm_start, start);
1078 else
1079 vma_iter_config(vmi, end, vma->vm_end);
1080
1081 if (vma_iter_prealloc(vmi, NULL))
1082 return -ENOMEM;
1083
1084 vma_start_write(vma);
1085
1086 init_vma_prep(&vp, vma);
1087 vma_prepare(&vp);
1088 vma_adjust_trans_huge(vma, start, end, 0);
1089
1090 vma_iter_clear(vmi);
1091 vma_set_range(vma, start, end, pgoff);
1092 vma_complete(&vp, vmi, vma->vm_mm);
1093 validate_mm(vma->vm_mm);
1094 return 0;
1095 }
1096
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1097 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1098 struct ma_state *mas_detach, bool mm_wr_locked)
1099 {
1100 struct mmu_gather tlb;
1101
1102 if (!vms->clear_ptes) /* Nothing to do */
1103 return;
1104
1105 /*
1106 * We can free page tables without write-locking mmap_lock because VMAs
1107 * were isolated before we downgraded mmap_lock.
1108 */
1109 mas_set(mas_detach, 1);
1110 lru_add_drain();
1111 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1112 update_hiwater_rss(vms->vma->vm_mm);
1113 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1114 vms->vma_count, mm_wr_locked);
1115
1116 mas_set(mas_detach, 1);
1117 /* start and end may be different if there is no prev or next vma. */
1118 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1119 vms->unmap_end, mm_wr_locked);
1120 tlb_finish_mmu(&tlb);
1121 vms->clear_ptes = false;
1122 }
1123
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1124 void vms_clean_up_area(struct vma_munmap_struct *vms,
1125 struct ma_state *mas_detach)
1126 {
1127 struct vm_area_struct *vma;
1128
1129 if (!vms->nr_pages)
1130 return;
1131
1132 vms_clear_ptes(vms, mas_detach, true);
1133 mas_set(mas_detach, 0);
1134 mas_for_each(mas_detach, vma, ULONG_MAX)
1135 vma_close(vma);
1136 }
1137
1138 /*
1139 * vms_complete_munmap_vmas() - Finish the munmap() operation
1140 * @vms: The vma munmap struct
1141 * @mas_detach: The maple state of the detached vmas
1142 *
1143 * This updates the mm_struct, unmaps the region, frees the resources
1144 * used for the munmap() and may downgrade the lock - if requested. Everything
1145 * needed to be done once the vma maple tree is updated.
1146 */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1147 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1148 struct ma_state *mas_detach)
1149 {
1150 struct vm_area_struct *vma;
1151 struct mm_struct *mm;
1152
1153 mm = current->mm;
1154 mm->map_count -= vms->vma_count;
1155 mm->locked_vm -= vms->locked_vm;
1156 if (vms->unlock)
1157 mmap_write_downgrade(mm);
1158
1159 if (!vms->nr_pages)
1160 return;
1161
1162 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1163 /* Update high watermark before we lower total_vm */
1164 update_hiwater_vm(mm);
1165 /* Stat accounting */
1166 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1167 /* Paranoid bookkeeping */
1168 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1169 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1170 VM_WARN_ON(vms->data_vm > mm->data_vm);
1171 mm->exec_vm -= vms->exec_vm;
1172 mm->stack_vm -= vms->stack_vm;
1173 mm->data_vm -= vms->data_vm;
1174
1175 /* Remove and clean up vmas */
1176 mas_set(mas_detach, 0);
1177 mas_for_each(mas_detach, vma, ULONG_MAX)
1178 remove_vma(vma);
1179
1180 vm_unacct_memory(vms->nr_accounted);
1181 validate_mm(mm);
1182 if (vms->unlock)
1183 mmap_read_unlock(mm);
1184
1185 __mt_destroy(mas_detach->tree);
1186 }
1187
1188 /*
1189 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1190 * for removal at a later date. Handles splitting first and last if necessary
1191 * and marking the vmas as isolated.
1192 *
1193 * @vms: The vma munmap struct
1194 * @mas_detach: The maple state tracking the detached tree
1195 *
1196 * Return: 0 on success, error otherwise
1197 */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1198 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1199 struct ma_state *mas_detach)
1200 {
1201 struct vm_area_struct *next = NULL;
1202 int error;
1203
1204 /*
1205 * If we need to split any vma, do it now to save pain later.
1206 * Does it split the first one?
1207 */
1208 if (vms->start > vms->vma->vm_start) {
1209
1210 /*
1211 * Make sure that map_count on return from munmap() will
1212 * not exceed its limit; but let map_count go just above
1213 * its limit temporarily, to help free resources as expected.
1214 */
1215 if (vms->end < vms->vma->vm_end &&
1216 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1217 error = -ENOMEM;
1218 goto map_count_exceeded;
1219 }
1220
1221 /* Don't bother splitting the VMA if we can't unmap it anyway */
1222 if (!can_modify_vma(vms->vma)) {
1223 error = -EPERM;
1224 goto start_split_failed;
1225 }
1226
1227 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1228 if (error)
1229 goto start_split_failed;
1230 }
1231 vms->prev = vma_prev(vms->vmi);
1232 if (vms->prev)
1233 vms->unmap_start = vms->prev->vm_end;
1234
1235 /*
1236 * Detach a range of VMAs from the mm. Using next as a temp variable as
1237 * it is always overwritten.
1238 */
1239 for_each_vma_range(*(vms->vmi), next, vms->end) {
1240 long nrpages;
1241
1242 if (!can_modify_vma(next)) {
1243 error = -EPERM;
1244 goto modify_vma_failed;
1245 }
1246 /* Does it split the end? */
1247 if (next->vm_end > vms->end) {
1248 error = __split_vma(vms->vmi, next, vms->end, 0);
1249 if (error)
1250 goto end_split_failed;
1251 }
1252 vma_start_write(next);
1253 mas_set(mas_detach, vms->vma_count++);
1254 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1255 if (error)
1256 goto munmap_gather_failed;
1257
1258 vma_mark_detached(next);
1259 nrpages = vma_pages(next);
1260
1261 vms->nr_pages += nrpages;
1262 if (next->vm_flags & VM_LOCKED)
1263 vms->locked_vm += nrpages;
1264
1265 if (next->vm_flags & VM_ACCOUNT)
1266 vms->nr_accounted += nrpages;
1267
1268 if (is_exec_mapping(next->vm_flags))
1269 vms->exec_vm += nrpages;
1270 else if (is_stack_mapping(next->vm_flags))
1271 vms->stack_vm += nrpages;
1272 else if (is_data_mapping(next->vm_flags))
1273 vms->data_vm += nrpages;
1274
1275 if (unlikely(vms->uf)) {
1276 /*
1277 * If userfaultfd_unmap_prep returns an error the vmas
1278 * will remain split, but userland will get a
1279 * highly unexpected error anyway. This is no
1280 * different than the case where the first of the two
1281 * __split_vma fails, but we don't undo the first
1282 * split, despite we could. This is unlikely enough
1283 * failure that it's not worth optimizing it for.
1284 */
1285 error = userfaultfd_unmap_prep(next, vms->start,
1286 vms->end, vms->uf);
1287 if (error)
1288 goto userfaultfd_error;
1289 }
1290 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1291 BUG_ON(next->vm_start < vms->start);
1292 BUG_ON(next->vm_start > vms->end);
1293 #endif
1294 }
1295
1296 vms->next = vma_next(vms->vmi);
1297 if (vms->next)
1298 vms->unmap_end = vms->next->vm_start;
1299
1300 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1301 /* Make sure no VMAs are about to be lost. */
1302 {
1303 MA_STATE(test, mas_detach->tree, 0, 0);
1304 struct vm_area_struct *vma_mas, *vma_test;
1305 int test_count = 0;
1306
1307 vma_iter_set(vms->vmi, vms->start);
1308 rcu_read_lock();
1309 vma_test = mas_find(&test, vms->vma_count - 1);
1310 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1311 BUG_ON(vma_mas != vma_test);
1312 test_count++;
1313 vma_test = mas_next(&test, vms->vma_count - 1);
1314 }
1315 rcu_read_unlock();
1316 BUG_ON(vms->vma_count != test_count);
1317 }
1318 #endif
1319
1320 while (vma_iter_addr(vms->vmi) > vms->start)
1321 vma_iter_prev_range(vms->vmi);
1322
1323 vms->clear_ptes = true;
1324 return 0;
1325
1326 userfaultfd_error:
1327 munmap_gather_failed:
1328 end_split_failed:
1329 modify_vma_failed:
1330 reattach_vmas(mas_detach);
1331 start_split_failed:
1332 map_count_exceeded:
1333 return error;
1334 }
1335
1336 /*
1337 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1338 * @vmi: The vma iterator
1339 * @vma: The starting vm_area_struct
1340 * @mm: The mm_struct
1341 * @start: The aligned start address to munmap.
1342 * @end: The aligned end address to munmap.
1343 * @uf: The userfaultfd list_head
1344 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1345 * success.
1346 *
1347 * Return: 0 on success and drops the lock if so directed, error and leaves the
1348 * lock held otherwise.
1349 */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1350 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1351 struct mm_struct *mm, unsigned long start, unsigned long end,
1352 struct list_head *uf, bool unlock)
1353 {
1354 struct maple_tree mt_detach;
1355 MA_STATE(mas_detach, &mt_detach, 0, 0);
1356 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1357 mt_on_stack(mt_detach);
1358 struct vma_munmap_struct vms;
1359 int error;
1360
1361 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1362 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1363 if (error)
1364 goto gather_failed;
1365
1366 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1367 if (error)
1368 goto clear_tree_failed;
1369
1370 /* Point of no return */
1371 vms_complete_munmap_vmas(&vms, &mas_detach);
1372 return 0;
1373
1374 clear_tree_failed:
1375 reattach_vmas(&mas_detach);
1376 gather_failed:
1377 validate_mm(mm);
1378 return error;
1379 }
1380
1381 /*
1382 * do_vmi_munmap() - munmap a given range.
1383 * @vmi: The vma iterator
1384 * @mm: The mm_struct
1385 * @start: The start address to munmap
1386 * @len: The length of the range to munmap
1387 * @uf: The userfaultfd list_head
1388 * @unlock: set to true if the user wants to drop the mmap_lock on success
1389 *
1390 * This function takes a @mas that is either pointing to the previous VMA or set
1391 * to MA_START and sets it up to remove the mapping(s). The @len will be
1392 * aligned.
1393 *
1394 * Return: 0 on success and drops the lock if so directed, error and leaves the
1395 * lock held otherwise.
1396 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1397 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1398 unsigned long start, size_t len, struct list_head *uf,
1399 bool unlock)
1400 {
1401 unsigned long end;
1402 struct vm_area_struct *vma;
1403
1404 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1405 return -EINVAL;
1406
1407 end = start + PAGE_ALIGN(len);
1408 if (end == start)
1409 return -EINVAL;
1410
1411 /* Find the first overlapping VMA */
1412 vma = vma_find(vmi, end);
1413 if (!vma) {
1414 if (unlock)
1415 mmap_write_unlock(mm);
1416 return 0;
1417 }
1418
1419 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1420 }
1421
1422 /*
1423 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1424 * context and anonymous VMA name within the range [start, end).
1425 *
1426 * As a result, we might be able to merge the newly modified VMA range with an
1427 * adjacent VMA with identical properties.
1428 *
1429 * If no merge is possible and the range does not span the entirety of the VMA,
1430 * we then need to split the VMA to accommodate the change.
1431 *
1432 * The function returns either the merged VMA, the original VMA if a split was
1433 * required instead, or an error if the split failed.
1434 */
vma_modify(struct vma_merge_struct * vmg)1435 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1436 {
1437 struct vm_area_struct *vma = vmg->vma;
1438 unsigned long start = vmg->start;
1439 unsigned long end = vmg->end;
1440 struct vm_area_struct *merged;
1441
1442 /* First, try to merge. */
1443 merged = vma_merge_existing_range(vmg);
1444 if (merged)
1445 return merged;
1446 if (vmg_nomem(vmg))
1447 return ERR_PTR(-ENOMEM);
1448
1449 /*
1450 * Split can fail for reasons other than OOM, so if the user requests
1451 * this it's probably a mistake.
1452 */
1453 VM_WARN_ON(vmg->give_up_on_oom &&
1454 (vma->vm_start != start || vma->vm_end != end));
1455
1456 /* Split any preceding portion of the VMA. */
1457 if (vma->vm_start < start) {
1458 int err = split_vma(vmg->vmi, vma, start, 1);
1459
1460 if (err)
1461 return ERR_PTR(err);
1462 }
1463
1464 /* Split any trailing portion of the VMA. */
1465 if (vma->vm_end > end) {
1466 int err = split_vma(vmg->vmi, vma, end, 0);
1467
1468 if (err)
1469 return ERR_PTR(err);
1470 }
1471
1472 return vma;
1473 }
1474
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags)1475 struct vm_area_struct *vma_modify_flags(
1476 struct vma_iterator *vmi, struct vm_area_struct *prev,
1477 struct vm_area_struct *vma, unsigned long start, unsigned long end,
1478 unsigned long new_flags)
1479 {
1480 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1481
1482 vmg.flags = new_flags;
1483
1484 return vma_modify(&vmg);
1485 }
1486
1487 struct vm_area_struct
vma_modify_flags_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * new_name)1488 *vma_modify_flags_name(struct vma_iterator *vmi,
1489 struct vm_area_struct *prev,
1490 struct vm_area_struct *vma,
1491 unsigned long start,
1492 unsigned long end,
1493 unsigned long new_flags,
1494 struct anon_vma_name *new_name)
1495 {
1496 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1497
1498 vmg.flags = new_flags;
1499 vmg.anon_name = new_name;
1500
1501 return vma_modify(&vmg);
1502 }
1503
1504 struct vm_area_struct
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1505 *vma_modify_policy(struct vma_iterator *vmi,
1506 struct vm_area_struct *prev,
1507 struct vm_area_struct *vma,
1508 unsigned long start, unsigned long end,
1509 struct mempolicy *new_pol)
1510 {
1511 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1512
1513 vmg.policy = new_pol;
1514
1515 return vma_modify(&vmg);
1516 }
1517
1518 struct vm_area_struct
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1519 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1520 struct vm_area_struct *prev,
1521 struct vm_area_struct *vma,
1522 unsigned long start, unsigned long end,
1523 unsigned long new_flags,
1524 struct vm_userfaultfd_ctx new_ctx,
1525 bool give_up_on_oom)
1526 {
1527 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1528
1529 vmg.flags = new_flags;
1530 vmg.uffd_ctx = new_ctx;
1531 if (give_up_on_oom)
1532 vmg.give_up_on_oom = true;
1533
1534 return vma_modify(&vmg);
1535 }
1536
1537 /*
1538 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1539 * VMA with identical properties.
1540 */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1541 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1542 struct vm_area_struct *vma,
1543 unsigned long delta)
1544 {
1545 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1546
1547 vmg.next = vma_iter_next_rewind(vmi, NULL);
1548 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1549
1550 return vma_merge_new_range(&vmg);
1551 }
1552
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1553 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1554 {
1555 vb->count = 0;
1556 }
1557
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1558 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1559 {
1560 struct address_space *mapping;
1561 int i;
1562
1563 mapping = vb->vmas[0]->vm_file->f_mapping;
1564 i_mmap_lock_write(mapping);
1565 for (i = 0; i < vb->count; i++) {
1566 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1567 __remove_shared_vm_struct(vb->vmas[i], mapping);
1568 }
1569 i_mmap_unlock_write(mapping);
1570
1571 unlink_file_vma_batch_init(vb);
1572 }
1573
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1574 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1575 struct vm_area_struct *vma)
1576 {
1577 if (vma->vm_file == NULL)
1578 return;
1579
1580 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1581 vb->count == ARRAY_SIZE(vb->vmas))
1582 unlink_file_vma_batch_process(vb);
1583
1584 vb->vmas[vb->count] = vma;
1585 vb->count++;
1586 }
1587
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1588 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1589 {
1590 if (vb->count > 0)
1591 unlink_file_vma_batch_process(vb);
1592 }
1593
1594 /*
1595 * Unlink a file-based vm structure from its interval tree, to hide
1596 * vma from rmap and vmtruncate before freeing its page tables.
1597 */
unlink_file_vma(struct vm_area_struct * vma)1598 void unlink_file_vma(struct vm_area_struct *vma)
1599 {
1600 struct file *file = vma->vm_file;
1601
1602 if (file) {
1603 struct address_space *mapping = file->f_mapping;
1604
1605 i_mmap_lock_write(mapping);
1606 __remove_shared_vm_struct(vma, mapping);
1607 i_mmap_unlock_write(mapping);
1608 }
1609 }
1610
vma_link_file(struct vm_area_struct * vma)1611 void vma_link_file(struct vm_area_struct *vma)
1612 {
1613 struct file *file = vma->vm_file;
1614 struct address_space *mapping;
1615
1616 if (file) {
1617 mapping = file->f_mapping;
1618 i_mmap_lock_write(mapping);
1619 __vma_link_file(vma, mapping);
1620 i_mmap_unlock_write(mapping);
1621 }
1622 }
1623
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1624 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1625 {
1626 VMA_ITERATOR(vmi, mm, 0);
1627
1628 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1629 if (vma_iter_prealloc(&vmi, vma))
1630 return -ENOMEM;
1631
1632 vma_start_write(vma);
1633 vma_iter_store_new(&vmi, vma);
1634 vma_link_file(vma);
1635 mm->map_count++;
1636 validate_mm(mm);
1637 return 0;
1638 }
1639
1640 /*
1641 * Copy the vma structure to a new location in the same mm,
1642 * prior to moving page table entries, to effect an mremap move.
1643 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1644 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1645 unsigned long addr, unsigned long len, pgoff_t pgoff,
1646 bool *need_rmap_locks)
1647 {
1648 struct vm_area_struct *vma = *vmap;
1649 unsigned long vma_start = vma->vm_start;
1650 struct mm_struct *mm = vma->vm_mm;
1651 struct vm_area_struct *new_vma;
1652 bool faulted_in_anon_vma = true;
1653 VMA_ITERATOR(vmi, mm, addr);
1654 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1655
1656 /*
1657 * If anonymous vma has not yet been faulted, update new pgoff
1658 * to match new location, to increase its chance of merging.
1659 */
1660 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1661 pgoff = addr >> PAGE_SHIFT;
1662 faulted_in_anon_vma = false;
1663 }
1664
1665 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1666 if (new_vma && new_vma->vm_start < addr + len)
1667 return NULL; /* should never get here */
1668
1669 vmg.vma = NULL; /* New VMA range. */
1670 vmg.pgoff = pgoff;
1671 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1672 new_vma = vma_merge_new_range(&vmg);
1673
1674 if (new_vma) {
1675 /*
1676 * Source vma may have been merged into new_vma
1677 */
1678 if (unlikely(vma_start >= new_vma->vm_start &&
1679 vma_start < new_vma->vm_end)) {
1680 /*
1681 * The only way we can get a vma_merge with
1682 * self during an mremap is if the vma hasn't
1683 * been faulted in yet and we were allowed to
1684 * reset the dst vma->vm_pgoff to the
1685 * destination address of the mremap to allow
1686 * the merge to happen. mremap must change the
1687 * vm_pgoff linearity between src and dst vmas
1688 * (in turn preventing a vma_merge) to be
1689 * safe. It is only safe to keep the vm_pgoff
1690 * linear if there are no pages mapped yet.
1691 */
1692 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1693 *vmap = vma = new_vma;
1694 }
1695 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1696 } else {
1697 new_vma = vm_area_dup(vma);
1698 if (!new_vma)
1699 goto out;
1700 vma_set_range(new_vma, addr, addr + len, pgoff);
1701 if (vma_dup_policy(vma, new_vma))
1702 goto out_free_vma;
1703 if (anon_vma_clone(new_vma, vma))
1704 goto out_free_mempol;
1705 if (new_vma->vm_file)
1706 get_file(new_vma->vm_file);
1707 if (new_vma->vm_ops && new_vma->vm_ops->open)
1708 new_vma->vm_ops->open(new_vma);
1709 if (vma_link(mm, new_vma))
1710 goto out_vma_link;
1711 *need_rmap_locks = false;
1712 }
1713 return new_vma;
1714
1715 out_vma_link:
1716 vma_close(new_vma);
1717
1718 if (new_vma->vm_file)
1719 fput(new_vma->vm_file);
1720
1721 unlink_anon_vmas(new_vma);
1722 out_free_mempol:
1723 mpol_put(vma_policy(new_vma));
1724 out_free_vma:
1725 vm_area_free(new_vma);
1726 out:
1727 return NULL;
1728 }
1729
1730 /*
1731 * Rough compatibility check to quickly see if it's even worth looking
1732 * at sharing an anon_vma.
1733 *
1734 * They need to have the same vm_file, and the flags can only differ
1735 * in things that mprotect may change.
1736 *
1737 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1738 * we can merge the two vma's. For example, we refuse to merge a vma if
1739 * there is a vm_ops->close() function, because that indicates that the
1740 * driver is doing some kind of reference counting. But that doesn't
1741 * really matter for the anon_vma sharing case.
1742 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1743 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1744 {
1745 return a->vm_end == b->vm_start &&
1746 mpol_equal(vma_policy(a), vma_policy(b)) &&
1747 a->vm_file == b->vm_file &&
1748 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1749 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1750 }
1751
1752 /*
1753 * Do some basic sanity checking to see if we can re-use the anon_vma
1754 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1755 * the same as 'old', the other will be the new one that is trying
1756 * to share the anon_vma.
1757 *
1758 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1759 * the anon_vma of 'old' is concurrently in the process of being set up
1760 * by another page fault trying to merge _that_. But that's ok: if it
1761 * is being set up, that automatically means that it will be a singleton
1762 * acceptable for merging, so we can do all of this optimistically. But
1763 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1764 *
1765 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1766 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1767 * is to return an anon_vma that is "complex" due to having gone through
1768 * a fork).
1769 *
1770 * We also make sure that the two vma's are compatible (adjacent,
1771 * and with the same memory policies). That's all stable, even with just
1772 * a read lock on the mmap_lock.
1773 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1774 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1775 struct vm_area_struct *a,
1776 struct vm_area_struct *b)
1777 {
1778 if (anon_vma_compatible(a, b)) {
1779 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1780
1781 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1782 return anon_vma;
1783 }
1784 return NULL;
1785 }
1786
1787 /*
1788 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1789 * neighbouring vmas for a suitable anon_vma, before it goes off
1790 * to allocate a new anon_vma. It checks because a repetitive
1791 * sequence of mprotects and faults may otherwise lead to distinct
1792 * anon_vmas being allocated, preventing vma merge in subsequent
1793 * mprotect.
1794 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1795 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1796 {
1797 struct anon_vma *anon_vma = NULL;
1798 struct vm_area_struct *prev, *next;
1799 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1800
1801 /* Try next first. */
1802 next = vma_iter_load(&vmi);
1803 if (next) {
1804 anon_vma = reusable_anon_vma(next, vma, next);
1805 if (anon_vma)
1806 return anon_vma;
1807 }
1808
1809 prev = vma_prev(&vmi);
1810 VM_BUG_ON_VMA(prev != vma, vma);
1811 prev = vma_prev(&vmi);
1812 /* Try prev next. */
1813 if (prev)
1814 anon_vma = reusable_anon_vma(prev, prev, vma);
1815
1816 /*
1817 * We might reach here with anon_vma == NULL if we can't find
1818 * any reusable anon_vma.
1819 * There's no absolute need to look only at touching neighbours:
1820 * we could search further afield for "compatible" anon_vmas.
1821 * But it would probably just be a waste of time searching,
1822 * or lead to too many vmas hanging off the same anon_vma.
1823 * We're trying to allow mprotect remerging later on,
1824 * not trying to minimize memory used for anon_vmas.
1825 */
1826 return anon_vma;
1827 }
1828
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1829 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1830 {
1831 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1832 }
1833
vma_is_shared_writable(struct vm_area_struct * vma)1834 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1835 {
1836 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1837 (VM_WRITE | VM_SHARED);
1838 }
1839
vma_fs_can_writeback(struct vm_area_struct * vma)1840 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1841 {
1842 /* No managed pages to writeback. */
1843 if (vma->vm_flags & VM_PFNMAP)
1844 return false;
1845
1846 return vma->vm_file && vma->vm_file->f_mapping &&
1847 mapping_can_writeback(vma->vm_file->f_mapping);
1848 }
1849
1850 /*
1851 * Does this VMA require the underlying folios to have their dirty state
1852 * tracked?
1853 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)1854 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1855 {
1856 /* Only shared, writable VMAs require dirty tracking. */
1857 if (!vma_is_shared_writable(vma))
1858 return false;
1859
1860 /* Does the filesystem need to be notified? */
1861 if (vm_ops_needs_writenotify(vma->vm_ops))
1862 return true;
1863
1864 /*
1865 * Even if the filesystem doesn't indicate a need for writenotify, if it
1866 * can writeback, dirty tracking is still required.
1867 */
1868 return vma_fs_can_writeback(vma);
1869 }
1870
1871 /*
1872 * Some shared mappings will want the pages marked read-only
1873 * to track write events. If so, we'll downgrade vm_page_prot
1874 * to the private version (using protection_map[] without the
1875 * VM_SHARED bit).
1876 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1877 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1878 {
1879 /* If it was private or non-writable, the write bit is already clear */
1880 if (!vma_is_shared_writable(vma))
1881 return false;
1882
1883 /* The backer wishes to know when pages are first written to? */
1884 if (vm_ops_needs_writenotify(vma->vm_ops))
1885 return true;
1886
1887 /* The open routine did something to the protections that pgprot_modify
1888 * won't preserve? */
1889 if (pgprot_val(vm_page_prot) !=
1890 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1891 return false;
1892
1893 /*
1894 * Do we need to track softdirty? hugetlb does not support softdirty
1895 * tracking yet.
1896 */
1897 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1898 return true;
1899
1900 /* Do we need write faults for uffd-wp tracking? */
1901 if (userfaultfd_wp(vma))
1902 return true;
1903
1904 /* Can the mapping track the dirty pages? */
1905 return vma_fs_can_writeback(vma);
1906 }
1907
1908 static DEFINE_MUTEX(mm_all_locks_mutex);
1909
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)1910 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1911 {
1912 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1913 /*
1914 * The LSB of head.next can't change from under us
1915 * because we hold the mm_all_locks_mutex.
1916 */
1917 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1918 /*
1919 * We can safely modify head.next after taking the
1920 * anon_vma->root->rwsem. If some other vma in this mm shares
1921 * the same anon_vma we won't take it again.
1922 *
1923 * No need of atomic instructions here, head.next
1924 * can't change from under us thanks to the
1925 * anon_vma->root->rwsem.
1926 */
1927 if (__test_and_set_bit(0, (unsigned long *)
1928 &anon_vma->root->rb_root.rb_root.rb_node))
1929 BUG();
1930 }
1931 }
1932
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)1933 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1934 {
1935 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1936 /*
1937 * AS_MM_ALL_LOCKS can't change from under us because
1938 * we hold the mm_all_locks_mutex.
1939 *
1940 * Operations on ->flags have to be atomic because
1941 * even if AS_MM_ALL_LOCKS is stable thanks to the
1942 * mm_all_locks_mutex, there may be other cpus
1943 * changing other bitflags in parallel to us.
1944 */
1945 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1946 BUG();
1947 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1948 }
1949 }
1950
1951 /*
1952 * This operation locks against the VM for all pte/vma/mm related
1953 * operations that could ever happen on a certain mm. This includes
1954 * vmtruncate, try_to_unmap, and all page faults.
1955 *
1956 * The caller must take the mmap_lock in write mode before calling
1957 * mm_take_all_locks(). The caller isn't allowed to release the
1958 * mmap_lock until mm_drop_all_locks() returns.
1959 *
1960 * mmap_lock in write mode is required in order to block all operations
1961 * that could modify pagetables and free pages without need of
1962 * altering the vma layout. It's also needed in write mode to avoid new
1963 * anon_vmas to be associated with existing vmas.
1964 *
1965 * A single task can't take more than one mm_take_all_locks() in a row
1966 * or it would deadlock.
1967 *
1968 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1969 * mapping->flags avoid to take the same lock twice, if more than one
1970 * vma in this mm is backed by the same anon_vma or address_space.
1971 *
1972 * We take locks in following order, accordingly to comment at beginning
1973 * of mm/rmap.c:
1974 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1975 * hugetlb mapping);
1976 * - all vmas marked locked
1977 * - all i_mmap_rwsem locks;
1978 * - all anon_vma->rwseml
1979 *
1980 * We can take all locks within these types randomly because the VM code
1981 * doesn't nest them and we protected from parallel mm_take_all_locks() by
1982 * mm_all_locks_mutex.
1983 *
1984 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1985 * that may have to take thousand of locks.
1986 *
1987 * mm_take_all_locks() can fail if it's interrupted by signals.
1988 */
mm_take_all_locks(struct mm_struct * mm)1989 int mm_take_all_locks(struct mm_struct *mm)
1990 {
1991 struct vm_area_struct *vma;
1992 struct anon_vma_chain *avc;
1993 VMA_ITERATOR(vmi, mm, 0);
1994
1995 mmap_assert_write_locked(mm);
1996
1997 mutex_lock(&mm_all_locks_mutex);
1998
1999 /*
2000 * vma_start_write() does not have a complement in mm_drop_all_locks()
2001 * because vma_start_write() is always asymmetrical; it marks a VMA as
2002 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2003 * is reached.
2004 */
2005 for_each_vma(vmi, vma) {
2006 if (signal_pending(current))
2007 goto out_unlock;
2008 vma_start_write(vma);
2009 }
2010
2011 vma_iter_init(&vmi, mm, 0);
2012 for_each_vma(vmi, vma) {
2013 if (signal_pending(current))
2014 goto out_unlock;
2015 if (vma->vm_file && vma->vm_file->f_mapping &&
2016 is_vm_hugetlb_page(vma))
2017 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2018 }
2019
2020 vma_iter_init(&vmi, mm, 0);
2021 for_each_vma(vmi, vma) {
2022 if (signal_pending(current))
2023 goto out_unlock;
2024 if (vma->vm_file && vma->vm_file->f_mapping &&
2025 !is_vm_hugetlb_page(vma))
2026 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2027 }
2028
2029 vma_iter_init(&vmi, mm, 0);
2030 for_each_vma(vmi, vma) {
2031 if (signal_pending(current))
2032 goto out_unlock;
2033 if (vma->anon_vma)
2034 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2035 vm_lock_anon_vma(mm, avc->anon_vma);
2036 }
2037
2038 return 0;
2039
2040 out_unlock:
2041 mm_drop_all_locks(mm);
2042 return -EINTR;
2043 }
2044
vm_unlock_anon_vma(struct anon_vma * anon_vma)2045 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2046 {
2047 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2048 /*
2049 * The LSB of head.next can't change to 0 from under
2050 * us because we hold the mm_all_locks_mutex.
2051 *
2052 * We must however clear the bitflag before unlocking
2053 * the vma so the users using the anon_vma->rb_root will
2054 * never see our bitflag.
2055 *
2056 * No need of atomic instructions here, head.next
2057 * can't change from under us until we release the
2058 * anon_vma->root->rwsem.
2059 */
2060 if (!__test_and_clear_bit(0, (unsigned long *)
2061 &anon_vma->root->rb_root.rb_root.rb_node))
2062 BUG();
2063 anon_vma_unlock_write(anon_vma);
2064 }
2065 }
2066
vm_unlock_mapping(struct address_space * mapping)2067 static void vm_unlock_mapping(struct address_space *mapping)
2068 {
2069 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2070 /*
2071 * AS_MM_ALL_LOCKS can't change to 0 from under us
2072 * because we hold the mm_all_locks_mutex.
2073 */
2074 i_mmap_unlock_write(mapping);
2075 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2076 &mapping->flags))
2077 BUG();
2078 }
2079 }
2080
2081 /*
2082 * The mmap_lock cannot be released by the caller until
2083 * mm_drop_all_locks() returns.
2084 */
mm_drop_all_locks(struct mm_struct * mm)2085 void mm_drop_all_locks(struct mm_struct *mm)
2086 {
2087 struct vm_area_struct *vma;
2088 struct anon_vma_chain *avc;
2089 VMA_ITERATOR(vmi, mm, 0);
2090
2091 mmap_assert_write_locked(mm);
2092 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2093
2094 for_each_vma(vmi, vma) {
2095 if (vma->anon_vma)
2096 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2097 vm_unlock_anon_vma(avc->anon_vma);
2098 if (vma->vm_file && vma->vm_file->f_mapping)
2099 vm_unlock_mapping(vma->vm_file->f_mapping);
2100 }
2101
2102 mutex_unlock(&mm_all_locks_mutex);
2103 }
2104