• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 #undef CREATE_TRACE_POINTS
75 #include <trace/hooks/vmscan.h>
76 #include <trace/hooks/mm.h>
77 
78 #undef CREATE_TRACE_POINTS
79 #include <trace/hooks/mm.h>
80 
81 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
82 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
83 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_kswapd_wake);
84 
85 struct scan_control {
86 	/* How many pages shrink_list() should reclaim */
87 	unsigned long nr_to_reclaim;
88 
89 	/*
90 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
91 	 * are scanned.
92 	 */
93 	nodemask_t	*nodemask;
94 
95 	/*
96 	 * The memory cgroup that hit its limit and as a result is the
97 	 * primary target of this reclaim invocation.
98 	 */
99 	struct mem_cgroup *target_mem_cgroup;
100 
101 	/*
102 	 * Scan pressure balancing between anon and file LRUs
103 	 */
104 	unsigned long	anon_cost;
105 	unsigned long	file_cost;
106 
107 #ifdef CONFIG_MEMCG
108 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
109 	int *proactive_swappiness;
110 #endif
111 
112 	/* Can active folios be deactivated as part of reclaim? */
113 #define DEACTIVATE_ANON 1
114 #define DEACTIVATE_FILE 2
115 	unsigned int may_deactivate:2;
116 	unsigned int force_deactivate:1;
117 	unsigned int skipped_deactivate:1;
118 
119 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
120 	unsigned int may_writepage:1;
121 
122 	/* Can mapped folios be reclaimed? */
123 	unsigned int may_unmap:1;
124 
125 	/* Can folios be swapped as part of reclaim? */
126 	unsigned int may_swap:1;
127 
128 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
129 	unsigned int no_cache_trim_mode:1;
130 
131 	/* Has cache_trim_mode failed at least once? */
132 	unsigned int cache_trim_mode_failed:1;
133 
134 	/* Proactive reclaim invoked by userspace through memory.reclaim */
135 	unsigned int proactive:1;
136 
137 	/*
138 	 * Cgroup memory below memory.low is protected as long as we
139 	 * don't threaten to OOM. If any cgroup is reclaimed at
140 	 * reduced force or passed over entirely due to its memory.low
141 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
142 	 * result, then go back for one more cycle that reclaims the protected
143 	 * memory (memcg_low_reclaim) to avert OOM.
144 	 */
145 	unsigned int memcg_low_reclaim:1;
146 	unsigned int memcg_low_skipped:1;
147 
148 	/* Shared cgroup tree walk failed, rescan the whole tree */
149 	unsigned int memcg_full_walk:1;
150 
151 	unsigned int hibernation_mode:1;
152 
153 	/* One of the zones is ready for compaction */
154 	unsigned int compaction_ready:1;
155 
156 	/* There is easily reclaimable cold cache in the current node */
157 	unsigned int cache_trim_mode:1;
158 
159 	/* The file folios on the current node are dangerously low */
160 	unsigned int file_is_tiny:1;
161 
162 	/* Always discard instead of demoting to lower tier memory */
163 	unsigned int no_demotion:1;
164 
165 	/* Allocation order */
166 	s8 order;
167 
168 	/* Scan (total_size >> priority) pages at once */
169 	s8 priority;
170 
171 	/* The highest zone to isolate folios for reclaim from */
172 	s8 reclaim_idx;
173 
174 	/* This context's GFP mask */
175 	gfp_t gfp_mask;
176 
177 	/* Incremented by the number of inactive pages that were scanned */
178 	unsigned long nr_scanned;
179 
180 	/* Number of pages freed so far during a call to shrink_zones() */
181 	unsigned long nr_reclaimed;
182 
183 	struct {
184 		unsigned int dirty;
185 		unsigned int unqueued_dirty;
186 		unsigned int congested;
187 		unsigned int writeback;
188 		unsigned int immediate;
189 		unsigned int file_taken;
190 		unsigned int taken;
191 	} nr;
192 
193 	/* for recording the reclaimed slab by now */
194 	struct reclaim_state reclaim_state;
195 	ANDROID_VENDOR_DATA(1);
196 	ANDROID_OEM_DATA(1);
197 };
198 
199 #ifdef ARCH_HAS_PREFETCHW
200 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
201 	do {								\
202 		if ((_folio)->lru.prev != _base) {			\
203 			struct folio *prev;				\
204 									\
205 			prev = lru_to_folio(&(_folio->lru));		\
206 			prefetchw(&prev->_field);			\
207 		}							\
208 	} while (0)
209 #else
210 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
211 #endif
212 
213 /*
214  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
215  */
216 int vm_swappiness = 60;
217 
218 #ifdef CONFIG_MEMCG
219 
220 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)221 static bool cgroup_reclaim(struct scan_control *sc)
222 {
223 	return sc->target_mem_cgroup;
224 }
225 
226 /*
227  * Returns true for reclaim on the root cgroup. This is true for direct
228  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
229  */
root_reclaim(struct scan_control * sc)230 static bool root_reclaim(struct scan_control *sc)
231 {
232 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
233 }
234 
235 /**
236  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
237  * @sc: scan_control in question
238  *
239  * The normal page dirty throttling mechanism in balance_dirty_pages() is
240  * completely broken with the legacy memcg and direct stalling in
241  * shrink_folio_list() is used for throttling instead, which lacks all the
242  * niceties such as fairness, adaptive pausing, bandwidth proportional
243  * allocation and configurability.
244  *
245  * This function tests whether the vmscan currently in progress can assume
246  * that the normal dirty throttling mechanism is operational.
247  */
writeback_throttling_sane(struct scan_control * sc)248 static bool writeback_throttling_sane(struct scan_control *sc)
249 {
250 	if (!cgroup_reclaim(sc))
251 		return true;
252 #ifdef CONFIG_CGROUP_WRITEBACK
253 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
254 		return true;
255 #endif
256 	return false;
257 }
258 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)259 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
260 {
261 	if (sc->proactive && sc->proactive_swappiness)
262 		return *sc->proactive_swappiness;
263 	return mem_cgroup_swappiness(memcg);
264 }
265 #else
cgroup_reclaim(struct scan_control * sc)266 static bool cgroup_reclaim(struct scan_control *sc)
267 {
268 	return false;
269 }
270 
root_reclaim(struct scan_control * sc)271 static bool root_reclaim(struct scan_control *sc)
272 {
273 	return true;
274 }
275 
writeback_throttling_sane(struct scan_control * sc)276 static bool writeback_throttling_sane(struct scan_control *sc)
277 {
278 	return true;
279 }
280 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)281 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
282 {
283 	return READ_ONCE(vm_swappiness);
284 }
285 #endif
286 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)287 static void set_task_reclaim_state(struct task_struct *task,
288 				   struct reclaim_state *rs)
289 {
290 	/* Check for an overwrite */
291 	WARN_ON_ONCE(rs && task->reclaim_state);
292 
293 	/* Check for the nulling of an already-nulled member */
294 	WARN_ON_ONCE(!rs && !task->reclaim_state);
295 
296 	task->reclaim_state = rs;
297 }
298 
299 /*
300  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
301  * scan_control->nr_reclaimed.
302  */
flush_reclaim_state(struct scan_control * sc)303 static void flush_reclaim_state(struct scan_control *sc)
304 {
305 	/*
306 	 * Currently, reclaim_state->reclaimed includes three types of pages
307 	 * freed outside of vmscan:
308 	 * (1) Slab pages.
309 	 * (2) Clean file pages from pruned inodes (on highmem systems).
310 	 * (3) XFS freed buffer pages.
311 	 *
312 	 * For all of these cases, we cannot universally link the pages to a
313 	 * single memcg. For example, a memcg-aware shrinker can free one object
314 	 * charged to the target memcg, causing an entire page to be freed.
315 	 * If we count the entire page as reclaimed from the memcg, we end up
316 	 * overestimating the reclaimed amount (potentially under-reclaiming).
317 	 *
318 	 * Only count such pages for global reclaim to prevent under-reclaiming
319 	 * from the target memcg; preventing unnecessary retries during memcg
320 	 * charging and false positives from proactive reclaim.
321 	 *
322 	 * For uncommon cases where the freed pages were actually mostly
323 	 * charged to the target memcg, we end up underestimating the reclaimed
324 	 * amount. This should be fine. The freed pages will be uncharged
325 	 * anyway, even if they are not counted here properly, and we will be
326 	 * able to make forward progress in charging (which is usually in a
327 	 * retry loop).
328 	 *
329 	 * We can go one step further, and report the uncharged objcg pages in
330 	 * memcg reclaim, to make reporting more accurate and reduce
331 	 * underestimation, but it's probably not worth the complexity for now.
332 	 */
333 	if (current->reclaim_state && root_reclaim(sc)) {
334 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
335 		current->reclaim_state->reclaimed = 0;
336 	}
337 }
338 
can_demote(int nid,struct scan_control * sc)339 static bool can_demote(int nid, struct scan_control *sc)
340 {
341 	if (!numa_demotion_enabled)
342 		return false;
343 	if (sc && sc->no_demotion)
344 		return false;
345 	if (next_demotion_node(nid) == NUMA_NO_NODE)
346 		return false;
347 
348 	return true;
349 }
350 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)351 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
352 					  int nid,
353 					  struct scan_control *sc)
354 {
355 	if (memcg == NULL) {
356 		/*
357 		 * For non-memcg reclaim, is there
358 		 * space in any swap device?
359 		 */
360 		if (get_nr_swap_pages() > 0)
361 			return true;
362 	} else {
363 		/* Is the memcg below its swap limit? */
364 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
365 			return true;
366 	}
367 
368 	/*
369 	 * The page can not be swapped.
370 	 *
371 	 * Can it be reclaimed from this node via demotion?
372 	 */
373 	return can_demote(nid, sc);
374 }
375 
376 /*
377  * This misses isolated folios which are not accounted for to save counters.
378  * As the data only determines if reclaim or compaction continues, it is
379  * not expected that isolated folios will be a dominating factor.
380  */
zone_reclaimable_pages(struct zone * zone)381 unsigned long zone_reclaimable_pages(struct zone *zone)
382 {
383 	unsigned long nr;
384 
385 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
386 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
387 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
388 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
389 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
390 	/*
391 	 * If there are no reclaimable file-backed or anonymous pages,
392 	 * ensure zones with sufficient free pages are not skipped.
393 	 * This prevents zones like DMA32 from being ignored in reclaim
394 	 * scenarios where they can still help alleviate memory pressure.
395 	 */
396 	if (nr == 0)
397 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
398 	return nr;
399 }
400 
401 /**
402  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
403  * @lruvec: lru vector
404  * @lru: lru to use
405  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
406  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)407 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
408 				     int zone_idx)
409 {
410 	unsigned long size = 0;
411 	int zid;
412 
413 	for (zid = 0; zid <= zone_idx; zid++) {
414 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
415 
416 		if (!managed_zone(zone))
417 			continue;
418 
419 		if (!mem_cgroup_disabled())
420 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
421 		else
422 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
423 	}
424 	return size;
425 }
426 
drop_slab_node(int nid)427 static unsigned long drop_slab_node(int nid)
428 {
429 	unsigned long freed = 0;
430 	struct mem_cgroup *memcg = NULL;
431 
432 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
433 	do {
434 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
435 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
436 
437 	return freed;
438 }
439 
drop_slab(void)440 void drop_slab(void)
441 {
442 	int nid;
443 	int shift = 0;
444 	unsigned long freed;
445 
446 	do {
447 		freed = 0;
448 		for_each_online_node(nid) {
449 			if (fatal_signal_pending(current))
450 				return;
451 
452 			freed += drop_slab_node(nid);
453 		}
454 	} while ((freed >> shift++) > 1);
455 }
456 
reclaimer_offset(void)457 static int reclaimer_offset(void)
458 {
459 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
460 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
461 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
462 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
463 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
464 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
465 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
466 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
467 
468 	if (current_is_kswapd())
469 		return 0;
470 	if (current_is_khugepaged())
471 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
472 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
473 }
474 
is_page_cache_freeable(struct folio * folio)475 static inline int is_page_cache_freeable(struct folio *folio)
476 {
477 	/*
478 	 * A freeable page cache folio is referenced only by the caller
479 	 * that isolated the folio, the page cache and optional filesystem
480 	 * private data at folio->private.
481 	 */
482 	return folio_ref_count(folio) - folio_test_private(folio) ==
483 		1 + folio_nr_pages(folio);
484 }
485 
486 /*
487  * We detected a synchronous write error writing a folio out.  Probably
488  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
489  * fsync(), msync() or close().
490  *
491  * The tricky part is that after writepage we cannot touch the mapping: nothing
492  * prevents it from being freed up.  But we have a ref on the folio and once
493  * that folio is locked, the mapping is pinned.
494  *
495  * We're allowed to run sleeping folio_lock() here because we know the caller has
496  * __GFP_FS.
497  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)498 static void handle_write_error(struct address_space *mapping,
499 				struct folio *folio, int error)
500 {
501 	folio_lock(folio);
502 	if (folio_mapping(folio) == mapping)
503 		mapping_set_error(mapping, error);
504 	folio_unlock(folio);
505 }
506 
skip_throttle_noprogress(pg_data_t * pgdat)507 static bool skip_throttle_noprogress(pg_data_t *pgdat)
508 {
509 	int reclaimable = 0, write_pending = 0;
510 	int i;
511 
512 	/*
513 	 * If kswapd is disabled, reschedule if necessary but do not
514 	 * throttle as the system is likely near OOM.
515 	 */
516 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
517 		return true;
518 
519 	/*
520 	 * If there are a lot of dirty/writeback folios then do not
521 	 * throttle as throttling will occur when the folios cycle
522 	 * towards the end of the LRU if still under writeback.
523 	 */
524 	for (i = 0; i < MAX_NR_ZONES; i++) {
525 		struct zone *zone = pgdat->node_zones + i;
526 
527 		if (!managed_zone(zone))
528 			continue;
529 
530 		reclaimable += zone_reclaimable_pages(zone);
531 		write_pending += zone_page_state_snapshot(zone,
532 						  NR_ZONE_WRITE_PENDING);
533 	}
534 	if (2 * write_pending <= reclaimable)
535 		return true;
536 
537 	return false;
538 }
539 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)540 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
541 {
542 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
543 	long timeout, ret;
544 	DEFINE_WAIT(wait);
545 
546 	/*
547 	 * Do not throttle user workers, kthreads other than kswapd or
548 	 * workqueues. They may be required for reclaim to make
549 	 * forward progress (e.g. journalling workqueues or kthreads).
550 	 */
551 	if (!current_is_kswapd() &&
552 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
553 		cond_resched();
554 		return;
555 	}
556 
557 	/*
558 	 * These figures are pulled out of thin air.
559 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
560 	 * parallel reclaimers which is a short-lived event so the timeout is
561 	 * short. Failing to make progress or waiting on writeback are
562 	 * potentially long-lived events so use a longer timeout. This is shaky
563 	 * logic as a failure to make progress could be due to anything from
564 	 * writeback to a slow device to excessive referenced folios at the tail
565 	 * of the inactive LRU.
566 	 */
567 	switch(reason) {
568 	case VMSCAN_THROTTLE_WRITEBACK:
569 		timeout = HZ/10;
570 
571 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
572 			WRITE_ONCE(pgdat->nr_reclaim_start,
573 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
574 		}
575 
576 		break;
577 	case VMSCAN_THROTTLE_CONGESTED:
578 		fallthrough;
579 	case VMSCAN_THROTTLE_NOPROGRESS:
580 		if (skip_throttle_noprogress(pgdat)) {
581 			cond_resched();
582 			return;
583 		}
584 
585 		timeout = 1;
586 
587 		break;
588 	case VMSCAN_THROTTLE_ISOLATED:
589 		timeout = HZ/50;
590 		break;
591 	default:
592 		WARN_ON_ONCE(1);
593 		timeout = HZ;
594 		break;
595 	}
596 
597 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
598 	ret = schedule_timeout(timeout);
599 	finish_wait(wqh, &wait);
600 
601 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
602 		atomic_dec(&pgdat->nr_writeback_throttled);
603 
604 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
605 				jiffies_to_usecs(timeout - ret),
606 				reason);
607 }
608 
609 /*
610  * Account for folios written if tasks are throttled waiting on dirty
611  * folios to clean. If enough folios have been cleaned since throttling
612  * started then wakeup the throttled tasks.
613  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)614 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
615 							int nr_throttled)
616 {
617 	unsigned long nr_written;
618 
619 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
620 
621 	/*
622 	 * This is an inaccurate read as the per-cpu deltas may not
623 	 * be synchronised. However, given that the system is
624 	 * writeback throttled, it is not worth taking the penalty
625 	 * of getting an accurate count. At worst, the throttle
626 	 * timeout guarantees forward progress.
627 	 */
628 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
629 		READ_ONCE(pgdat->nr_reclaim_start);
630 
631 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
632 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
633 }
634 
635 /* possible outcome of pageout() */
636 typedef enum {
637 	/* failed to write folio out, folio is locked */
638 	PAGE_KEEP,
639 	/* move folio to the active list, folio is locked */
640 	PAGE_ACTIVATE,
641 	/* folio has been sent to the disk successfully, folio is unlocked */
642 	PAGE_SUCCESS,
643 	/* folio is clean and locked */
644 	PAGE_CLEAN,
645 } pageout_t;
646 
647 /*
648  * pageout is called by shrink_folio_list() for each dirty folio.
649  * Calls ->writepage().
650  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)651 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
652 			 struct swap_iocb **plug, struct list_head *folio_list)
653 {
654 	/*
655 	 * If the folio is dirty, only perform writeback if that write
656 	 * will be non-blocking.  To prevent this allocation from being
657 	 * stalled by pagecache activity.  But note that there may be
658 	 * stalls if we need to run get_block().  We could test
659 	 * PagePrivate for that.
660 	 *
661 	 * If this process is currently in __generic_file_write_iter() against
662 	 * this folio's queue, we can perform writeback even if that
663 	 * will block.
664 	 *
665 	 * If the folio is swapcache, write it back even if that would
666 	 * block, for some throttling. This happens by accident, because
667 	 * swap_backing_dev_info is bust: it doesn't reflect the
668 	 * congestion state of the swapdevs.  Easy to fix, if needed.
669 	 */
670 	if (!is_page_cache_freeable(folio))
671 		return PAGE_KEEP;
672 	if (!mapping) {
673 		/*
674 		 * Some data journaling orphaned folios can have
675 		 * folio->mapping == NULL while being dirty with clean buffers.
676 		 */
677 		if (folio_test_private(folio)) {
678 			if (try_to_free_buffers(folio)) {
679 				folio_clear_dirty(folio);
680 				pr_info("%s: orphaned folio\n", __func__);
681 				return PAGE_CLEAN;
682 			}
683 		}
684 		return PAGE_KEEP;
685 	}
686 	if (mapping->a_ops->writepage == NULL)
687 		return PAGE_ACTIVATE;
688 
689 	if (folio_clear_dirty_for_io(folio)) {
690 		int res;
691 		struct writeback_control wbc = {
692 			.sync_mode = WB_SYNC_NONE,
693 			.nr_to_write = SWAP_CLUSTER_MAX,
694 			.range_start = 0,
695 			.range_end = LLONG_MAX,
696 			.for_reclaim = 1,
697 			.swap_plug = plug,
698 		};
699 
700 		/*
701 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
702 		 * not enabled or contiguous swap entries are failed to
703 		 * allocate.
704 		 */
705 		if (shmem_mapping(mapping) && folio_test_large(folio))
706 			wbc.list = folio_list;
707 
708 		folio_set_reclaim(folio);
709 		res = mapping->a_ops->writepage(&folio->page, &wbc);
710 		if (res < 0)
711 			handle_write_error(mapping, folio, res);
712 		if (res == AOP_WRITEPAGE_ACTIVATE) {
713 			folio_clear_reclaim(folio);
714 			return PAGE_ACTIVATE;
715 		}
716 
717 		if (!folio_test_writeback(folio)) {
718 			/* synchronous write or broken a_ops? */
719 			folio_clear_reclaim(folio);
720 		}
721 		trace_mm_vmscan_write_folio(folio);
722 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
723 		return PAGE_SUCCESS;
724 	}
725 
726 	return PAGE_CLEAN;
727 }
728 
729 /*
730  * Same as remove_mapping, but if the folio is removed from the mapping, it
731  * gets returned with a refcount of 0.
732  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)733 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
734 			    bool reclaimed, struct mem_cgroup *target_memcg)
735 {
736 	int refcount;
737 	void *shadow = NULL;
738 
739 	BUG_ON(!folio_test_locked(folio));
740 	BUG_ON(mapping != folio_mapping(folio));
741 
742 	if (!folio_test_swapcache(folio))
743 		spin_lock(&mapping->host->i_lock);
744 	xa_lock_irq(&mapping->i_pages);
745 	/*
746 	 * The non racy check for a busy folio.
747 	 *
748 	 * Must be careful with the order of the tests. When someone has
749 	 * a ref to the folio, it may be possible that they dirty it then
750 	 * drop the reference. So if the dirty flag is tested before the
751 	 * refcount here, then the following race may occur:
752 	 *
753 	 * get_user_pages(&page);
754 	 * [user mapping goes away]
755 	 * write_to(page);
756 	 *				!folio_test_dirty(folio)    [good]
757 	 * folio_set_dirty(folio);
758 	 * folio_put(folio);
759 	 *				!refcount(folio)   [good, discard it]
760 	 *
761 	 * [oops, our write_to data is lost]
762 	 *
763 	 * Reversing the order of the tests ensures such a situation cannot
764 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
765 	 * load is not satisfied before that of folio->_refcount.
766 	 *
767 	 * Note that if the dirty flag is always set via folio_mark_dirty,
768 	 * and thus under the i_pages lock, then this ordering is not required.
769 	 */
770 	refcount = 1 + folio_nr_pages(folio);
771 	if (!folio_ref_freeze(folio, refcount))
772 		goto cannot_free;
773 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
774 	if (unlikely(folio_test_dirty(folio))) {
775 		folio_ref_unfreeze(folio, refcount);
776 		goto cannot_free;
777 	}
778 
779 	if (folio_test_swapcache(folio)) {
780 		swp_entry_t swap = folio->swap;
781 
782 		if (reclaimed && !mapping_exiting(mapping))
783 			shadow = workingset_eviction(folio, target_memcg);
784 		__delete_from_swap_cache(folio, swap, shadow);
785 		mem_cgroup_swapout(folio, swap);
786 		xa_unlock_irq(&mapping->i_pages);
787 		put_swap_folio(folio, swap);
788 	} else {
789 		void (*free_folio)(struct folio *);
790 
791 		free_folio = mapping->a_ops->free_folio;
792 		/*
793 		 * Remember a shadow entry for reclaimed file cache in
794 		 * order to detect refaults, thus thrashing, later on.
795 		 *
796 		 * But don't store shadows in an address space that is
797 		 * already exiting.  This is not just an optimization,
798 		 * inode reclaim needs to empty out the radix tree or
799 		 * the nodes are lost.  Don't plant shadows behind its
800 		 * back.
801 		 *
802 		 * We also don't store shadows for DAX mappings because the
803 		 * only page cache folios found in these are zero pages
804 		 * covering holes, and because we don't want to mix DAX
805 		 * exceptional entries and shadow exceptional entries in the
806 		 * same address_space.
807 		 */
808 		if (reclaimed && folio_is_file_lru(folio) &&
809 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
810 			shadow = workingset_eviction(folio, target_memcg);
811 		__filemap_remove_folio(folio, shadow);
812 		xa_unlock_irq(&mapping->i_pages);
813 		if (mapping_shrinkable(mapping))
814 			inode_add_lru(mapping->host);
815 		spin_unlock(&mapping->host->i_lock);
816 
817 		if (free_folio)
818 			free_folio(folio);
819 	}
820 
821 	return 1;
822 
823 cannot_free:
824 	xa_unlock_irq(&mapping->i_pages);
825 	if (!folio_test_swapcache(folio))
826 		spin_unlock(&mapping->host->i_lock);
827 	return 0;
828 }
829 
830 /**
831  * remove_mapping() - Attempt to remove a folio from its mapping.
832  * @mapping: The address space.
833  * @folio: The folio to remove.
834  *
835  * If the folio is dirty, under writeback or if someone else has a ref
836  * on it, removal will fail.
837  * Return: The number of pages removed from the mapping.  0 if the folio
838  * could not be removed.
839  * Context: The caller should have a single refcount on the folio and
840  * hold its lock.
841  */
remove_mapping(struct address_space * mapping,struct folio * folio)842 long remove_mapping(struct address_space *mapping, struct folio *folio)
843 {
844 	if (__remove_mapping(mapping, folio, false, NULL)) {
845 		/*
846 		 * Unfreezing the refcount with 1 effectively
847 		 * drops the pagecache ref for us without requiring another
848 		 * atomic operation.
849 		 */
850 		folio_ref_unfreeze(folio, 1);
851 		return folio_nr_pages(folio);
852 	}
853 	return 0;
854 }
855 
856 /**
857  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
858  * @folio: Folio to be returned to an LRU list.
859  *
860  * Add previously isolated @folio to appropriate LRU list.
861  * The folio may still be unevictable for other reasons.
862  *
863  * Context: lru_lock must not be held, interrupts must be enabled.
864  */
folio_putback_lru(struct folio * folio)865 void folio_putback_lru(struct folio *folio)
866 {
867 	folio_add_lru(folio);
868 	folio_put(folio);		/* drop ref from isolate */
869 }
870 
871 enum folio_references {
872 	FOLIOREF_RECLAIM,
873 	FOLIOREF_RECLAIM_CLEAN,
874 	FOLIOREF_KEEP,
875 	FOLIOREF_ACTIVATE,
876 };
877 
878 #ifdef CONFIG_LRU_GEN
879 /*
880  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
881  * needs to be done by taking the folio off the LRU list and then adding it back
882  * with PG_active set. In contrast, the aging (page table walk) path uses
883  * folio_update_gen().
884  */
lru_gen_set_refs(struct folio * folio)885 static bool lru_gen_set_refs(struct folio *folio)
886 {
887 	/* see the comment on LRU_REFS_FLAGS */
888 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
889 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
890 		return false;
891 	}
892 
893 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
894 	return true;
895 }
896 #else
lru_gen_set_refs(struct folio * folio)897 static bool lru_gen_set_refs(struct folio *folio)
898 {
899 	return false;
900 }
901 #endif /* CONFIG_LRU_GEN */
902 
folio_check_references(struct folio * folio,struct scan_control * sc)903 static enum folio_references folio_check_references(struct folio *folio,
904 						  struct scan_control *sc)
905 {
906 	int referenced_ptes, referenced_folio;
907 	unsigned long vm_flags;
908 	int ret = 0;
909 
910 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
911 	trace_android_vh_page_should_be_protected(folio, sc->nr_scanned,
912 		sc->priority, &sc->android_vendor_data1, &ret);
913 #endif
914 	trace_android_vh_check_folio_look_around_ref(folio, &ret);
915 	if (ret)
916 		return ret;
917 
918 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
919 					   &vm_flags);
920 
921 	/*
922 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
923 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
924 	 */
925 	if (vm_flags & VM_LOCKED)
926 		return FOLIOREF_ACTIVATE;
927 
928 	/*
929 	 * There are two cases to consider.
930 	 * 1) Rmap lock contention: rotate.
931 	 * 2) Skip the non-shared swapbacked folio mapped solely by
932 	 *    the exiting or OOM-reaped process.
933 	 */
934 	if (referenced_ptes == -1)
935 		return FOLIOREF_KEEP;
936 
937 	if (lru_gen_enabled()) {
938 		if (!referenced_ptes)
939 			return FOLIOREF_RECLAIM;
940 
941 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
942 	}
943 
944 	referenced_folio = folio_test_clear_referenced(folio);
945 
946 	if (referenced_ptes) {
947 		/*
948 		 * All mapped folios start out with page table
949 		 * references from the instantiating fault, so we need
950 		 * to look twice if a mapped file/anon folio is used more
951 		 * than once.
952 		 *
953 		 * Mark it and spare it for another trip around the
954 		 * inactive list.  Another page table reference will
955 		 * lead to its activation.
956 		 *
957 		 * Note: the mark is set for activated folios as well
958 		 * so that recently deactivated but used folios are
959 		 * quickly recovered.
960 		 */
961 		folio_set_referenced(folio);
962 
963 		if (referenced_folio || referenced_ptes > 1)
964 			return FOLIOREF_ACTIVATE;
965 
966 		/*
967 		 * Activate file-backed executable folios after first usage.
968 		 */
969 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
970 			return FOLIOREF_ACTIVATE;
971 
972 		return FOLIOREF_KEEP;
973 	}
974 
975 	/* Reclaim if clean, defer dirty folios to writeback */
976 	if (referenced_folio && folio_is_file_lru(folio))
977 		return FOLIOREF_RECLAIM_CLEAN;
978 
979 	return FOLIOREF_RECLAIM;
980 }
981 
982 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)983 static void folio_check_dirty_writeback(struct folio *folio,
984 				       bool *dirty, bool *writeback)
985 {
986 	struct address_space *mapping;
987 
988 	/*
989 	 * Anonymous folios are not handled by flushers and must be written
990 	 * from reclaim context. Do not stall reclaim based on them.
991 	 * MADV_FREE anonymous folios are put into inactive file list too.
992 	 * They could be mistakenly treated as file lru. So further anon
993 	 * test is needed.
994 	 */
995 	if (!folio_is_file_lru(folio) ||
996 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
997 		*dirty = false;
998 		*writeback = false;
999 		return;
1000 	}
1001 
1002 	/* By default assume that the folio flags are accurate */
1003 	*dirty = folio_test_dirty(folio);
1004 	*writeback = folio_test_writeback(folio);
1005 
1006 	/* Verify dirty/writeback state if the filesystem supports it */
1007 	if (!folio_test_private(folio))
1008 		return;
1009 
1010 	mapping = folio_mapping(folio);
1011 	if (mapping && mapping->a_ops->is_dirty_writeback)
1012 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1013 }
1014 
alloc_migrate_folio(struct folio * src,unsigned long private)1015 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1016 {
1017 	struct folio *dst;
1018 	nodemask_t *allowed_mask;
1019 	struct migration_target_control *mtc;
1020 
1021 	mtc = (struct migration_target_control *)private;
1022 
1023 	allowed_mask = mtc->nmask;
1024 	/*
1025 	 * make sure we allocate from the target node first also trying to
1026 	 * demote or reclaim pages from the target node via kswapd if we are
1027 	 * low on free memory on target node. If we don't do this and if
1028 	 * we have free memory on the slower(lower) memtier, we would start
1029 	 * allocating pages from slower(lower) memory tiers without even forcing
1030 	 * a demotion of cold pages from the target memtier. This can result
1031 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1032 	 */
1033 	mtc->nmask = NULL;
1034 	mtc->gfp_mask |= __GFP_THISNODE;
1035 	dst = alloc_migration_target(src, (unsigned long)mtc);
1036 	if (dst)
1037 		return dst;
1038 
1039 	mtc->gfp_mask &= ~__GFP_THISNODE;
1040 	mtc->nmask = allowed_mask;
1041 
1042 	return alloc_migration_target(src, (unsigned long)mtc);
1043 }
1044 
1045 /*
1046  * Take folios on @demote_folios and attempt to demote them to another node.
1047  * Folios which are not demoted are left on @demote_folios.
1048  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1049 static unsigned int demote_folio_list(struct list_head *demote_folios,
1050 				     struct pglist_data *pgdat)
1051 {
1052 	int target_nid = next_demotion_node(pgdat->node_id);
1053 	unsigned int nr_succeeded;
1054 	nodemask_t allowed_mask;
1055 
1056 	struct migration_target_control mtc = {
1057 		/*
1058 		 * Allocate from 'node', or fail quickly and quietly.
1059 		 * When this happens, 'page' will likely just be discarded
1060 		 * instead of migrated.
1061 		 */
1062 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1063 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1064 		.nid = target_nid,
1065 		.nmask = &allowed_mask,
1066 		.reason = MR_DEMOTION,
1067 	};
1068 
1069 	if (list_empty(demote_folios))
1070 		return 0;
1071 
1072 	if (target_nid == NUMA_NO_NODE)
1073 		return 0;
1074 
1075 	node_get_allowed_targets(pgdat, &allowed_mask);
1076 
1077 	/* Demotion ignores all cpuset and mempolicy settings */
1078 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1079 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1080 		      &nr_succeeded);
1081 
1082 	return nr_succeeded;
1083 }
1084 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1085 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1086 {
1087 	if (gfp_mask & __GFP_FS)
1088 		return true;
1089 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1090 		return false;
1091 	/*
1092 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1093 	 * providing this isn't SWP_FS_OPS.
1094 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1095 	 * but that will never affect SWP_FS_OPS, so the data_race
1096 	 * is safe.
1097 	 */
1098 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1099 }
1100 
1101 /*
1102  * shrink_folio_list() returns the number of reclaimed pages
1103  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1104 static unsigned int shrink_folio_list(struct list_head *folio_list,
1105 		struct pglist_data *pgdat, struct scan_control *sc,
1106 		struct reclaim_stat *stat, bool ignore_references)
1107 {
1108 	struct folio_batch free_folios;
1109 	LIST_HEAD(ret_folios);
1110 	LIST_HEAD(demote_folios);
1111 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1112 	unsigned int pgactivate = 0;
1113 	bool do_demote_pass;
1114 	struct swap_iocb *plug = NULL;
1115 
1116 	folio_batch_init(&free_folios);
1117 	memset(stat, 0, sizeof(*stat));
1118 	cond_resched();
1119 	do_demote_pass = can_demote(pgdat->node_id, sc);
1120 
1121 retry:
1122 	while (!list_empty(folio_list)) {
1123 		struct address_space *mapping;
1124 		struct folio *folio;
1125 		enum folio_references references = FOLIOREF_RECLAIM;
1126 		bool dirty, writeback;
1127 		unsigned int nr_pages;
1128 		bool activate = false;
1129 		bool keep = false;
1130 
1131 		cond_resched();
1132 
1133 		folio = lru_to_folio(folio_list);
1134 		list_del(&folio->lru);
1135 
1136 		if (!folio_trylock(folio))
1137 			goto keep;
1138 
1139 		if (folio_contain_hwpoisoned_page(folio)) {
1140 			/*
1141 			 * unmap_poisoned_folio() can't handle large
1142 			 * folio, just skip it. memory_failure() will
1143 			 * handle it if the UCE is triggered again.
1144 			 */
1145 			if (folio_test_large(folio))
1146 				goto keep_locked;
1147 
1148 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1149 			folio_unlock(folio);
1150 			folio_put(folio);
1151 			continue;
1152 		}
1153 
1154 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1155 
1156 		nr_pages = folio_nr_pages(folio);
1157 
1158 		/* Account the number of base pages */
1159 		sc->nr_scanned += nr_pages;
1160 
1161 		if (unlikely(!folio_evictable(folio)))
1162 			goto activate_locked;
1163 
1164 		if (!sc->may_unmap && folio_mapped(folio))
1165 			goto keep_locked;
1166 
1167 		/*
1168 		 * The number of dirty pages determines if a node is marked
1169 		 * reclaim_congested. kswapd will stall and start writing
1170 		 * folios if the tail of the LRU is all dirty unqueued folios.
1171 		 */
1172 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1173 
1174 		trace_android_vh_shrink_folio_list(folio, dirty, writeback,
1175 				&activate, &keep);
1176 		if (activate)
1177 			goto activate_locked;
1178 
1179 		if (keep)
1180 			goto keep_locked;
1181 
1182 		if (dirty || writeback)
1183 			stat->nr_dirty += nr_pages;
1184 
1185 		if (dirty && !writeback)
1186 			stat->nr_unqueued_dirty += nr_pages;
1187 
1188 		/*
1189 		 * Treat this folio as congested if folios are cycling
1190 		 * through the LRU so quickly that the folios marked
1191 		 * for immediate reclaim are making it to the end of
1192 		 * the LRU a second time.
1193 		 */
1194 		if (writeback && folio_test_reclaim(folio))
1195 			stat->nr_congested += nr_pages;
1196 
1197 		/*
1198 		 * If a folio at the tail of the LRU is under writeback, there
1199 		 * are three cases to consider.
1200 		 *
1201 		 * 1) If reclaim is encountering an excessive number
1202 		 *    of folios under writeback and this folio has both
1203 		 *    the writeback and reclaim flags set, then it
1204 		 *    indicates that folios are being queued for I/O but
1205 		 *    are being recycled through the LRU before the I/O
1206 		 *    can complete. Waiting on the folio itself risks an
1207 		 *    indefinite stall if it is impossible to writeback
1208 		 *    the folio due to I/O error or disconnected storage
1209 		 *    so instead note that the LRU is being scanned too
1210 		 *    quickly and the caller can stall after the folio
1211 		 *    list has been processed.
1212 		 *
1213 		 * 2) Global or new memcg reclaim encounters a folio that is
1214 		 *    not marked for immediate reclaim, or the caller does not
1215 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1216 		 *    not to fs). In this case mark the folio for immediate
1217 		 *    reclaim and continue scanning.
1218 		 *
1219 		 *    Require may_enter_fs() because we would wait on fs, which
1220 		 *    may not have submitted I/O yet. And the loop driver might
1221 		 *    enter reclaim, and deadlock if it waits on a folio for
1222 		 *    which it is needed to do the write (loop masks off
1223 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1224 		 *    would probably show more reasons.
1225 		 *
1226 		 * 3) Legacy memcg encounters a folio that already has the
1227 		 *    reclaim flag set. memcg does not have any dirty folio
1228 		 *    throttling so we could easily OOM just because too many
1229 		 *    folios are in writeback and there is nothing else to
1230 		 *    reclaim. Wait for the writeback to complete.
1231 		 *
1232 		 * In cases 1) and 2) we activate the folios to get them out of
1233 		 * the way while we continue scanning for clean folios on the
1234 		 * inactive list and refilling from the active list. The
1235 		 * observation here is that waiting for disk writes is more
1236 		 * expensive than potentially causing reloads down the line.
1237 		 * Since they're marked for immediate reclaim, they won't put
1238 		 * memory pressure on the cache working set any longer than it
1239 		 * takes to write them to disk.
1240 		 */
1241 		if (folio_test_writeback(folio)) {
1242 			/* Case 1 above */
1243 			if (current_is_kswapd() &&
1244 			    folio_test_reclaim(folio) &&
1245 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1246 				stat->nr_immediate += nr_pages;
1247 				goto activate_locked;
1248 
1249 			/* Case 2 above */
1250 			} else if (writeback_throttling_sane(sc) ||
1251 			    !folio_test_reclaim(folio) ||
1252 			    !may_enter_fs(folio, sc->gfp_mask)) {
1253 				/*
1254 				 * This is slightly racy -
1255 				 * folio_end_writeback() might have
1256 				 * just cleared the reclaim flag, then
1257 				 * setting the reclaim flag here ends up
1258 				 * interpreted as the readahead flag - but
1259 				 * that does not matter enough to care.
1260 				 * What we do want is for this folio to
1261 				 * have the reclaim flag set next time
1262 				 * memcg reclaim reaches the tests above,
1263 				 * so it will then wait for writeback to
1264 				 * avoid OOM; and it's also appropriate
1265 				 * in global reclaim.
1266 				 */
1267 				folio_set_reclaim(folio);
1268 				stat->nr_writeback += nr_pages;
1269 				goto activate_locked;
1270 
1271 			/* Case 3 above */
1272 			} else {
1273 				folio_unlock(folio);
1274 				folio_wait_writeback(folio);
1275 				/* then go back and try same folio again */
1276 				list_add_tail(&folio->lru, folio_list);
1277 				continue;
1278 			}
1279 		}
1280 
1281 		if (!ignore_references)
1282 			references = folio_check_references(folio, sc);
1283 
1284 		switch (references) {
1285 		case FOLIOREF_ACTIVATE:
1286 			goto activate_locked;
1287 		case FOLIOREF_KEEP:
1288 			stat->nr_ref_keep += nr_pages;
1289 			goto keep_locked;
1290 		case FOLIOREF_RECLAIM:
1291 		case FOLIOREF_RECLAIM_CLEAN:
1292 			; /* try to reclaim the folio below */
1293 		}
1294 
1295 		/*
1296 		 * Before reclaiming the folio, try to relocate
1297 		 * its contents to another node.
1298 		 */
1299 		if (do_demote_pass &&
1300 		    (thp_migration_supported() || !folio_test_large(folio))) {
1301 			list_add(&folio->lru, &demote_folios);
1302 			folio_unlock(folio);
1303 			continue;
1304 		}
1305 
1306 		/*
1307 		 * Anonymous process memory has backing store?
1308 		 * Try to allocate it some swap space here.
1309 		 * Lazyfree folio could be freed directly
1310 		 */
1311 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1312 			if (!folio_test_swapcache(folio)) {
1313 				if (!(sc->gfp_mask & __GFP_IO))
1314 					goto keep_locked;
1315 				if (folio_maybe_dma_pinned(folio))
1316 					goto keep_locked;
1317 				if (folio_test_large(folio)) {
1318 					/* cannot split folio, skip it */
1319 					if (!can_split_folio(folio, 1, NULL))
1320 						goto activate_locked;
1321 					/*
1322 					 * Split partially mapped folios right away.
1323 					 * We can free the unmapped pages without IO.
1324 					 */
1325 					if (data_race(!list_empty(&folio->_deferred_list) &&
1326 					    folio_test_partially_mapped(folio)) &&
1327 					    split_folio_to_list(folio, folio_list))
1328 						goto activate_locked;
1329 				}
1330 				if (!add_to_swap(folio)) {
1331 					int __maybe_unused order = folio_order(folio);
1332 					bool bypass = false;
1333 
1334 					if (!folio_test_large(folio))
1335 						goto activate_locked_split;
1336 					trace_android_vh_split_large_folio_bypass(&bypass);
1337 					if (bypass)
1338 						goto activate_locked;
1339 					/* Fallback to swap normal pages */
1340 					if (split_folio_to_list(folio, folio_list))
1341 						goto activate_locked;
1342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343 					if (nr_pages >= HPAGE_PMD_NR) {
1344 						count_memcg_folio_events(folio,
1345 							THP_SWPOUT_FALLBACK, 1);
1346 						count_vm_event(THP_SWPOUT_FALLBACK);
1347 					}
1348 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1349 #endif
1350 					if (!add_to_swap(folio))
1351 						goto activate_locked_split;
1352 				}
1353 			}
1354 		}
1355 
1356 		/*
1357 		 * If the folio was split above, the tail pages will make
1358 		 * their own pass through this function and be accounted
1359 		 * then.
1360 		 */
1361 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1362 			sc->nr_scanned -= (nr_pages - 1);
1363 			nr_pages = 1;
1364 		}
1365 
1366 		/*
1367 		 * The folio is mapped into the page tables of one or more
1368 		 * processes. Try to unmap it here.
1369 		 */
1370 		if (folio_mapped(folio)) {
1371 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1372 			bool was_swapbacked = folio_test_swapbacked(folio);
1373 
1374 			if (folio_test_pmd_mappable(folio))
1375 				flags |= TTU_SPLIT_HUGE_PMD;
1376 			/*
1377 			 * Without TTU_SYNC, try_to_unmap will only begin to
1378 			 * hold PTL from the first present PTE within a large
1379 			 * folio. Some initial PTEs might be skipped due to
1380 			 * races with parallel PTE writes in which PTEs can be
1381 			 * cleared temporarily before being written new present
1382 			 * values. This will lead to a large folio is still
1383 			 * mapped while some subpages have been partially
1384 			 * unmapped after try_to_unmap; TTU_SYNC helps
1385 			 * try_to_unmap acquire PTL from the first PTE,
1386 			 * eliminating the influence of temporary PTE values.
1387 			 */
1388 			if (folio_test_large(folio))
1389 				flags |= TTU_SYNC;
1390 
1391 			try_to_unmap(folio, flags);
1392 			if (folio_mapped(folio)) {
1393 				stat->nr_unmap_fail += nr_pages;
1394 				if (!was_swapbacked &&
1395 				    folio_test_swapbacked(folio))
1396 					stat->nr_lazyfree_fail += nr_pages;
1397 				goto activate_locked;
1398 			}
1399 		}
1400 
1401 		/*
1402 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1403 		 * No point in trying to reclaim folio if it is pinned.
1404 		 * Furthermore we don't want to reclaim underlying fs metadata
1405 		 * if the folio is pinned and thus potentially modified by the
1406 		 * pinning process as that may upset the filesystem.
1407 		 */
1408 		if (folio_maybe_dma_pinned(folio))
1409 			goto activate_locked;
1410 
1411 		mapping = folio_mapping(folio);
1412 		if (folio_test_dirty(folio)) {
1413 			/*
1414 			 * Only kswapd can writeback filesystem folios
1415 			 * to avoid risk of stack overflow. But avoid
1416 			 * injecting inefficient single-folio I/O into
1417 			 * flusher writeback as much as possible: only
1418 			 * write folios when we've encountered many
1419 			 * dirty folios, and when we've already scanned
1420 			 * the rest of the LRU for clean folios and see
1421 			 * the same dirty folios again (with the reclaim
1422 			 * flag set).
1423 			 */
1424 			if (folio_is_file_lru(folio) &&
1425 			    (!current_is_kswapd() ||
1426 			     !folio_test_reclaim(folio) ||
1427 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1428 				/*
1429 				 * Immediately reclaim when written back.
1430 				 * Similar in principle to folio_deactivate()
1431 				 * except we already have the folio isolated
1432 				 * and know it's dirty
1433 				 */
1434 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1435 						nr_pages);
1436 				folio_set_reclaim(folio);
1437 
1438 				goto activate_locked;
1439 			}
1440 
1441 			if (references == FOLIOREF_RECLAIM_CLEAN)
1442 				goto keep_locked;
1443 			if (!may_enter_fs(folio, sc->gfp_mask))
1444 				goto keep_locked;
1445 			if (!sc->may_writepage)
1446 				goto keep_locked;
1447 
1448 			/*
1449 			 * Folio is dirty. Flush the TLB if a writable entry
1450 			 * potentially exists to avoid CPU writes after I/O
1451 			 * starts and then write it out here.
1452 			 */
1453 			try_to_unmap_flush_dirty();
1454 			switch (pageout(folio, mapping, &plug, folio_list)) {
1455 			case PAGE_KEEP:
1456 				goto keep_locked;
1457 			case PAGE_ACTIVATE:
1458 				/*
1459 				 * If shmem folio is split when writeback to swap,
1460 				 * the tail pages will make their own pass through
1461 				 * this function and be accounted then.
1462 				 */
1463 				if (nr_pages > 1 && !folio_test_large(folio)) {
1464 					sc->nr_scanned -= (nr_pages - 1);
1465 					nr_pages = 1;
1466 				}
1467 				goto activate_locked;
1468 			case PAGE_SUCCESS:
1469 				if (nr_pages > 1 && !folio_test_large(folio)) {
1470 					sc->nr_scanned -= (nr_pages - 1);
1471 					nr_pages = 1;
1472 				}
1473 				stat->nr_pageout += nr_pages;
1474 
1475 				if (folio_test_writeback(folio))
1476 					goto keep;
1477 				if (folio_test_dirty(folio))
1478 					goto keep;
1479 
1480 				/*
1481 				 * A synchronous write - probably a ramdisk.  Go
1482 				 * ahead and try to reclaim the folio.
1483 				 */
1484 				if (!folio_trylock(folio))
1485 					goto keep;
1486 				if (folio_test_dirty(folio) ||
1487 				    folio_test_writeback(folio))
1488 					goto keep_locked;
1489 				mapping = folio_mapping(folio);
1490 				fallthrough;
1491 			case PAGE_CLEAN:
1492 				; /* try to free the folio below */
1493 			}
1494 		}
1495 
1496 		/*
1497 		 * If the folio has buffers, try to free the buffer
1498 		 * mappings associated with this folio. If we succeed
1499 		 * we try to free the folio as well.
1500 		 *
1501 		 * We do this even if the folio is dirty.
1502 		 * filemap_release_folio() does not perform I/O, but it
1503 		 * is possible for a folio to have the dirty flag set,
1504 		 * but it is actually clean (all its buffers are clean).
1505 		 * This happens if the buffers were written out directly,
1506 		 * with submit_bh(). ext3 will do this, as well as
1507 		 * the blockdev mapping.  filemap_release_folio() will
1508 		 * discover that cleanness and will drop the buffers
1509 		 * and mark the folio clean - it can be freed.
1510 		 *
1511 		 * Rarely, folios can have buffers and no ->mapping.
1512 		 * These are the folios which were not successfully
1513 		 * invalidated in truncate_cleanup_folio().  We try to
1514 		 * drop those buffers here and if that worked, and the
1515 		 * folio is no longer mapped into process address space
1516 		 * (refcount == 1) it can be freed.  Otherwise, leave
1517 		 * the folio on the LRU so it is swappable.
1518 		 */
1519 		if (folio_needs_release(folio)) {
1520 			if (!filemap_release_folio(folio, sc->gfp_mask))
1521 				goto activate_locked;
1522 			if (!mapping && folio_ref_count(folio) == 1) {
1523 				folio_unlock(folio);
1524 				if (folio_put_testzero(folio))
1525 					goto free_it;
1526 				else {
1527 					/*
1528 					 * rare race with speculative reference.
1529 					 * the speculative reference will free
1530 					 * this folio shortly, so we may
1531 					 * increment nr_reclaimed here (and
1532 					 * leave it off the LRU).
1533 					 */
1534 					nr_reclaimed += nr_pages;
1535 					continue;
1536 				}
1537 			}
1538 		}
1539 
1540 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1541 			/* follow __remove_mapping for reference */
1542 			if (!folio_ref_freeze(folio, 1))
1543 				goto keep_locked;
1544 			/*
1545 			 * The folio has only one reference left, which is
1546 			 * from the isolation. After the caller puts the
1547 			 * folio back on the lru and drops the reference, the
1548 			 * folio will be freed anyway. It doesn't matter
1549 			 * which lru it goes on. So we don't bother checking
1550 			 * the dirty flag here.
1551 			 */
1552 			count_vm_events(PGLAZYFREED, nr_pages);
1553 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1554 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1555 							 sc->target_mem_cgroup))
1556 			goto keep_locked;
1557 
1558 		folio_unlock(folio);
1559 free_it:
1560 		/*
1561 		 * Folio may get swapped out as a whole, need to account
1562 		 * all pages in it.
1563 		 */
1564 		nr_reclaimed += nr_pages;
1565 
1566 		folio_unqueue_deferred_split(folio);
1567 		if (folio_batch_add(&free_folios, folio) == 0) {
1568 			mem_cgroup_uncharge_folios(&free_folios);
1569 			try_to_unmap_flush();
1570 			free_unref_folios(&free_folios);
1571 		}
1572 		continue;
1573 
1574 activate_locked_split:
1575 		/*
1576 		 * The tail pages that are failed to add into swap cache
1577 		 * reach here.  Fixup nr_scanned and nr_pages.
1578 		 */
1579 		if (nr_pages > 1) {
1580 			sc->nr_scanned -= (nr_pages - 1);
1581 			nr_pages = 1;
1582 		}
1583 activate_locked:
1584 		/* Not a candidate for swapping, so reclaim swap space. */
1585 		if (folio_test_swapcache(folio) &&
1586 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1587 			folio_free_swap(folio);
1588 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1589 		if (!folio_test_mlocked(folio)) {
1590 			int type = folio_is_file_lru(folio);
1591 			folio_set_active(folio);
1592 			stat->nr_activate[type] += nr_pages;
1593 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1594 		}
1595 keep_locked:
1596 		folio_unlock(folio);
1597 keep:
1598 		list_add(&folio->lru, &ret_folios);
1599 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1600 				folio_test_unevictable(folio), folio);
1601 	}
1602 	/* 'folio_list' is always empty here */
1603 
1604 	/* Migrate folios selected for demotion */
1605 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1606 	nr_reclaimed += nr_demoted;
1607 	stat->nr_demoted += nr_demoted;
1608 	/* Folios that could not be demoted are still in @demote_folios */
1609 	if (!list_empty(&demote_folios)) {
1610 		/* Folios which weren't demoted go back on @folio_list */
1611 		list_splice_init(&demote_folios, folio_list);
1612 
1613 		/*
1614 		 * goto retry to reclaim the undemoted folios in folio_list if
1615 		 * desired.
1616 		 *
1617 		 * Reclaiming directly from top tier nodes is not often desired
1618 		 * due to it breaking the LRU ordering: in general memory
1619 		 * should be reclaimed from lower tier nodes and demoted from
1620 		 * top tier nodes.
1621 		 *
1622 		 * However, disabling reclaim from top tier nodes entirely
1623 		 * would cause ooms in edge scenarios where lower tier memory
1624 		 * is unreclaimable for whatever reason, eg memory being
1625 		 * mlocked or too hot to reclaim. We can disable reclaim
1626 		 * from top tier nodes in proactive reclaim though as that is
1627 		 * not real memory pressure.
1628 		 */
1629 		if (!sc->proactive) {
1630 			do_demote_pass = false;
1631 			goto retry;
1632 		}
1633 	}
1634 
1635 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1636 
1637 	mem_cgroup_uncharge_folios(&free_folios);
1638 	try_to_unmap_flush();
1639 	free_unref_folios(&free_folios);
1640 
1641 	list_splice(&ret_folios, folio_list);
1642 	count_vm_events(PGACTIVATE, pgactivate);
1643 
1644 	if (plug)
1645 		swap_write_unplug(plug);
1646 	return nr_reclaimed;
1647 }
1648 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1649 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1650 					   struct list_head *folio_list)
1651 {
1652 	struct scan_control sc = {
1653 		.gfp_mask = GFP_KERNEL,
1654 		.may_unmap = 1,
1655 	};
1656 	struct reclaim_stat stat;
1657 	unsigned int nr_reclaimed;
1658 	struct folio *folio, *next;
1659 	LIST_HEAD(clean_folios);
1660 	unsigned int noreclaim_flag;
1661 
1662 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1663 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1664 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1665 		    !folio_test_unevictable(folio)) {
1666 			folio_clear_active(folio);
1667 			list_move(&folio->lru, &clean_folios);
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * We should be safe here since we are only dealing with file pages and
1673 	 * we are not kswapd and therefore cannot write dirty file pages. But
1674 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1675 	 * change in the future.
1676 	 */
1677 	noreclaim_flag = memalloc_noreclaim_save();
1678 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1679 					&stat, true);
1680 	memalloc_noreclaim_restore(noreclaim_flag);
1681 
1682 	list_splice(&clean_folios, folio_list);
1683 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1684 			    -(long)nr_reclaimed);
1685 	/*
1686 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1687 	 * they will rotate back to anonymous LRU in the end if it failed to
1688 	 * discard so isolated count will be mismatched.
1689 	 * Compensate the isolated count for both LRU lists.
1690 	 */
1691 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1692 			    stat.nr_lazyfree_fail);
1693 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1694 			    -(long)stat.nr_lazyfree_fail);
1695 	return nr_reclaimed;
1696 }
1697 
1698 /*
1699  * Update LRU sizes after isolating pages. The LRU size updates must
1700  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1701  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1702 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1703 			enum lru_list lru, unsigned long *nr_zone_taken)
1704 {
1705 	int zid;
1706 
1707 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 		if (!nr_zone_taken[zid])
1709 			continue;
1710 
1711 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1712 	}
1713 
1714 }
1715 
1716 #ifdef CONFIG_CMA
1717 /*
1718  * It is waste of effort to scan and reclaim CMA pages if it is not available
1719  * for current allocation context. Kswapd can not be enrolled as it can not
1720  * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1721  */
skip_cma(struct folio * folio,struct scan_control * sc)1722 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1723 {
1724 	return !current_is_kswapd() &&
1725 			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1726 			get_pageblock_migratetype(&folio->page) == MIGRATE_CMA;
1727 }
1728 #else
skip_cma(struct folio * folio,struct scan_control * sc)1729 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1730 {
1731 	return false;
1732 }
1733 #endif
1734 
1735 /*
1736  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1737  *
1738  * lruvec->lru_lock is heavily contended.  Some of the functions that
1739  * shrink the lists perform better by taking out a batch of pages
1740  * and working on them outside the LRU lock.
1741  *
1742  * For pagecache intensive workloads, this function is the hottest
1743  * spot in the kernel (apart from copy_*_user functions).
1744  *
1745  * Lru_lock must be held before calling this function.
1746  *
1747  * @nr_to_scan:	The number of eligible pages to look through on the list.
1748  * @lruvec:	The LRU vector to pull pages from.
1749  * @dst:	The temp list to put pages on to.
1750  * @nr_scanned:	The number of pages that were scanned.
1751  * @sc:		The scan_control struct for this reclaim session
1752  * @lru:	LRU list id for isolating
1753  *
1754  * returns how many pages were moved onto *@dst.
1755  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1756 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1757 		struct lruvec *lruvec, struct list_head *dst,
1758 		unsigned long *nr_scanned, struct scan_control *sc,
1759 		enum lru_list lru)
1760 {
1761 	struct list_head *src = &lruvec->lists[lru];
1762 	unsigned long nr_taken = 0;
1763 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1764 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1765 	unsigned long skipped = 0;
1766 	unsigned long scan, total_scan, nr_pages;
1767 	LIST_HEAD(folios_skipped);
1768 	unsigned long nr_scanned_before = *nr_scanned;
1769 
1770 	trace_android_vh_mm_isolate_priv_lru(nr_to_scan, lruvec, lru, dst, sc->reclaim_idx,
1771 					     sc->may_unmap, nr_scanned, &nr_taken);
1772 	if (*nr_scanned != nr_scanned_before)
1773 		return nr_taken;
1774 
1775 	total_scan = 0;
1776 	scan = 0;
1777 	while (scan < nr_to_scan && !list_empty(src)) {
1778 		struct list_head *move_to = src;
1779 		struct folio *folio;
1780 
1781 		folio = lru_to_folio(src);
1782 		prefetchw_prev_lru_folio(folio, src, flags);
1783 
1784 		nr_pages = folio_nr_pages(folio);
1785 		total_scan += nr_pages;
1786 
1787 		if (folio_zonenum(folio) > sc->reclaim_idx ||
1788 				skip_cma(folio, sc)) {
1789 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1790 			move_to = &folios_skipped;
1791 			goto move;
1792 		}
1793 
1794 		/*
1795 		 * Do not count skipped folios because that makes the function
1796 		 * return with no isolated folios if the LRU mostly contains
1797 		 * ineligible folios.  This causes the VM to not reclaim any
1798 		 * folios, triggering a premature OOM.
1799 		 * Account all pages in a folio.
1800 		 */
1801 		scan += nr_pages;
1802 
1803 		if (!folio_test_lru(folio))
1804 			goto move;
1805 		if (!sc->may_unmap && folio_mapped(folio))
1806 			goto move;
1807 
1808 		/*
1809 		 * Be careful not to clear the lru flag until after we're
1810 		 * sure the folio is not being freed elsewhere -- the
1811 		 * folio release code relies on it.
1812 		 */
1813 		if (unlikely(!folio_try_get(folio)))
1814 			goto move;
1815 
1816 		if (!folio_test_clear_lru(folio)) {
1817 			/* Another thread is already isolating this folio */
1818 			folio_put(folio);
1819 			goto move;
1820 		}
1821 
1822 		nr_taken += nr_pages;
1823 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1824 		move_to = dst;
1825 move:
1826 		list_move(&folio->lru, move_to);
1827 	}
1828 
1829 	/*
1830 	 * Splice any skipped folios to the start of the LRU list. Note that
1831 	 * this disrupts the LRU order when reclaiming for lower zones but
1832 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1833 	 * scanning would soon rescan the same folios to skip and waste lots
1834 	 * of cpu cycles.
1835 	 */
1836 	if (!list_empty(&folios_skipped)) {
1837 		int zid;
1838 
1839 		list_splice(&folios_skipped, src);
1840 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1841 			if (!nr_skipped[zid])
1842 				continue;
1843 
1844 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1845 			skipped += nr_skipped[zid];
1846 		}
1847 	}
1848 	*nr_scanned = total_scan;
1849 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1850 				    total_scan, skipped, nr_taken, lru);
1851 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1852 	return nr_taken;
1853 }
1854 
1855 /**
1856  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1857  * @folio: Folio to isolate from its LRU list.
1858  *
1859  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1860  * corresponding to whatever LRU list the folio was on.
1861  *
1862  * The folio will have its LRU flag cleared.  If it was found on the
1863  * active list, it will have the Active flag set.  If it was found on the
1864  * unevictable list, it will have the Unevictable flag set.  These flags
1865  * may need to be cleared by the caller before letting the page go.
1866  *
1867  * Context:
1868  *
1869  * (1) Must be called with an elevated refcount on the folio. This is a
1870  *     fundamental difference from isolate_lru_folios() (which is called
1871  *     without a stable reference).
1872  * (2) The lru_lock must not be held.
1873  * (3) Interrupts must be enabled.
1874  *
1875  * Return: true if the folio was removed from an LRU list.
1876  * false if the folio was not on an LRU list.
1877  */
folio_isolate_lru(struct folio * folio)1878 bool folio_isolate_lru(struct folio *folio)
1879 {
1880 	bool ret = false;
1881 
1882 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1883 
1884 	if (folio_test_clear_lru(folio)) {
1885 		struct lruvec *lruvec;
1886 
1887 		folio_get(folio);
1888 		lruvec = folio_lruvec_lock_irq(folio);
1889 		lruvec_del_folio(lruvec, folio);
1890 		unlock_page_lruvec_irq(lruvec);
1891 		ret = true;
1892 	}
1893 
1894 	return ret;
1895 }
1896 
1897 /*
1898  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1899  * then get rescheduled. When there are massive number of tasks doing page
1900  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1901  * the LRU list will go small and be scanned faster than necessary, leading to
1902  * unnecessary swapping, thrashing and OOM.
1903  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1904 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1905 		struct scan_control *sc)
1906 {
1907 	unsigned long inactive, isolated;
1908 	bool too_many;
1909 
1910 	if (current_is_kswapd())
1911 		return false;
1912 
1913 	if (!writeback_throttling_sane(sc))
1914 		return false;
1915 
1916 	if (file) {
1917 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1918 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1919 	} else {
1920 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1921 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1922 	}
1923 
1924 	/*
1925 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1926 	 * won't get blocked by normal direct-reclaimers, forming a circular
1927 	 * deadlock.
1928 	 */
1929 	if (gfp_has_io_fs(sc->gfp_mask))
1930 		inactive >>= 3;
1931 
1932 	too_many = isolated > inactive;
1933 
1934 	/* Wake up tasks throttled due to too_many_isolated. */
1935 	if (!too_many)
1936 		wake_throttle_isolated(pgdat);
1937 
1938 	return too_many;
1939 }
1940 
1941 /*
1942  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1943  *
1944  * Returns the number of pages moved to the given lruvec.
1945  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1946 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1947 		struct list_head *list)
1948 {
1949 	int nr_pages, nr_moved = 0;
1950 	struct folio_batch free_folios;
1951 
1952 	folio_batch_init(&free_folios);
1953 	while (!list_empty(list)) {
1954 		struct folio *folio = lru_to_folio(list);
1955 
1956 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1957 		list_del(&folio->lru);
1958 		if (unlikely(!folio_evictable(folio))) {
1959 			spin_unlock_irq(&lruvec->lru_lock);
1960 			folio_putback_lru(folio);
1961 			spin_lock_irq(&lruvec->lru_lock);
1962 			continue;
1963 		}
1964 
1965 		/*
1966 		 * The folio_set_lru needs to be kept here for list integrity.
1967 		 * Otherwise:
1968 		 *   #0 move_folios_to_lru             #1 release_pages
1969 		 *   if (!folio_put_testzero())
1970 		 *				      if (folio_put_testzero())
1971 		 *				        !lru //skip lru_lock
1972 		 *     folio_set_lru()
1973 		 *     list_add(&folio->lru,)
1974 		 *                                        list_add(&folio->lru,)
1975 		 */
1976 		folio_set_lru(folio);
1977 
1978 		if (unlikely(folio_put_testzero(folio))) {
1979 			__folio_clear_lru_flags(folio);
1980 
1981 			folio_unqueue_deferred_split(folio);
1982 			if (folio_batch_add(&free_folios, folio) == 0) {
1983 				spin_unlock_irq(&lruvec->lru_lock);
1984 				mem_cgroup_uncharge_folios(&free_folios);
1985 				free_unref_folios(&free_folios);
1986 				spin_lock_irq(&lruvec->lru_lock);
1987 			}
1988 
1989 			continue;
1990 		}
1991 
1992 		/*
1993 		 * All pages were isolated from the same lruvec (and isolation
1994 		 * inhibits memcg migration).
1995 		 */
1996 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1997 		lruvec_add_folio(lruvec, folio);
1998 		nr_pages = folio_nr_pages(folio);
1999 		nr_moved += nr_pages;
2000 		if (folio_test_active(folio))
2001 			workingset_age_nonresident(lruvec, nr_pages);
2002 	}
2003 
2004 	if (free_folios.nr) {
2005 		spin_unlock_irq(&lruvec->lru_lock);
2006 		mem_cgroup_uncharge_folios(&free_folios);
2007 		free_unref_folios(&free_folios);
2008 		spin_lock_irq(&lruvec->lru_lock);
2009 	}
2010 
2011 	return nr_moved;
2012 }
2013 
2014 /*
2015  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2016  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2017  * we should not throttle.  Otherwise it is safe to do so.
2018  */
current_may_throttle(void)2019 static int current_may_throttle(void)
2020 {
2021 	return !(current->flags & PF_LOCAL_THROTTLE);
2022 }
2023 
2024 /*
2025  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2026  * of reclaimed pages
2027  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2028 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2029 		struct lruvec *lruvec, struct scan_control *sc,
2030 		enum lru_list lru)
2031 {
2032 	LIST_HEAD(folio_list);
2033 	unsigned long nr_scanned = 0;
2034 	unsigned int nr_reclaimed = 0;
2035 	unsigned long nr_taken;
2036 	struct reclaim_stat stat;
2037 	bool file = is_file_lru(lru);
2038 	enum vm_event_item item;
2039 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2040 	bool stalled = false;
2041 
2042 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2043 		if (stalled)
2044 			return 0;
2045 
2046 		/* wait a bit for the reclaimer. */
2047 		stalled = true;
2048 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2049 
2050 		/* We are about to die and free our memory. Return now. */
2051 		if (fatal_signal_pending(current))
2052 			return SWAP_CLUSTER_MAX;
2053 	}
2054 
2055 	lru_add_drain();
2056 
2057 	spin_lock_irq(&lruvec->lru_lock);
2058 
2059 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2060 				     &nr_scanned, sc, lru);
2061 
2062 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2063 	item = PGSCAN_KSWAPD + reclaimer_offset();
2064 	if (!cgroup_reclaim(sc))
2065 		__count_vm_events(item, nr_scanned);
2066 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2067 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2068 
2069 	spin_unlock_irq(&lruvec->lru_lock);
2070 
2071 	if (nr_taken == 0)
2072 		return 0;
2073 
2074 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2075 
2076 	spin_lock_irq(&lruvec->lru_lock);
2077 	move_folios_to_lru(lruvec, &folio_list);
2078 
2079 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
2080 					stat.nr_demoted);
2081 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2082 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2083 	if (!cgroup_reclaim(sc))
2084 		__count_vm_events(item, nr_reclaimed);
2085 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2086 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2087 	spin_unlock_irq(&lruvec->lru_lock);
2088 
2089 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2090 
2091 	/*
2092 	 * If dirty folios are scanned that are not queued for IO, it
2093 	 * implies that flushers are not doing their job. This can
2094 	 * happen when memory pressure pushes dirty folios to the end of
2095 	 * the LRU before the dirty limits are breached and the dirty
2096 	 * data has expired. It can also happen when the proportion of
2097 	 * dirty folios grows not through writes but through memory
2098 	 * pressure reclaiming all the clean cache. And in some cases,
2099 	 * the flushers simply cannot keep up with the allocation
2100 	 * rate. Nudge the flusher threads in case they are asleep.
2101 	 */
2102 	if (stat.nr_unqueued_dirty == nr_taken) {
2103 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2104 		/*
2105 		 * For cgroupv1 dirty throttling is achieved by waking up
2106 		 * the kernel flusher here and later waiting on folios
2107 		 * which are in writeback to finish (see shrink_folio_list()).
2108 		 *
2109 		 * Flusher may not be able to issue writeback quickly
2110 		 * enough for cgroupv1 writeback throttling to work
2111 		 * on a large system.
2112 		 */
2113 		if (!writeback_throttling_sane(sc))
2114 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2115 	}
2116 
2117 	sc->nr.dirty += stat.nr_dirty;
2118 	sc->nr.congested += stat.nr_congested;
2119 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2120 	sc->nr.writeback += stat.nr_writeback;
2121 	sc->nr.immediate += stat.nr_immediate;
2122 	sc->nr.taken += nr_taken;
2123 	if (file)
2124 		sc->nr.file_taken += nr_taken;
2125 
2126 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2127 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2128 	return nr_reclaimed;
2129 }
2130 
2131 /*
2132  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2133  *
2134  * We move them the other way if the folio is referenced by one or more
2135  * processes.
2136  *
2137  * If the folios are mostly unmapped, the processing is fast and it is
2138  * appropriate to hold lru_lock across the whole operation.  But if
2139  * the folios are mapped, the processing is slow (folio_referenced()), so
2140  * we should drop lru_lock around each folio.  It's impossible to balance
2141  * this, so instead we remove the folios from the LRU while processing them.
2142  * It is safe to rely on the active flag against the non-LRU folios in here
2143  * because nobody will play with that bit on a non-LRU folio.
2144  *
2145  * The downside is that we have to touch folio->_refcount against each folio.
2146  * But we had to alter folio->flags anyway.
2147  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2148 static void shrink_active_list(unsigned long nr_to_scan,
2149 			       struct lruvec *lruvec,
2150 			       struct scan_control *sc,
2151 			       enum lru_list lru)
2152 {
2153 	unsigned long nr_taken;
2154 	unsigned long nr_scanned = 0;
2155 	unsigned long vm_flags;
2156 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2157 	LIST_HEAD(l_active);
2158 	LIST_HEAD(l_inactive);
2159 	unsigned nr_deactivate, nr_activate;
2160 	unsigned nr_rotated = 0;
2161 	bool file = is_file_lru(lru);
2162 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2163 	int should_protect = 0;
2164 	bool bypass = false;
2165 
2166 	lru_add_drain();
2167 
2168 	spin_lock_irq(&lruvec->lru_lock);
2169 
2170 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2171 				     &nr_scanned, sc, lru);
2172 
2173 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2174 
2175 	if (!cgroup_reclaim(sc))
2176 		__count_vm_events(PGREFILL, nr_scanned);
2177 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2178 
2179 	spin_unlock_irq(&lruvec->lru_lock);
2180 
2181 	while (!list_empty(&l_hold)) {
2182 		struct folio *folio;
2183 
2184 		cond_resched();
2185 		folio = lru_to_folio(&l_hold);
2186 		list_del(&folio->lru);
2187 
2188 		if (unlikely(!folio_evictable(folio))) {
2189 			folio_putback_lru(folio);
2190 			continue;
2191 		}
2192 
2193 		if (unlikely(buffer_heads_over_limit)) {
2194 			if (folio_needs_release(folio) &&
2195 			    folio_trylock(folio)) {
2196 				filemap_release_folio(folio, 0);
2197 				folio_unlock(folio);
2198 			}
2199 		}
2200 
2201 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
2202 		trace_android_vh_page_should_be_protected(folio, sc->nr_scanned,
2203 			sc->priority, &sc->android_vendor_data1, &should_protect);
2204 #endif
2205 		if (unlikely(should_protect)) {
2206 			nr_rotated += folio_nr_pages(folio);
2207 			list_add(&folio->lru, &l_active);
2208 			continue;
2209 		}
2210 
2211 		trace_android_vh_page_referenced_check_bypass(folio, nr_to_scan, lru, &bypass);
2212 		if (bypass)
2213 			goto skip_folio_referenced;
2214 
2215 		/* Referenced or rmap lock contention: rotate */
2216 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2217 				     &vm_flags) != 0) {
2218 			/*
2219 			 * Identify referenced, file-backed active folios and
2220 			 * give them one more trip around the active list. So
2221 			 * that executable code get better chances to stay in
2222 			 * memory under moderate memory pressure.  Anon folios
2223 			 * are not likely to be evicted by use-once streaming
2224 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2225 			 * so we ignore them here.
2226 			 */
2227 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2228 				nr_rotated += folio_nr_pages(folio);
2229 				list_add(&folio->lru, &l_active);
2230 				continue;
2231 			}
2232 		}
2233 
2234 skip_folio_referenced:
2235 		folio_clear_active(folio);	/* we are de-activating */
2236 		folio_set_workingset(folio);
2237 		list_add(&folio->lru, &l_inactive);
2238 	}
2239 
2240 	/*
2241 	 * Move folios back to the lru list.
2242 	 */
2243 	spin_lock_irq(&lruvec->lru_lock);
2244 
2245 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2246 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2247 
2248 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2249 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2250 
2251 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2252 	spin_unlock_irq(&lruvec->lru_lock);
2253 
2254 	if (nr_rotated)
2255 		lru_note_cost(lruvec, file, 0, nr_rotated);
2256 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2257 			nr_deactivate, nr_rotated, sc->priority, file);
2258 }
2259 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,void * private)2260 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2261 				      struct pglist_data *pgdat,
2262 				      void *private)
2263 {
2264 	struct reclaim_stat dummy_stat;
2265 	unsigned int nr_reclaimed;
2266 	struct folio *folio;
2267 	struct scan_control sc = {
2268 		.gfp_mask = GFP_KERNEL,
2269 		.may_writepage = 1,
2270 		.may_unmap = 1,
2271 		.may_swap = 1,
2272 		.no_demotion = 1,
2273 	};
2274 
2275 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true);
2276 	if (private) {
2277 		trace_android_rvh_reclaim_folio_list(folio_list, private);
2278 	} else {
2279 		while (!list_empty(folio_list)) {
2280 			folio = lru_to_folio(folio_list);
2281 			list_del(&folio->lru);
2282 			folio_putback_lru(folio);
2283 		}
2284 	}
2285 
2286 	return nr_reclaimed;
2287 }
2288 
__reclaim_pages(struct list_head * folio_list,void * private)2289 unsigned long __reclaim_pages(struct list_head *folio_list, void *private)
2290 {
2291 	int nid;
2292 	unsigned int nr_reclaimed = 0;
2293 	LIST_HEAD(node_folio_list);
2294 	unsigned int noreclaim_flag;
2295 
2296 	if (list_empty(folio_list))
2297 		return nr_reclaimed;
2298 
2299 	noreclaim_flag = memalloc_noreclaim_save();
2300 
2301 	nid = folio_nid(lru_to_folio(folio_list));
2302 	do {
2303 		struct folio *folio = lru_to_folio(folio_list);
2304 
2305 		if (nid == folio_nid(folio)) {
2306 			folio_clear_active(folio);
2307 			list_move(&folio->lru, &node_folio_list);
2308 			continue;
2309 		}
2310 
2311 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid),  private);
2312 		nid = folio_nid(lru_to_folio(folio_list));
2313 	} while (!list_empty(folio_list));
2314 
2315 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid), private);
2316 
2317 	memalloc_noreclaim_restore(noreclaim_flag);
2318 
2319 	return nr_reclaimed;
2320 }
2321 
reclaim_pages(struct list_head * folio_list)2322 unsigned long reclaim_pages(struct list_head *folio_list)
2323 {
2324 	return __reclaim_pages(folio_list, NULL);
2325 }
2326 EXPORT_SYMBOL_GPL(reclaim_pages);
2327 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2328 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2329 				 struct lruvec *lruvec, struct scan_control *sc)
2330 {
2331 	if (is_active_lru(lru)) {
2332 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2333 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2334 		else
2335 			sc->skipped_deactivate = 1;
2336 		return 0;
2337 	}
2338 
2339 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2340 }
2341 
2342 /*
2343  * The inactive anon list should be small enough that the VM never has
2344  * to do too much work.
2345  *
2346  * The inactive file list should be small enough to leave most memory
2347  * to the established workingset on the scan-resistant active list,
2348  * but large enough to avoid thrashing the aggregate readahead window.
2349  *
2350  * Both inactive lists should also be large enough that each inactive
2351  * folio has a chance to be referenced again before it is reclaimed.
2352  *
2353  * If that fails and refaulting is observed, the inactive list grows.
2354  *
2355  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2356  * on this LRU, maintained by the pageout code. An inactive_ratio
2357  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2358  *
2359  * total     target    max
2360  * memory    ratio     inactive
2361  * -------------------------------------
2362  *   10MB       1         5MB
2363  *  100MB       1        50MB
2364  *    1GB       3       250MB
2365  *   10GB      10       0.9GB
2366  *  100GB      31         3GB
2367  *    1TB     101        10GB
2368  *   10TB     320        32GB
2369  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2370 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2371 {
2372 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2373 	unsigned long inactive, active;
2374 	unsigned long inactive_ratio;
2375 	unsigned long gb;
2376 
2377 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2378 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2379 
2380 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2381 	if (gb)
2382 		inactive_ratio = int_sqrt(10 * gb);
2383 	else
2384 		inactive_ratio = 1;
2385 
2386 	return inactive * inactive_ratio < active;
2387 }
2388 
customize_sc_file_is_tiny(struct scan_control * sc)2389 static void customize_sc_file_is_tiny(struct scan_control *sc)
2390 {
2391 	bool file_is_tiny = sc->file_is_tiny;
2392 
2393 	trace_android_vh_mm_customize_file_is_tiny(sc->may_swap, sc->order,
2394 						   sc->reclaim_idx, &file_is_tiny);
2395 	sc->file_is_tiny = file_is_tiny;
2396 }
2397 
2398 enum scan_balance {
2399 	SCAN_EQUAL,
2400 	SCAN_FRACT,
2401 	SCAN_ANON,
2402 	SCAN_FILE,
2403 };
2404 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2405 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2406 {
2407 	unsigned long file;
2408 	struct lruvec *target_lruvec;
2409 
2410 	if (lru_gen_enabled())
2411 		return;
2412 
2413 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2414 
2415 	/*
2416 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2417 	 * most accurate stats here. We may switch to regular stats flushing
2418 	 * in the future once it is cheap enough.
2419 	 */
2420 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2421 
2422 	/*
2423 	 * Determine the scan balance between anon and file LRUs.
2424 	 */
2425 	spin_lock_irq(&target_lruvec->lru_lock);
2426 	sc->anon_cost = target_lruvec->anon_cost;
2427 	sc->file_cost = target_lruvec->file_cost;
2428 	spin_unlock_irq(&target_lruvec->lru_lock);
2429 
2430 	/*
2431 	 * Target desirable inactive:active list ratios for the anon
2432 	 * and file LRU lists.
2433 	 */
2434 	if (!sc->force_deactivate) {
2435 		unsigned long refaults;
2436 
2437 		/*
2438 		 * When refaults are being observed, it means a new
2439 		 * workingset is being established. Deactivate to get
2440 		 * rid of any stale active pages quickly.
2441 		 */
2442 		refaults = lruvec_page_state(target_lruvec,
2443 				WORKINGSET_ACTIVATE_ANON);
2444 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2445 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2446 			sc->may_deactivate |= DEACTIVATE_ANON;
2447 		else
2448 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2449 
2450 		refaults = lruvec_page_state(target_lruvec,
2451 				WORKINGSET_ACTIVATE_FILE);
2452 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2453 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2454 			sc->may_deactivate |= DEACTIVATE_FILE;
2455 		else
2456 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2457 	} else
2458 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2459 
2460 	/*
2461 	 * If we have plenty of inactive file pages that aren't
2462 	 * thrashing, try to reclaim those first before touching
2463 	 * anonymous pages.
2464 	 */
2465 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2466 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2467 	    !sc->no_cache_trim_mode)
2468 		sc->cache_trim_mode = 1;
2469 	else
2470 		sc->cache_trim_mode = 0;
2471 
2472 	/*
2473 	 * Prevent the reclaimer from falling into the cache trap: as
2474 	 * cache pages start out inactive, every cache fault will tip
2475 	 * the scan balance towards the file LRU.  And as the file LRU
2476 	 * shrinks, so does the window for rotation from references.
2477 	 * This means we have a runaway feedback loop where a tiny
2478 	 * thrashing file LRU becomes infinitely more attractive than
2479 	 * anon pages.  Try to detect this based on file LRU size.
2480 	 */
2481 	if (!cgroup_reclaim(sc)) {
2482 		unsigned long total_high_wmark = 0;
2483 		unsigned long free, anon;
2484 		int z;
2485 
2486 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2487 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2488 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2489 
2490 		for (z = 0; z < MAX_NR_ZONES; z++) {
2491 			struct zone *zone = &pgdat->node_zones[z];
2492 
2493 			if (!managed_zone(zone))
2494 				continue;
2495 
2496 			total_high_wmark += high_wmark_pages(zone);
2497 		}
2498 
2499 		/*
2500 		 * Consider anon: if that's low too, this isn't a
2501 		 * runaway file reclaim problem, but rather just
2502 		 * extreme pressure. Reclaim as per usual then.
2503 		 */
2504 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2505 
2506 		sc->file_is_tiny =
2507 			file + free <= total_high_wmark &&
2508 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2509 			anon >> sc->priority;
2510 	}
2511 
2512 	customize_sc_file_is_tiny(sc);
2513 }
2514 
2515 /*
2516  * Determine how aggressively the anon and file LRU lists should be
2517  * scanned.
2518  *
2519  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2520  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2521  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2522 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2523 			   unsigned long *nr)
2524 {
2525 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2526 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2527 	unsigned long anon_cost, file_cost, total_cost;
2528 	int swappiness = sc_swappiness(sc, memcg);
2529 	u64 fraction[ANON_AND_FILE];
2530 	u64 denominator = 0;	/* gcc */
2531 	enum scan_balance scan_balance;
2532 	unsigned long ap, fp;
2533 	enum lru_list lru;
2534 	bool balance_anon_file_reclaim = false;
2535 
2536 	/* If we have no swap space, do not bother scanning anon folios. */
2537 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2538 		scan_balance = SCAN_FILE;
2539 		goto out;
2540 	}
2541 
2542 
2543 	trace_android_vh_tune_swappiness(&swappiness);
2544 	/*
2545 	 * Global reclaim will swap to prevent OOM even with no
2546 	 * swappiness, but memcg users want to use this knob to
2547 	 * disable swapping for individual groups completely when
2548 	 * using the memory controller's swap limit feature would be
2549 	 * too expensive.
2550 	 */
2551 	if (cgroup_reclaim(sc) && !swappiness) {
2552 		scan_balance = SCAN_FILE;
2553 		goto out;
2554 	}
2555 
2556 	/*
2557 	 * Do not apply any pressure balancing cleverness when the
2558 	 * system is close to OOM, scan both anon and file equally
2559 	 * (unless the swappiness setting disagrees with swapping).
2560 	 */
2561 	if (!sc->priority && swappiness) {
2562 		scan_balance = SCAN_EQUAL;
2563 		goto out;
2564 	}
2565 
2566 	/*
2567 	 * If the system is almost out of file pages, force-scan anon.
2568 	 */
2569 	if (sc->file_is_tiny) {
2570 		scan_balance = SCAN_ANON;
2571 		goto out;
2572 	}
2573 
2574 	trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
2575 
2576 	/*
2577 	 * If there is enough inactive page cache, we do not reclaim
2578 	 * anything from the anonymous working right now. But when balancing
2579 	 * anon and page cache files for reclaim, allow swapping of anon pages
2580 	 * even if there are a number of inactive file cache pages.
2581 	 */
2582 	if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
2583 		scan_balance = SCAN_FILE;
2584 		goto out;
2585 	}
2586 
2587 	scan_balance = SCAN_FRACT;
2588 	/*
2589 	 * Calculate the pressure balance between anon and file pages.
2590 	 *
2591 	 * The amount of pressure we put on each LRU is inversely
2592 	 * proportional to the cost of reclaiming each list, as
2593 	 * determined by the share of pages that are refaulting, times
2594 	 * the relative IO cost of bringing back a swapped out
2595 	 * anonymous page vs reloading a filesystem page (swappiness).
2596 	 *
2597 	 * Although we limit that influence to ensure no list gets
2598 	 * left behind completely: at least a third of the pressure is
2599 	 * applied, before swappiness.
2600 	 *
2601 	 * With swappiness at 100, anon and file have equal IO cost.
2602 	 */
2603 	total_cost = sc->anon_cost + sc->file_cost;
2604 	anon_cost = total_cost + sc->anon_cost;
2605 	file_cost = total_cost + sc->file_cost;
2606 	total_cost = anon_cost + file_cost;
2607 
2608 	ap = swappiness * (total_cost + 1);
2609 	ap /= anon_cost + 1;
2610 
2611 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2612 	fp /= file_cost + 1;
2613 
2614 	fraction[0] = ap;
2615 	fraction[1] = fp;
2616 	denominator = ap + fp;
2617 out:
2618 	trace_android_vh_tune_scan_type(&scan_balance);
2619 	for_each_evictable_lru(lru) {
2620 		bool file = is_file_lru(lru);
2621 		unsigned long lruvec_size;
2622 		unsigned long low, min;
2623 		unsigned long scan;
2624 
2625 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2626 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2627 				      &min, &low);
2628 
2629 		if (min || low) {
2630 			/*
2631 			 * Scale a cgroup's reclaim pressure by proportioning
2632 			 * its current usage to its memory.low or memory.min
2633 			 * setting.
2634 			 *
2635 			 * This is important, as otherwise scanning aggression
2636 			 * becomes extremely binary -- from nothing as we
2637 			 * approach the memory protection threshold, to totally
2638 			 * nominal as we exceed it.  This results in requiring
2639 			 * setting extremely liberal protection thresholds. It
2640 			 * also means we simply get no protection at all if we
2641 			 * set it too low, which is not ideal.
2642 			 *
2643 			 * If there is any protection in place, we reduce scan
2644 			 * pressure by how much of the total memory used is
2645 			 * within protection thresholds.
2646 			 *
2647 			 * There is one special case: in the first reclaim pass,
2648 			 * we skip over all groups that are within their low
2649 			 * protection. If that fails to reclaim enough pages to
2650 			 * satisfy the reclaim goal, we come back and override
2651 			 * the best-effort low protection. However, we still
2652 			 * ideally want to honor how well-behaved groups are in
2653 			 * that case instead of simply punishing them all
2654 			 * equally. As such, we reclaim them based on how much
2655 			 * memory they are using, reducing the scan pressure
2656 			 * again by how much of the total memory used is under
2657 			 * hard protection.
2658 			 */
2659 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2660 			unsigned long protection;
2661 
2662 			/* memory.low scaling, make sure we retry before OOM */
2663 			if (!sc->memcg_low_reclaim && low > min) {
2664 				protection = low;
2665 				sc->memcg_low_skipped = 1;
2666 			} else {
2667 				protection = min;
2668 			}
2669 
2670 			/* Avoid TOCTOU with earlier protection check */
2671 			cgroup_size = max(cgroup_size, protection);
2672 
2673 			scan = lruvec_size - lruvec_size * protection /
2674 				(cgroup_size + 1);
2675 
2676 			/*
2677 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2678 			 * reclaim moving forwards, avoiding decrementing
2679 			 * sc->priority further than desirable.
2680 			 */
2681 			scan = max(scan, SWAP_CLUSTER_MAX);
2682 		} else {
2683 			scan = lruvec_size;
2684 		}
2685 
2686 		scan >>= sc->priority;
2687 
2688 		/*
2689 		 * If the cgroup's already been deleted, make sure to
2690 		 * scrape out the remaining cache.
2691 		 */
2692 		if (!scan && !mem_cgroup_online(memcg))
2693 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2694 
2695 		switch (scan_balance) {
2696 		case SCAN_EQUAL:
2697 			/* Scan lists relative to size */
2698 			break;
2699 		case SCAN_FRACT:
2700 			/*
2701 			 * Scan types proportional to swappiness and
2702 			 * their relative recent reclaim efficiency.
2703 			 * Make sure we don't miss the last page on
2704 			 * the offlined memory cgroups because of a
2705 			 * round-off error.
2706 			 */
2707 			scan = mem_cgroup_online(memcg) ?
2708 			       div64_u64(scan * fraction[file], denominator) :
2709 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2710 						  denominator);
2711 			break;
2712 		case SCAN_FILE:
2713 		case SCAN_ANON:
2714 			/* Scan one type exclusively */
2715 			if ((scan_balance == SCAN_FILE) != file)
2716 				scan = 0;
2717 			break;
2718 		default:
2719 			/* Look ma, no brain */
2720 			BUG();
2721 		}
2722 
2723 		nr[lru] = scan;
2724 	}
2725 }
2726 
2727 /*
2728  * Anonymous LRU management is a waste if there is
2729  * ultimately no way to reclaim the memory.
2730  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2731 static bool can_age_anon_pages(struct pglist_data *pgdat,
2732 			       struct scan_control *sc)
2733 {
2734 	/* Aging the anon LRU is valuable if swap is present: */
2735 	if (total_swap_pages > 0)
2736 		return true;
2737 
2738 	/* Also valuable if anon pages can be demoted: */
2739 	return can_demote(pgdat->node_id, sc);
2740 }
2741 
2742 #ifdef CONFIG_LRU_GEN
2743 
2744 #ifdef CONFIG_LRU_GEN_ENABLED
2745 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2746 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2747 #else
2748 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2749 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2750 #endif
2751 
should_walk_mmu(void)2752 static bool should_walk_mmu(void)
2753 {
2754 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2755 }
2756 
should_clear_pmd_young(void)2757 static bool should_clear_pmd_young(void)
2758 {
2759 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2760 }
2761 
2762 /******************************************************************************
2763  *                          shorthand helpers
2764  ******************************************************************************/
2765 
2766 #define DEFINE_MAX_SEQ(lruvec)						\
2767 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2768 
2769 #define DEFINE_MIN_SEQ(lruvec)						\
2770 	unsigned long min_seq[ANON_AND_FILE] = {			\
2771 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2772 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2773 	}
2774 
2775 #define evictable_min_seq(min_seq, swappiness)				\
2776 	min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS])
2777 
2778 #define for_each_gen_type_zone(gen, type, zone)				\
2779 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2780 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2781 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2782 
2783 #define for_each_evictable_type(type, swappiness)			\
2784 	for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++)
2785 
2786 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2787 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2788 
get_lruvec(struct mem_cgroup * memcg,int nid)2789 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2790 {
2791 	struct pglist_data *pgdat = NODE_DATA(nid);
2792 
2793 #ifdef CONFIG_MEMCG
2794 	if (memcg) {
2795 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2796 
2797 		/* see the comment in mem_cgroup_lruvec() */
2798 		if (!lruvec->pgdat)
2799 			lruvec->pgdat = pgdat;
2800 
2801 		return lruvec;
2802 	}
2803 #endif
2804 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2805 
2806 	return &pgdat->__lruvec;
2807 }
2808 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2809 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2810 {
2811 	int swappiness;
2812 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2813 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2814 
2815 	if (!sc->may_swap)
2816 		return 0;
2817 
2818 	if (!can_demote(pgdat->node_id, sc) &&
2819 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2820 		return 0;
2821 
2822 	swappiness = sc_swappiness(sc, memcg);
2823 	trace_android_vh_tune_swappiness(&swappiness);
2824 
2825 	return swappiness;
2826 }
2827 
get_nr_gens(struct lruvec * lruvec,int type)2828 static int get_nr_gens(struct lruvec *lruvec, int type)
2829 {
2830 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2831 }
2832 
seq_is_valid(struct lruvec * lruvec)2833 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2834 {
2835 	int type;
2836 
2837 	for (type = 0; type < ANON_AND_FILE; type++) {
2838 		int n = get_nr_gens(lruvec, type);
2839 
2840 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2841 			return false;
2842 	}
2843 
2844 	return true;
2845 }
2846 
2847 /******************************************************************************
2848  *                          Bloom filters
2849  ******************************************************************************/
2850 
2851 /*
2852  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2853  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2854  * bits in a bitmap, k is the number of hash functions and n is the number of
2855  * inserted items.
2856  *
2857  * Page table walkers use one of the two filters to reduce their search space.
2858  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2859  * aging uses the double-buffering technique to flip to the other filter each
2860  * time it produces a new generation. For non-leaf entries that have enough
2861  * leaf entries, the aging carries them over to the next generation in
2862  * walk_pmd_range(); the eviction also report them when walking the rmap
2863  * in lru_gen_look_around().
2864  *
2865  * For future optimizations:
2866  * 1. It's not necessary to keep both filters all the time. The spare one can be
2867  *    freed after the RCU grace period and reallocated if needed again.
2868  * 2. And when reallocating, it's worth scaling its size according to the number
2869  *    of inserted entries in the other filter, to reduce the memory overhead on
2870  *    small systems and false positives on large systems.
2871  * 3. Jenkins' hash function is an alternative to Knuth's.
2872  */
2873 #define BLOOM_FILTER_SHIFT	15
2874 
filter_gen_from_seq(unsigned long seq)2875 static inline int filter_gen_from_seq(unsigned long seq)
2876 {
2877 	return seq % NR_BLOOM_FILTERS;
2878 }
2879 
get_item_key(void * item,int * key)2880 static void get_item_key(void *item, int *key)
2881 {
2882 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2883 
2884 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2885 
2886 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2887 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2888 }
2889 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2890 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2891 			      void *item)
2892 {
2893 	int key[2];
2894 	unsigned long *filter;
2895 	int gen = filter_gen_from_seq(seq);
2896 
2897 	filter = READ_ONCE(mm_state->filters[gen]);
2898 	if (!filter)
2899 		return true;
2900 
2901 	get_item_key(item, key);
2902 
2903 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2904 }
2905 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2906 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2907 				void *item)
2908 {
2909 	int key[2];
2910 	unsigned long *filter;
2911 	int gen = filter_gen_from_seq(seq);
2912 
2913 	filter = READ_ONCE(mm_state->filters[gen]);
2914 	if (!filter)
2915 		return;
2916 
2917 	get_item_key(item, key);
2918 
2919 	if (!test_bit(key[0], filter))
2920 		set_bit(key[0], filter);
2921 	if (!test_bit(key[1], filter))
2922 		set_bit(key[1], filter);
2923 }
2924 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2925 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2926 {
2927 	unsigned long *filter;
2928 	int gen = filter_gen_from_seq(seq);
2929 
2930 	filter = mm_state->filters[gen];
2931 	if (filter) {
2932 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2933 		return;
2934 	}
2935 
2936 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2937 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2938 	WRITE_ONCE(mm_state->filters[gen], filter);
2939 }
2940 
2941 /******************************************************************************
2942  *                          mm_struct list
2943  ******************************************************************************/
2944 
2945 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2946 
get_mm_list(struct mem_cgroup * memcg)2947 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2948 {
2949 	static struct lru_gen_mm_list mm_list = {
2950 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2951 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2952 	};
2953 
2954 #ifdef CONFIG_MEMCG
2955 	if (memcg)
2956 		return &memcg->mm_list;
2957 #endif
2958 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2959 
2960 	return &mm_list;
2961 }
2962 
get_mm_state(struct lruvec * lruvec)2963 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2964 {
2965 	return &lruvec->mm_state;
2966 }
2967 
get_next_mm(struct lru_gen_mm_walk * walk)2968 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2969 {
2970 	int key;
2971 	struct mm_struct *mm;
2972 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2973 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2974 
2975 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2976 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2977 
2978 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2979 		return NULL;
2980 
2981 	clear_bit(key, &mm->lru_gen.bitmap);
2982 
2983 	return mmget_not_zero(mm) ? mm : NULL;
2984 }
2985 
lru_gen_add_mm(struct mm_struct * mm)2986 void lru_gen_add_mm(struct mm_struct *mm)
2987 {
2988 	int nid;
2989 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2990 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2991 
2992 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2993 #ifdef CONFIG_MEMCG
2994 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2995 	mm->lru_gen.memcg = memcg;
2996 #endif
2997 	spin_lock(&mm_list->lock);
2998 
2999 	for_each_node_state(nid, N_MEMORY) {
3000 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3001 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3002 
3003 		/* the first addition since the last iteration */
3004 		if (mm_state->tail == &mm_list->fifo)
3005 			mm_state->tail = &mm->lru_gen.list;
3006 	}
3007 
3008 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3009 
3010 	spin_unlock(&mm_list->lock);
3011 }
3012 
lru_gen_del_mm(struct mm_struct * mm)3013 void lru_gen_del_mm(struct mm_struct *mm)
3014 {
3015 	int nid;
3016 	struct lru_gen_mm_list *mm_list;
3017 	struct mem_cgroup *memcg = NULL;
3018 
3019 	if (list_empty(&mm->lru_gen.list))
3020 		return;
3021 
3022 #ifdef CONFIG_MEMCG
3023 	memcg = mm->lru_gen.memcg;
3024 #endif
3025 	mm_list = get_mm_list(memcg);
3026 
3027 	spin_lock(&mm_list->lock);
3028 
3029 	for_each_node(nid) {
3030 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3031 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3032 
3033 		/* where the current iteration continues after */
3034 		if (mm_state->head == &mm->lru_gen.list)
3035 			mm_state->head = mm_state->head->prev;
3036 
3037 		/* where the last iteration ended before */
3038 		if (mm_state->tail == &mm->lru_gen.list)
3039 			mm_state->tail = mm_state->tail->next;
3040 	}
3041 
3042 	list_del_init(&mm->lru_gen.list);
3043 
3044 	spin_unlock(&mm_list->lock);
3045 
3046 #ifdef CONFIG_MEMCG
3047 	mem_cgroup_put(mm->lru_gen.memcg);
3048 	mm->lru_gen.memcg = NULL;
3049 #endif
3050 }
3051 
3052 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3053 void lru_gen_migrate_mm(struct mm_struct *mm)
3054 {
3055 	struct mem_cgroup *memcg;
3056 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3057 
3058 	VM_WARN_ON_ONCE(task->mm != mm);
3059 	lockdep_assert_held(&task->alloc_lock);
3060 
3061 	/* for mm_update_next_owner() */
3062 	if (mem_cgroup_disabled())
3063 		return;
3064 
3065 	/* migration can happen before addition */
3066 	if (!mm->lru_gen.memcg)
3067 		return;
3068 
3069 	rcu_read_lock();
3070 	memcg = mem_cgroup_from_task(task);
3071 	rcu_read_unlock();
3072 	if (memcg == mm->lru_gen.memcg)
3073 		return;
3074 
3075 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3076 
3077 	lru_gen_del_mm(mm);
3078 	lru_gen_add_mm(mm);
3079 }
3080 #endif
3081 
3082 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3083 
get_mm_list(struct mem_cgroup * memcg)3084 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3085 {
3086 	return NULL;
3087 }
3088 
get_mm_state(struct lruvec * lruvec)3089 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3090 {
3091 	return NULL;
3092 }
3093 
get_next_mm(struct lru_gen_mm_walk * walk)3094 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3095 {
3096 	return NULL;
3097 }
3098 
3099 #endif
3100 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3101 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3102 {
3103 	int i;
3104 	int hist;
3105 	struct lruvec *lruvec = walk->lruvec;
3106 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3107 
3108 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3109 
3110 	hist = lru_hist_from_seq(walk->seq);
3111 
3112 	for (i = 0; i < NR_MM_STATS; i++) {
3113 		WRITE_ONCE(mm_state->stats[hist][i],
3114 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3115 		walk->mm_stats[i] = 0;
3116 	}
3117 
3118 	if (NR_HIST_GENS > 1 && last) {
3119 		hist = lru_hist_from_seq(walk->seq + 1);
3120 
3121 		for (i = 0; i < NR_MM_STATS; i++)
3122 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3123 	}
3124 }
3125 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3126 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3127 {
3128 	bool first = false;
3129 	bool last = false;
3130 	struct mm_struct *mm = NULL;
3131 	struct lruvec *lruvec = walk->lruvec;
3132 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3133 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3134 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3135 
3136 	/*
3137 	 * mm_state->seq is incremented after each iteration of mm_list. There
3138 	 * are three interesting cases for this page table walker:
3139 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3140 	 *    nothing left to do.
3141 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3142 	 *    so that a fresh set of PTE tables can be recorded.
3143 	 * 3. It ended the current iteration: it needs to reset the mm stats
3144 	 *    counters and tell its caller to increment max_seq.
3145 	 */
3146 	spin_lock(&mm_list->lock);
3147 
3148 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3149 
3150 	if (walk->seq <= mm_state->seq)
3151 		goto done;
3152 
3153 	if (!mm_state->head)
3154 		mm_state->head = &mm_list->fifo;
3155 
3156 	if (mm_state->head == &mm_list->fifo)
3157 		first = true;
3158 
3159 	do {
3160 		mm_state->head = mm_state->head->next;
3161 		if (mm_state->head == &mm_list->fifo) {
3162 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3163 			last = true;
3164 			break;
3165 		}
3166 
3167 		/* force scan for those added after the last iteration */
3168 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3169 			mm_state->tail = mm_state->head->next;
3170 			walk->force_scan = true;
3171 		}
3172 	} while (!(mm = get_next_mm(walk)));
3173 done:
3174 	if (*iter || last)
3175 		reset_mm_stats(walk, last);
3176 
3177 	spin_unlock(&mm_list->lock);
3178 
3179 	if (mm && first)
3180 		reset_bloom_filter(mm_state, walk->seq + 1);
3181 
3182 	if (*iter)
3183 		mmput_async(*iter);
3184 
3185 	*iter = mm;
3186 
3187 	return last;
3188 }
3189 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3190 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3191 {
3192 	bool success = false;
3193 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3194 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3195 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3196 
3197 	spin_lock(&mm_list->lock);
3198 
3199 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3200 
3201 	if (seq > mm_state->seq) {
3202 		mm_state->head = NULL;
3203 		mm_state->tail = NULL;
3204 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3205 		success = true;
3206 	}
3207 
3208 	spin_unlock(&mm_list->lock);
3209 
3210 	return success;
3211 }
3212 
3213 /******************************************************************************
3214  *                          PID controller
3215  ******************************************************************************/
3216 
3217 /*
3218  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3219  *
3220  * The P term is refaulted/(evicted+protected) from a tier in the generation
3221  * currently being evicted; the I term is the exponential moving average of the
3222  * P term over the generations previously evicted, using the smoothing factor
3223  * 1/2; the D term isn't supported.
3224  *
3225  * The setpoint (SP) is always the first tier of one type; the process variable
3226  * (PV) is either any tier of the other type or any other tier of the same
3227  * type.
3228  *
3229  * The error is the difference between the SP and the PV; the correction is to
3230  * turn off protection when SP>PV or turn on protection when SP<PV.
3231  *
3232  * For future optimizations:
3233  * 1. The D term may discount the other two terms over time so that long-lived
3234  *    generations can resist stale information.
3235  */
3236 struct ctrl_pos {
3237 	unsigned long refaulted;
3238 	unsigned long total;
3239 	int gain;
3240 };
3241 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3242 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3243 			  struct ctrl_pos *pos)
3244 {
3245 	int i;
3246 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3247 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3248 
3249 	pos->gain = gain;
3250 	pos->refaulted = pos->total = 0;
3251 
3252 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3253 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3254 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3255 		pos->total += lrugen->avg_total[type][i] +
3256 			      lrugen->protected[hist][type][i] +
3257 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3258 	}
3259 }
3260 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3261 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3262 {
3263 	int hist, tier;
3264 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3265 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3266 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3267 
3268 	lockdep_assert_held(&lruvec->lru_lock);
3269 
3270 	if (!carryover && !clear)
3271 		return;
3272 
3273 	hist = lru_hist_from_seq(seq);
3274 
3275 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3276 		if (carryover) {
3277 			unsigned long sum;
3278 
3279 			sum = lrugen->avg_refaulted[type][tier] +
3280 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3281 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3282 
3283 			sum = lrugen->avg_total[type][tier] +
3284 			      lrugen->protected[hist][type][tier] +
3285 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3286 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3287 		}
3288 
3289 		if (clear) {
3290 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3291 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3292 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3293 		}
3294 	}
3295 }
3296 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3297 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3298 {
3299 	/*
3300 	 * Return true if the PV has a limited number of refaults or a lower
3301 	 * refaulted/total than the SP.
3302 	 */
3303 	return pv->refaulted < MIN_LRU_BATCH ||
3304 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3305 	       (sp->refaulted + 1) * pv->total * pv->gain;
3306 }
3307 
3308 /******************************************************************************
3309  *                          the aging
3310  ******************************************************************************/
3311 
3312 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3313 static int folio_update_gen(struct folio *folio, int gen)
3314 {
3315 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3316 
3317 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3318 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3319 
3320 	/* see the comment on LRU_REFS_FLAGS */
3321 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3322 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3323 		return -1;
3324 	}
3325 
3326 	do {
3327 		/* lru_gen_del_folio() has isolated this page? */
3328 		if (!(old_flags & LRU_GEN_MASK))
3329 			return -1;
3330 
3331 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3332 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3333 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3334 
3335 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3336 }
3337 
3338 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3339 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3340 {
3341 	int type = folio_is_file_lru(folio);
3342 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3343 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3344 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3345 
3346 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3347 
3348 	do {
3349 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3350 		/* folio_update_gen() has promoted this page? */
3351 		if (new_gen >= 0 && new_gen != old_gen)
3352 			return new_gen;
3353 
3354 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3355 
3356 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3357 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3358 		/* for folio_end_writeback() */
3359 		if (reclaiming)
3360 			new_flags |= BIT(PG_reclaim);
3361 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3362 
3363 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3364 
3365 	return new_gen;
3366 }
3367 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3368 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3369 			      int old_gen, int new_gen)
3370 {
3371 	int type = folio_is_file_lru(folio);
3372 	int zone = folio_zonenum(folio);
3373 	int delta = folio_nr_pages(folio);
3374 
3375 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3376 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3377 
3378 	walk->batched++;
3379 
3380 	walk->nr_pages[old_gen][type][zone] -= delta;
3381 	walk->nr_pages[new_gen][type][zone] += delta;
3382 }
3383 
reset_batch_size(struct lru_gen_mm_walk * walk)3384 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3385 {
3386 	int gen, type, zone;
3387 	struct lruvec *lruvec = walk->lruvec;
3388 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3389 
3390 	walk->batched = 0;
3391 
3392 	for_each_gen_type_zone(gen, type, zone) {
3393 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3394 		int delta = walk->nr_pages[gen][type][zone];
3395 
3396 		if (!delta)
3397 			continue;
3398 
3399 		walk->nr_pages[gen][type][zone] = 0;
3400 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3401 			   lrugen->nr_pages[gen][type][zone] + delta);
3402 
3403 		if (lru_gen_is_active(lruvec, gen))
3404 			lru += LRU_ACTIVE;
3405 		__update_lru_size(lruvec, lru, zone, delta);
3406 	}
3407 }
3408 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3409 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3410 {
3411 	struct address_space *mapping;
3412 	struct vm_area_struct *vma = args->vma;
3413 	struct lru_gen_mm_walk *walk = args->private;
3414 
3415 	if (!vma_is_accessible(vma))
3416 		return true;
3417 
3418 	if (is_vm_hugetlb_page(vma))
3419 		return true;
3420 
3421 	if (!vma_has_recency(vma))
3422 		return true;
3423 
3424 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3425 		return true;
3426 
3427 	if (vma == get_gate_vma(vma->vm_mm))
3428 		return true;
3429 
3430 	if (vma_is_anonymous(vma))
3431 		return !walk->swappiness;
3432 
3433 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3434 		return true;
3435 
3436 	mapping = vma->vm_file->f_mapping;
3437 	if (mapping_unevictable(mapping))
3438 		return true;
3439 
3440 	if (shmem_mapping(mapping))
3441 		return !walk->swappiness;
3442 
3443 	if (walk->swappiness > MAX_SWAPPINESS)
3444 		return true;
3445 
3446 	/* to exclude special mappings like dax, etc. */
3447 	return !mapping->a_ops->read_folio;
3448 }
3449 
3450 /*
3451  * Some userspace memory allocators map many single-page VMAs. Instead of
3452  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3453  * table to reduce zigzags and improve cache performance.
3454  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3455 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3456 			 unsigned long *vm_start, unsigned long *vm_end)
3457 {
3458 	unsigned long start = round_up(*vm_end, size);
3459 	unsigned long end = (start | ~mask) + 1;
3460 	VMA_ITERATOR(vmi, args->mm, start);
3461 
3462 	VM_WARN_ON_ONCE(mask & size);
3463 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3464 
3465 	for_each_vma(vmi, args->vma) {
3466 		if (end && end <= args->vma->vm_start)
3467 			return false;
3468 
3469 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3470 			continue;
3471 
3472 		*vm_start = max(start, args->vma->vm_start);
3473 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3474 
3475 		return true;
3476 	}
3477 
3478 	return false;
3479 }
3480 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3481 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3482 				 struct pglist_data *pgdat)
3483 {
3484 	unsigned long pfn = pte_pfn(pte);
3485 
3486 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3487 
3488 	if (!pte_present(pte) || is_zero_pfn(pfn))
3489 		return -1;
3490 
3491 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3492 		return -1;
3493 
3494 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3495 		return -1;
3496 
3497 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3498 		return -1;
3499 
3500 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3501 		return -1;
3502 
3503 	return pfn;
3504 }
3505 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3506 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3507 				 struct pglist_data *pgdat)
3508 {
3509 	unsigned long pfn = pmd_pfn(pmd);
3510 
3511 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3512 
3513 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3514 		return -1;
3515 
3516 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3517 		return -1;
3518 
3519 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3520 		return -1;
3521 
3522 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3523 		return -1;
3524 
3525 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3526 		return -1;
3527 
3528 	return pfn;
3529 }
3530 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3531 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3532 				   struct pglist_data *pgdat)
3533 {
3534 	struct folio *folio = pfn_folio(pfn);
3535 
3536 	if (folio_lru_gen(folio) < 0)
3537 		return NULL;
3538 
3539 	if (folio_nid(folio) != pgdat->node_id)
3540 		return NULL;
3541 
3542 	if (folio_memcg_rcu(folio) != memcg)
3543 		return NULL;
3544 
3545 	return folio;
3546 }
3547 
suitable_to_scan(int total,int young)3548 static bool suitable_to_scan(int total, int young)
3549 {
3550 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3551 
3552 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3553 	return young * n >= total;
3554 }
3555 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3556 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3557 			      int new_gen, bool dirty)
3558 {
3559 	int old_gen;
3560 
3561 	if (!folio)
3562 		return;
3563 
3564 	if (dirty && !folio_test_dirty(folio) &&
3565 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3566 	      !folio_test_swapcache(folio)))
3567 		folio_mark_dirty(folio);
3568 
3569 	if (walk) {
3570 		old_gen = folio_update_gen(folio, new_gen);
3571 		if (old_gen >= 0 && old_gen != new_gen)
3572 			update_batch_size(walk, folio, old_gen, new_gen);
3573 	} else if (lru_gen_set_refs(folio)) {
3574 		old_gen = folio_lru_gen(folio);
3575 		if (old_gen >= 0 && old_gen != new_gen)
3576 			folio_activate(folio);
3577 	}
3578 }
3579 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3580 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3581 			   struct mm_walk *args)
3582 {
3583 	int i;
3584 	bool dirty;
3585 	pte_t *pte;
3586 	spinlock_t *ptl;
3587 	unsigned long addr;
3588 	int total = 0;
3589 	int young = 0;
3590 	struct folio *last = NULL;
3591 	struct lru_gen_mm_walk *walk = args->private;
3592 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3593 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3594 	DEFINE_MAX_SEQ(walk->lruvec);
3595 	int gen = lru_gen_from_seq(max_seq);
3596 	pmd_t pmdval;
3597 
3598 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3599 				       &ptl);
3600 	if (!pte)
3601 		return false;
3602 
3603 	if (!spin_trylock(ptl)) {
3604 		pte_unmap(pte);
3605 		return true;
3606 	}
3607 
3608 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3609 		pte_unmap_unlock(pte, ptl);
3610 		return false;
3611 	}
3612 
3613 	arch_enter_lazy_mmu_mode();
3614 restart:
3615 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3616 		unsigned long pfn;
3617 		struct folio *folio;
3618 		pte_t ptent = ptep_get(pte + i);
3619 
3620 		total++;
3621 		walk->mm_stats[MM_LEAF_TOTAL]++;
3622 
3623 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3624 		if (pfn == -1)
3625 			continue;
3626 
3627 		folio = get_pfn_folio(pfn, memcg, pgdat);
3628 		if (!folio)
3629 			continue;
3630 
3631 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3632 			continue;
3633 
3634 		if (last != folio) {
3635 			walk_update_folio(walk, last, gen, dirty);
3636 
3637 			last = folio;
3638 			dirty = false;
3639 		}
3640 
3641 		if (pte_dirty(ptent))
3642 			dirty = true;
3643 
3644 		young++;
3645 		walk->mm_stats[MM_LEAF_YOUNG]++;
3646 	}
3647 
3648 	walk_update_folio(walk, last, gen, dirty);
3649 	last = NULL;
3650 
3651 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3652 		goto restart;
3653 
3654 	arch_leave_lazy_mmu_mode();
3655 	pte_unmap_unlock(pte, ptl);
3656 
3657 	return suitable_to_scan(total, young);
3658 }
3659 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3660 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3661 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3662 {
3663 	int i;
3664 	bool dirty;
3665 	pmd_t *pmd;
3666 	spinlock_t *ptl;
3667 	struct folio *last = NULL;
3668 	struct lru_gen_mm_walk *walk = args->private;
3669 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3670 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3671 	DEFINE_MAX_SEQ(walk->lruvec);
3672 	int gen = lru_gen_from_seq(max_seq);
3673 
3674 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3675 
3676 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3677 	if (*first == -1) {
3678 		*first = addr;
3679 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3680 		return;
3681 	}
3682 
3683 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3684 	if (i && i <= MIN_LRU_BATCH) {
3685 		__set_bit(i - 1, bitmap);
3686 		return;
3687 	}
3688 
3689 	pmd = pmd_offset(pud, *first);
3690 
3691 	ptl = pmd_lockptr(args->mm, pmd);
3692 	if (!spin_trylock(ptl))
3693 		goto done;
3694 
3695 	arch_enter_lazy_mmu_mode();
3696 
3697 	do {
3698 		unsigned long pfn;
3699 		struct folio *folio;
3700 
3701 		/* don't round down the first address */
3702 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3703 
3704 		if (!pmd_present(pmd[i]))
3705 			goto next;
3706 
3707 		if (!pmd_trans_huge(pmd[i])) {
3708 			if (!walk->force_scan && should_clear_pmd_young() &&
3709 			    !mm_has_notifiers(args->mm))
3710 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3711 			goto next;
3712 		}
3713 
3714 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3715 		if (pfn == -1)
3716 			goto next;
3717 
3718 		folio = get_pfn_folio(pfn, memcg, pgdat);
3719 		if (!folio)
3720 			goto next;
3721 
3722 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3723 			goto next;
3724 
3725 		if (last != folio) {
3726 			walk_update_folio(walk, last, gen, dirty);
3727 
3728 			last = folio;
3729 			dirty = false;
3730 		}
3731 
3732 		if (pmd_dirty(pmd[i]))
3733 			dirty = true;
3734 
3735 		walk->mm_stats[MM_LEAF_YOUNG]++;
3736 next:
3737 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3738 	} while (i <= MIN_LRU_BATCH);
3739 
3740 	walk_update_folio(walk, last, gen, dirty);
3741 
3742 	arch_leave_lazy_mmu_mode();
3743 	spin_unlock(ptl);
3744 done:
3745 	*first = -1;
3746 }
3747 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3748 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3749 			   struct mm_walk *args)
3750 {
3751 	int i;
3752 	pmd_t *pmd;
3753 	unsigned long next;
3754 	unsigned long addr;
3755 	struct vm_area_struct *vma;
3756 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3757 	unsigned long first = -1;
3758 	struct lru_gen_mm_walk *walk = args->private;
3759 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3760 
3761 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3762 
3763 	/*
3764 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3765 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3766 	 * the PMD lock to clear the accessed bit in PMD entries.
3767 	 */
3768 	pmd = pmd_offset(pud, start & PUD_MASK);
3769 restart:
3770 	/* walk_pte_range() may call get_next_vma() */
3771 	vma = args->vma;
3772 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3773 		pmd_t val = pmdp_get_lockless(pmd + i);
3774 
3775 		next = pmd_addr_end(addr, end);
3776 
3777 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3778 			walk->mm_stats[MM_LEAF_TOTAL]++;
3779 			continue;
3780 		}
3781 
3782 		if (pmd_trans_huge(val)) {
3783 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3784 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3785 
3786 			walk->mm_stats[MM_LEAF_TOTAL]++;
3787 
3788 			if (pfn != -1)
3789 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3790 			continue;
3791 		}
3792 
3793 		if (!walk->force_scan && should_clear_pmd_young() &&
3794 		    !mm_has_notifiers(args->mm)) {
3795 			if (!pmd_young(val))
3796 				continue;
3797 
3798 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3799 		}
3800 
3801 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3802 			continue;
3803 
3804 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3805 
3806 		if (!walk_pte_range(&val, addr, next, args))
3807 			continue;
3808 
3809 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3810 
3811 		/* carry over to the next generation */
3812 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3813 	}
3814 
3815 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3816 
3817 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3818 		goto restart;
3819 }
3820 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3821 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3822 			  struct mm_walk *args)
3823 {
3824 	int i;
3825 	pud_t *pud;
3826 	unsigned long addr;
3827 	unsigned long next;
3828 	struct lru_gen_mm_walk *walk = args->private;
3829 
3830 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3831 
3832 	pud = pud_offset(p4d, start & P4D_MASK);
3833 restart:
3834 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3835 		pud_t val = READ_ONCE(pud[i]);
3836 
3837 		next = pud_addr_end(addr, end);
3838 
3839 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3840 			continue;
3841 
3842 		walk_pmd_range(&val, addr, next, args);
3843 
3844 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3845 			end = (addr | ~PUD_MASK) + 1;
3846 			goto done;
3847 		}
3848 	}
3849 
3850 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3851 		goto restart;
3852 
3853 	end = round_up(end, P4D_SIZE);
3854 done:
3855 	if (!end || !args->vma)
3856 		return 1;
3857 
3858 	walk->next_addr = max(end, args->vma->vm_start);
3859 
3860 	return -EAGAIN;
3861 }
3862 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3863 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3864 {
3865 	static const struct mm_walk_ops mm_walk_ops = {
3866 		.test_walk = should_skip_vma,
3867 		.p4d_entry = walk_pud_range,
3868 		.walk_lock = PGWALK_RDLOCK,
3869 	};
3870 
3871 	int err;
3872 	struct lruvec *lruvec = walk->lruvec;
3873 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3874 
3875 	walk->next_addr = FIRST_USER_ADDRESS;
3876 
3877 	do {
3878 		DEFINE_MAX_SEQ(lruvec);
3879 
3880 		err = -EBUSY;
3881 
3882 		/* another thread might have called inc_max_seq() */
3883 		if (walk->seq != max_seq)
3884 			break;
3885 
3886 		/* folio_update_gen() requires stable folio_memcg() */
3887 		if (!mem_cgroup_trylock_pages(memcg))
3888 			break;
3889 
3890 		/* the caller might be holding the lock for write */
3891 		if (mmap_read_trylock(mm)) {
3892 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3893 
3894 			mmap_read_unlock(mm);
3895 		}
3896 
3897 		mem_cgroup_unlock_pages();
3898 
3899 		if (walk->batched) {
3900 			spin_lock_irq(&lruvec->lru_lock);
3901 			reset_batch_size(walk);
3902 			spin_unlock_irq(&lruvec->lru_lock);
3903 		}
3904 
3905 		cond_resched();
3906 	} while (err == -EAGAIN);
3907 }
3908 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3909 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3910 {
3911 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3912 
3913 	if (pgdat && current_is_kswapd()) {
3914 		VM_WARN_ON_ONCE(walk);
3915 
3916 		walk = &pgdat->mm_walk;
3917 	} else if (!walk && force_alloc) {
3918 		VM_WARN_ON_ONCE(current_is_kswapd());
3919 
3920 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3921 	}
3922 
3923 	current->reclaim_state->mm_walk = walk;
3924 
3925 	return walk;
3926 }
3927 
clear_mm_walk(void)3928 static void clear_mm_walk(void)
3929 {
3930 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3931 
3932 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3933 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3934 
3935 	current->reclaim_state->mm_walk = NULL;
3936 
3937 	if (!current_is_kswapd())
3938 		kfree(walk);
3939 }
3940 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3941 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3942 {
3943 	int zone;
3944 	int remaining = MAX_LRU_BATCH;
3945 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3946 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3947 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3948 
3949 	if (type ? swappiness > MAX_SWAPPINESS : !swappiness)
3950 		goto done;
3951 
3952 	/* prevent cold/hot inversion if the type is evictable */
3953 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3954 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3955 
3956 		while (!list_empty(head)) {
3957 			struct folio *folio = lru_to_folio(head);
3958 			int refs = folio_lru_refs(folio);
3959 			bool workingset = folio_test_workingset(folio);
3960 
3961 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3962 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3963 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3964 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3965 
3966 			new_gen = folio_inc_gen(lruvec, folio, false);
3967 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3968 
3969 			/* don't count the workingset being lazily promoted */
3970 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3971 				int tier = lru_tier_from_refs(refs, workingset);
3972 				int delta = folio_nr_pages(folio);
3973 
3974 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3975 					   lrugen->protected[hist][type][tier] + delta);
3976 			}
3977 
3978 			if (!--remaining)
3979 				return false;
3980 		}
3981 	}
3982 done:
3983 	reset_ctrl_pos(lruvec, type, true);
3984 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3985 
3986 	return true;
3987 }
3988 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3989 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3990 {
3991 	int gen, type, zone;
3992 	bool success = false;
3993 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3994 	DEFINE_MIN_SEQ(lruvec);
3995 
3996 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3997 
3998 	/* find the oldest populated generation */
3999 	for_each_evictable_type(type, swappiness) {
4000 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4001 			gen = lru_gen_from_seq(min_seq[type]);
4002 
4003 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4004 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4005 					goto next;
4006 			}
4007 
4008 			min_seq[type]++;
4009 		}
4010 next:
4011 		;
4012 	}
4013 
4014 	/* see the comment on lru_gen_folio */
4015 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
4016 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
4017 
4018 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
4019 			min_seq[LRU_GEN_ANON] = seq;
4020 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
4021 			min_seq[LRU_GEN_FILE] = seq;
4022 	}
4023 
4024 	for_each_evictable_type(type, swappiness) {
4025 		if (min_seq[type] <= lrugen->min_seq[type])
4026 			continue;
4027 
4028 		reset_ctrl_pos(lruvec, type, true);
4029 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4030 		success = true;
4031 	}
4032 
4033 	return success;
4034 }
4035 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)4036 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
4037 {
4038 	bool success;
4039 	int prev, next;
4040 	int type, zone;
4041 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4042 restart:
4043 	if (seq < READ_ONCE(lrugen->max_seq))
4044 		return false;
4045 
4046 	spin_lock_irq(&lruvec->lru_lock);
4047 
4048 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4049 
4050 	success = seq == lrugen->max_seq;
4051 	if (!success)
4052 		goto unlock;
4053 
4054 	for (type = 0; type < ANON_AND_FILE; type++) {
4055 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4056 			continue;
4057 
4058 		if (inc_min_seq(lruvec, type, swappiness))
4059 			continue;
4060 
4061 		spin_unlock_irq(&lruvec->lru_lock);
4062 		cond_resched();
4063 		goto restart;
4064 	}
4065 
4066 	/*
4067 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4068 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4069 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4070 	 * overlap, cold/hot inversion happens.
4071 	 */
4072 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4073 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4074 
4075 	for (type = 0; type < ANON_AND_FILE; type++) {
4076 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4077 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4078 			long delta = lrugen->nr_pages[prev][type][zone] -
4079 				     lrugen->nr_pages[next][type][zone];
4080 
4081 			if (!delta)
4082 				continue;
4083 
4084 			__update_lru_size(lruvec, lru, zone, delta);
4085 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4086 		}
4087 	}
4088 
4089 	for (type = 0; type < ANON_AND_FILE; type++)
4090 		reset_ctrl_pos(lruvec, type, false);
4091 
4092 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4093 	/* make sure preceding modifications appear */
4094 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4095 unlock:
4096 	spin_unlock_irq(&lruvec->lru_lock);
4097 
4098 	return success;
4099 }
4100 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4101 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4102 			       int swappiness, bool force_scan)
4103 {
4104 	bool success;
4105 	struct lru_gen_mm_walk *walk;
4106 	struct mm_struct *mm = NULL;
4107 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4108 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4109 
4110 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4111 
4112 	if (!mm_state)
4113 		return inc_max_seq(lruvec, seq, swappiness);
4114 
4115 	/* see the comment in iterate_mm_list() */
4116 	if (seq <= READ_ONCE(mm_state->seq))
4117 		return false;
4118 
4119 	/*
4120 	 * If the hardware doesn't automatically set the accessed bit, fallback
4121 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4122 	 * handful of PTEs. Spreading the work out over a period of time usually
4123 	 * is less efficient, but it avoids bursty page faults.
4124 	 */
4125 	if (!should_walk_mmu()) {
4126 		success = iterate_mm_list_nowalk(lruvec, seq);
4127 		goto done;
4128 	}
4129 
4130 	walk = set_mm_walk(NULL, true);
4131 	if (!walk) {
4132 		success = iterate_mm_list_nowalk(lruvec, seq);
4133 		goto done;
4134 	}
4135 
4136 	walk->lruvec = lruvec;
4137 	walk->seq = seq;
4138 	walk->swappiness = swappiness;
4139 	walk->force_scan = force_scan;
4140 
4141 	do {
4142 		success = iterate_mm_list(walk, &mm);
4143 		if (mm)
4144 			walk_mm(mm, walk);
4145 	} while (mm);
4146 done:
4147 	if (success) {
4148 		success = inc_max_seq(lruvec, seq, swappiness);
4149 		WARN_ON_ONCE(!success);
4150 	}
4151 
4152 	return success;
4153 }
4154 
4155 /******************************************************************************
4156  *                          working set protection
4157  ******************************************************************************/
4158 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4159 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4160 {
4161 	int priority;
4162 	unsigned long reclaimable;
4163 
4164 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4165 		return;
4166 	/*
4167 	 * Determine the initial priority based on
4168 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4169 	 * where reclaimed_to_scanned_ratio = inactive / total.
4170 	 */
4171 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4172 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4173 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4174 
4175 	/* round down reclaimable and round up sc->nr_to_reclaim */
4176 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4177 
4178 	/*
4179 	 * The estimation is based on LRU pages only, so cap it to prevent
4180 	 * overshoots of shrinker objects by large margins.
4181 	 */
4182 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4183 }
4184 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4185 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4186 {
4187 	int gen, type, zone;
4188 	unsigned long total = 0;
4189 	int swappiness = get_swappiness(lruvec, sc);
4190 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4191 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4192 	DEFINE_MAX_SEQ(lruvec);
4193 	DEFINE_MIN_SEQ(lruvec);
4194 
4195 	for_each_evictable_type(type, swappiness) {
4196 		unsigned long seq;
4197 
4198 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4199 			gen = lru_gen_from_seq(seq);
4200 
4201 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4202 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4203 		}
4204 	}
4205 
4206 	/* whether the size is big enough to be helpful */
4207 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4208 }
4209 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4210 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4211 				  unsigned long min_ttl)
4212 {
4213 	int gen;
4214 	unsigned long birth;
4215 	int swappiness = get_swappiness(lruvec, sc);
4216 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4217 	DEFINE_MIN_SEQ(lruvec);
4218 
4219 	if (mem_cgroup_below_min(NULL, memcg))
4220 		return false;
4221 
4222 	if (!lruvec_is_sizable(lruvec, sc))
4223 		return false;
4224 
4225 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4226 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4227 
4228 	return time_is_before_jiffies(birth + min_ttl);
4229 }
4230 
4231 /* to protect the working set of the last N jiffies */
4232 static unsigned long lru_gen_min_ttl __read_mostly;
4233 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4234 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4235 {
4236 	struct mem_cgroup *memcg;
4237 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4238 	bool reclaimable = !min_ttl;
4239 
4240 	VM_WARN_ON_ONCE(!current_is_kswapd());
4241 
4242 	set_initial_priority(pgdat, sc);
4243 
4244 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4245 	do {
4246 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4247 
4248 		mem_cgroup_calculate_protection(NULL, memcg);
4249 
4250 		if (!reclaimable)
4251 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4252 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4253 
4254 	/*
4255 	 * The main goal is to OOM kill if every generation from all memcgs is
4256 	 * younger than min_ttl. However, another possibility is all memcgs are
4257 	 * either too small or below min.
4258 	 */
4259 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4260 		struct oom_control oc = {
4261 			.gfp_mask = sc->gfp_mask,
4262 		};
4263 
4264 		out_of_memory(&oc);
4265 
4266 		mutex_unlock(&oom_lock);
4267 	}
4268 }
4269 
4270 /******************************************************************************
4271  *                          rmap/PT walk feedback
4272  ******************************************************************************/
4273 
4274 /*
4275  * This function exploits spatial locality when shrink_folio_list() walks the
4276  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4277  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4278  * the PTE table to the Bloom filter. This forms a feedback loop between the
4279  * eviction and the aging.
4280  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4281 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4282 {
4283 	int i;
4284 	bool dirty;
4285 	unsigned long start;
4286 	unsigned long end;
4287 	struct lru_gen_mm_walk *walk;
4288 	struct folio *last = NULL;
4289 	int young = 1;
4290 	pte_t *pte = pvmw->pte;
4291 	unsigned long addr = pvmw->address;
4292 	struct vm_area_struct *vma = pvmw->vma;
4293 	struct folio *folio = pfn_folio(pvmw->pfn);
4294 	struct mem_cgroup *memcg = folio_memcg(folio);
4295 	struct pglist_data *pgdat = folio_pgdat(folio);
4296 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4297 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4298 	DEFINE_MAX_SEQ(lruvec);
4299 	int gen = lru_gen_from_seq(max_seq);
4300 
4301 	lockdep_assert_held(pvmw->ptl);
4302 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4303 
4304 	if (!ptep_clear_young_notify(vma, addr, pte))
4305 		return false;
4306 
4307 	if (spin_is_contended(pvmw->ptl))
4308 		return true;
4309 
4310 	/* exclude special VMAs containing anon pages from COW */
4311 	if (vma->vm_flags & VM_SPECIAL)
4312 		return true;
4313 
4314 	/* avoid taking the LRU lock under the PTL when possible */
4315 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4316 
4317 	start = max(addr & PMD_MASK, vma->vm_start);
4318 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4319 
4320 	if (end - start == PAGE_SIZE)
4321 		return true;
4322 
4323 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4324 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4325 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4326 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4327 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4328 		else {
4329 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4330 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4331 		}
4332 	}
4333 
4334 	/* folio_update_gen() requires stable folio_memcg() */
4335 	if (!mem_cgroup_trylock_pages(memcg))
4336 		return true;
4337 
4338 	arch_enter_lazy_mmu_mode();
4339 
4340 	pte -= (addr - start) / PAGE_SIZE;
4341 
4342 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4343 		unsigned long pfn;
4344 		pte_t ptent = ptep_get(pte + i);
4345 
4346 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4347 		if (pfn == -1)
4348 			continue;
4349 
4350 		folio = get_pfn_folio(pfn, memcg, pgdat);
4351 		if (!folio)
4352 			continue;
4353 
4354 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4355 			continue;
4356 
4357 		if (last != folio) {
4358 			walk_update_folio(walk, last, gen, dirty);
4359 			last = folio;
4360 			dirty = false;
4361 		}
4362 
4363 		if (pte_dirty(ptent))
4364 			dirty = true;
4365 
4366 		young++;
4367 	}
4368 
4369 	walk_update_folio(walk, last, gen, dirty);
4370 
4371 	arch_leave_lazy_mmu_mode();
4372 	mem_cgroup_unlock_pages();
4373 
4374 	/* feedback from rmap walkers to page table walkers */
4375 	if (mm_state && suitable_to_scan(i, young))
4376 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4377 
4378 	return true;
4379 }
4380 
4381 /******************************************************************************
4382  *                          memcg LRU
4383  ******************************************************************************/
4384 
4385 /* see the comment on MEMCG_NR_GENS */
4386 enum {
4387 	MEMCG_LRU_NOP,
4388 	MEMCG_LRU_HEAD,
4389 	MEMCG_LRU_TAIL,
4390 	MEMCG_LRU_OLD,
4391 	MEMCG_LRU_YOUNG,
4392 };
4393 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4394 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4395 {
4396 	int seg;
4397 	int old, new;
4398 	unsigned long flags;
4399 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4400 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4401 
4402 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4403 
4404 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4405 
4406 	seg = 0;
4407 	new = old = lruvec->lrugen.gen;
4408 
4409 	/* see the comment on MEMCG_NR_GENS */
4410 	if (op == MEMCG_LRU_HEAD)
4411 		seg = MEMCG_LRU_HEAD;
4412 	else if (op == MEMCG_LRU_TAIL)
4413 		seg = MEMCG_LRU_TAIL;
4414 	else if (op == MEMCG_LRU_OLD)
4415 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4416 	else if (op == MEMCG_LRU_YOUNG)
4417 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4418 	else
4419 		VM_WARN_ON_ONCE(true);
4420 
4421 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4422 	WRITE_ONCE(lruvec->lrugen.gen, new);
4423 
4424 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4425 
4426 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4427 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4428 	else
4429 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4430 
4431 	pgdat->memcg_lru.nr_memcgs[old]--;
4432 	pgdat->memcg_lru.nr_memcgs[new]++;
4433 
4434 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4435 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4436 
4437 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4438 }
4439 
4440 #ifdef CONFIG_MEMCG
4441 
lru_gen_online_memcg(struct mem_cgroup * memcg)4442 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4443 {
4444 	int gen;
4445 	int nid;
4446 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4447 
4448 	for_each_node(nid) {
4449 		struct pglist_data *pgdat = NODE_DATA(nid);
4450 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4451 
4452 		spin_lock_irq(&pgdat->memcg_lru.lock);
4453 
4454 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4455 
4456 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4457 
4458 		lruvec->lrugen.gen = gen;
4459 
4460 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4461 		pgdat->memcg_lru.nr_memcgs[gen]++;
4462 
4463 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4464 	}
4465 }
4466 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4467 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4468 {
4469 	int nid;
4470 
4471 	for_each_node(nid) {
4472 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4473 
4474 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4475 	}
4476 }
4477 
lru_gen_release_memcg(struct mem_cgroup * memcg)4478 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4479 {
4480 	int gen;
4481 	int nid;
4482 
4483 	for_each_node(nid) {
4484 		struct pglist_data *pgdat = NODE_DATA(nid);
4485 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4486 
4487 		spin_lock_irq(&pgdat->memcg_lru.lock);
4488 
4489 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4490 			goto unlock;
4491 
4492 		gen = lruvec->lrugen.gen;
4493 
4494 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4495 		pgdat->memcg_lru.nr_memcgs[gen]--;
4496 
4497 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4498 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4499 unlock:
4500 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4501 	}
4502 }
4503 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4504 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4505 {
4506 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4507 
4508 	/* see the comment on MEMCG_NR_GENS */
4509 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4510 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4511 }
4512 
4513 #endif /* CONFIG_MEMCG */
4514 
4515 /******************************************************************************
4516  *                          the eviction
4517  ******************************************************************************/
4518 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4519 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4520 		       int tier_idx)
4521 {
4522 	bool success;
4523 	bool dirty, writeback;
4524 	int gen = folio_lru_gen(folio);
4525 	int type = folio_is_file_lru(folio);
4526 	int zone = folio_zonenum(folio);
4527 	int delta = folio_nr_pages(folio);
4528 	int refs = folio_lru_refs(folio);
4529 	bool workingset = folio_test_workingset(folio);
4530 	int tier = lru_tier_from_refs(refs, workingset);
4531 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4532 
4533 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4534 
4535 	/* unevictable */
4536 	if (!folio_evictable(folio)) {
4537 		success = lru_gen_del_folio(lruvec, folio, true);
4538 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4539 		folio_set_unevictable(folio);
4540 		lruvec_add_folio(lruvec, folio);
4541 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4542 		return true;
4543 	}
4544 
4545 	/* promoted */
4546 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4547 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4548 		return true;
4549 	}
4550 
4551 	/* protected */
4552 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4553 		gen = folio_inc_gen(lruvec, folio, false);
4554 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4555 
4556 		/* don't count the workingset being lazily promoted */
4557 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4558 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4559 
4560 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4561 				   lrugen->protected[hist][type][tier] + delta);
4562 		}
4563 		return true;
4564 	}
4565 
4566 	/* ineligible */
4567 	if (zone > sc->reclaim_idx) {
4568 		gen = folio_inc_gen(lruvec, folio, false);
4569 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4570 		return true;
4571 	}
4572 
4573 	dirty = folio_test_dirty(folio);
4574 	writeback = folio_test_writeback(folio);
4575 	if (type == LRU_GEN_FILE && dirty) {
4576 		sc->nr.file_taken += delta;
4577 		if (!writeback)
4578 			sc->nr.unqueued_dirty += delta;
4579 	}
4580 
4581 	/* waiting for writeback */
4582 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4583 		gen = folio_inc_gen(lruvec, folio, true);
4584 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4585 		return true;
4586 	}
4587 
4588 	return false;
4589 }
4590 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4591 bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4592 {
4593 	bool success;
4594 
4595 	/* swap constrained */
4596 	if (!(sc->gfp_mask & __GFP_IO) &&
4597 	    (folio_test_dirty(folio) ||
4598 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4599 		return false;
4600 
4601 	/* raced with release_pages() */
4602 	if (!folio_try_get(folio))
4603 		return false;
4604 
4605 	/* raced with another isolation */
4606 	if (!folio_test_clear_lru(folio)) {
4607 		folio_put(folio);
4608 		return false;
4609 	}
4610 
4611 	/* see the comment on LRU_REFS_FLAGS */
4612 	if (!folio_test_referenced(folio))
4613 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4614 
4615 	/* for shrink_folio_list() */
4616 	folio_clear_reclaim(folio);
4617 
4618 	success = lru_gen_del_folio(lruvec, folio, true);
4619 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4620 
4621 	return true;
4622 }
4623 EXPORT_SYMBOL_GPL(isolate_folio);
4624 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4625 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4626 		       int type, int tier, struct list_head *list)
4627 {
4628 	int i;
4629 	int gen;
4630 	enum vm_event_item item;
4631 	int sorted = 0;
4632 	int scanned = 0;
4633 	int isolated = 0;
4634 	int skipped = 0;
4635 	int remaining = MAX_LRU_BATCH;
4636 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4637 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4638 
4639 	VM_WARN_ON_ONCE(!list_empty(list));
4640 
4641 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4642 		return 0;
4643 
4644 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4645 
4646 	for (i = MAX_NR_ZONES; i > 0; i--) {
4647 		LIST_HEAD(moved);
4648 		int skipped_zone = 0;
4649 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4650 		struct list_head *head = &lrugen->folios[gen][type][zone];
4651 
4652 		while (!list_empty(head)) {
4653 			struct folio *folio = lru_to_folio(head);
4654 			int delta = folio_nr_pages(folio);
4655 
4656 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4657 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4658 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4659 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4660 
4661 			scanned += delta;
4662 
4663 			if (sort_folio(lruvec, folio, sc, tier))
4664 				sorted += delta;
4665 			else if (isolate_folio(lruvec, folio, sc)) {
4666 				list_add(&folio->lru, list);
4667 				isolated += delta;
4668 			} else {
4669 				list_move(&folio->lru, &moved);
4670 				skipped_zone += delta;
4671 			}
4672 
4673 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4674 				break;
4675 		}
4676 
4677 		if (skipped_zone) {
4678 			list_splice(&moved, head);
4679 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4680 			skipped += skipped_zone;
4681 		}
4682 
4683 		if (!remaining || isolated >= MIN_LRU_BATCH)
4684 			break;
4685 	}
4686 
4687 	item = PGSCAN_KSWAPD + reclaimer_offset();
4688 	if (!cgroup_reclaim(sc)) {
4689 		__count_vm_events(item, isolated);
4690 		__count_vm_events(PGREFILL, sorted);
4691 	}
4692 	__count_memcg_events(memcg, item, isolated);
4693 	__count_memcg_events(memcg, PGREFILL, sorted);
4694 	__count_vm_events(PGSCAN_ANON + type, isolated);
4695 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4696 				scanned, skipped, isolated,
4697 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4698 	if (type == LRU_GEN_FILE)
4699 		sc->nr.file_taken += isolated;
4700 	/*
4701 	 * There might not be eligible folios due to reclaim_idx. Check the
4702 	 * remaining to prevent livelock if it's not making progress.
4703 	 */
4704 	return isolated || !remaining ? scanned : 0;
4705 }
4706 
get_tier_idx(struct lruvec * lruvec,int type)4707 static int get_tier_idx(struct lruvec *lruvec, int type)
4708 {
4709 	int tier;
4710 	struct ctrl_pos sp, pv;
4711 
4712 	/*
4713 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4714 	 * This value is chosen because any other tier would have at least twice
4715 	 * as many refaults as the first tier.
4716 	 */
4717 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4718 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4719 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4720 		if (!positive_ctrl_err(&sp, &pv))
4721 			break;
4722 	}
4723 
4724 	return tier - 1;
4725 }
4726 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4727 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4728 {
4729 	struct ctrl_pos sp, pv;
4730 
4731 	if (swappiness <= MIN_SWAPPINESS + 1)
4732 		return LRU_GEN_FILE;
4733 
4734 	if (swappiness >= MAX_SWAPPINESS)
4735 		return LRU_GEN_ANON;
4736 	/*
4737 	 * Compare the sum of all tiers of anon with that of file to determine
4738 	 * which type to scan.
4739 	 */
4740 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4741 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4742 
4743 	return positive_ctrl_err(&sp, &pv);
4744 }
4745 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4746 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4747 			  int *type_scanned, struct list_head *list)
4748 {
4749 	int i;
4750 	int type = get_type_to_scan(lruvec, swappiness);
4751 
4752 	for_each_evictable_type(i, swappiness) {
4753 		int scanned;
4754 		int tier = get_tier_idx(lruvec, type);
4755 
4756 		*type_scanned = type;
4757 
4758 		scanned = scan_folios(lruvec, sc, type, tier, list);
4759 		if (scanned)
4760 			return scanned;
4761 
4762 		type = !type;
4763 	}
4764 
4765 	return 0;
4766 }
4767 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4768 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4769 {
4770 	int type;
4771 	int scanned;
4772 	int reclaimed;
4773 	LIST_HEAD(list);
4774 	LIST_HEAD(clean);
4775 	struct folio *folio;
4776 	struct folio *next;
4777 	enum vm_event_item item;
4778 	struct reclaim_stat stat;
4779 	struct lru_gen_mm_walk *walk;
4780 	bool skip_retry = false;
4781 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4782 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4783 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4784 
4785 	spin_lock_irq(&lruvec->lru_lock);
4786 
4787 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4788 
4789 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4790 
4791 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4792 		scanned = 0;
4793 
4794 	spin_unlock_irq(&lruvec->lru_lock);
4795 
4796 	if (list_empty(&list))
4797 		return scanned;
4798 retry:
4799 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4800 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4801 	sc->nr_reclaimed += reclaimed;
4802 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4803 			scanned, reclaimed, &stat, sc->priority,
4804 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4805 
4806 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4807 		DEFINE_MIN_SEQ(lruvec);
4808 
4809 		if (!folio_evictable(folio)) {
4810 			list_del(&folio->lru);
4811 			folio_putback_lru(folio);
4812 			continue;
4813 		}
4814 
4815 		/* retry folios that may have missed folio_rotate_reclaimable() */
4816 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4817 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4818 			list_move(&folio->lru, &clean);
4819 			continue;
4820 		}
4821 
4822 		/* don't add rejected folios to the oldest generation */
4823 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4824 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4825 	}
4826 
4827 	spin_lock_irq(&lruvec->lru_lock);
4828 
4829 	move_folios_to_lru(lruvec, &list);
4830 
4831 	walk = current->reclaim_state->mm_walk;
4832 	if (walk && walk->batched) {
4833 		walk->lruvec = lruvec;
4834 		reset_batch_size(walk);
4835 	}
4836 
4837 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
4838 					stat.nr_demoted);
4839 
4840 	item = PGSTEAL_KSWAPD + reclaimer_offset();
4841 	if (!cgroup_reclaim(sc))
4842 		__count_vm_events(item, reclaimed);
4843 	__count_memcg_events(memcg, item, reclaimed);
4844 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4845 
4846 	spin_unlock_irq(&lruvec->lru_lock);
4847 
4848 	list_splice_init(&clean, &list);
4849 
4850 	if (!list_empty(&list)) {
4851 		skip_retry = true;
4852 		goto retry;
4853 	}
4854 
4855 	return scanned;
4856 }
4857 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4858 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4859 			     int swappiness, unsigned long *nr_to_scan)
4860 {
4861 	int gen, type, zone;
4862 	unsigned long size = 0;
4863 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4864 	DEFINE_MIN_SEQ(lruvec);
4865 
4866 	*nr_to_scan = 0;
4867 	/* have to run aging, since eviction is not possible anymore */
4868 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4869 		return true;
4870 
4871 	for_each_evictable_type(type, swappiness) {
4872 		unsigned long seq;
4873 
4874 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4875 			gen = lru_gen_from_seq(seq);
4876 
4877 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4878 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4879 		}
4880 	}
4881 
4882 	*nr_to_scan = size;
4883 	/* better to run aging even though eviction is still possible */
4884 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4885 }
4886 
4887 /*
4888  * For future optimizations:
4889  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4890  *    reclaim.
4891  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4892 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4893 {
4894 	bool success;
4895 	unsigned long nr_to_scan;
4896 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4897 	DEFINE_MAX_SEQ(lruvec);
4898 	bool bypass = false;
4899 	bool young = false;
4900 
4901 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4902 		return -1;
4903 
4904 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4905 
4906 	/* try to scrape all its memory if this memcg was deleted */
4907 	if (nr_to_scan && !mem_cgroup_online(memcg))
4908 		return nr_to_scan;
4909 
4910 	/* try to get away with not aging at the default priority */
4911 	if (!success || sc->priority == DEF_PRIORITY)
4912 		return nr_to_scan >> sc->priority;
4913 
4914 	trace_android_vh_mglru_aging_bypass(lruvec, max_seq,
4915 		swappiness, &bypass, &young);
4916 	if (bypass)
4917 		return young ? -1 : 0;
4918 
4919 	/* stop scanning this lruvec as it's low on cold folios */
4920 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4921 }
4922 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4923 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4924 {
4925 	int i;
4926 	enum zone_watermarks mark;
4927 	bool bypass = false;
4928 
4929 	trace_android_vh_mglru_should_abort_scan(sc->nr_reclaimed,
4930 		sc->nr_to_reclaim, sc->order, &bypass);
4931 	/* don't abort memcg reclaim to ensure fairness */
4932 	if (!root_reclaim(sc) && !bypass)
4933 		return false;
4934 
4935 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4936 		return true;
4937 
4938 	/* check the order to exclude compaction-induced reclaim */
4939 	if ((!current_is_kswapd() || sc->order) && !bypass)
4940 		return false;
4941 
4942 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4943 	       WMARK_PROMO : WMARK_HIGH;
4944 
4945 	for (i = 0; i <= sc->reclaim_idx; i++) {
4946 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4947 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4948 
4949 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4950 			return false;
4951 	}
4952 
4953 	/* kswapd should abort if all eligible zones are safe */
4954 	return true;
4955 }
4956 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4957 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4958 {
4959 	long nr_to_scan;
4960 	unsigned long scanned = 0;
4961 	int swappiness = get_swappiness(lruvec, sc);
4962 
4963 	while (true) {
4964 		int delta;
4965 
4966 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4967 		if (nr_to_scan <= 0)
4968 			break;
4969 
4970 		delta = evict_folios(lruvec, sc, swappiness);
4971 		if (!delta)
4972 			break;
4973 
4974 		scanned += delta;
4975 		if (scanned >= nr_to_scan)
4976 			break;
4977 
4978 		if (should_abort_scan(lruvec, sc))
4979 			break;
4980 
4981 		cond_resched();
4982 	}
4983 
4984 	/*
4985 	 * If too many file cache in the coldest generation can't be evicted
4986 	 * due to being dirty, wake up the flusher.
4987 	 */
4988 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4989 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4990 
4991 	/* whether this lruvec should be rotated */
4992 	return nr_to_scan < 0;
4993 }
4994 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4995 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4996 {
4997 	bool success;
4998 	unsigned long scanned = sc->nr_scanned;
4999 	unsigned long reclaimed = sc->nr_reclaimed;
5000 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5001 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5002 
5003 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
5004 	if (mem_cgroup_below_min(NULL, memcg))
5005 		return MEMCG_LRU_YOUNG;
5006 
5007 	if (mem_cgroup_below_low(NULL, memcg)) {
5008 		/* see the comment on MEMCG_NR_GENS */
5009 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
5010 			return MEMCG_LRU_TAIL;
5011 
5012 		memcg_memory_event(memcg, MEMCG_LOW);
5013 	}
5014 
5015 	success = try_to_shrink_lruvec(lruvec, sc);
5016 
5017 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5018 
5019 	if (!sc->proactive)
5020 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5021 			   sc->nr_reclaimed - reclaimed);
5022 
5023 	flush_reclaim_state(sc);
5024 
5025 	if (success && mem_cgroup_online(memcg))
5026 		return MEMCG_LRU_YOUNG;
5027 
5028 	if (!success && lruvec_is_sizable(lruvec, sc))
5029 		return 0;
5030 
5031 	/* one retry if offlined or too small */
5032 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
5033 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5034 }
5035 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5036 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5037 {
5038 	int op;
5039 	int gen;
5040 	int bin;
5041 	int first_bin;
5042 	struct lruvec *lruvec;
5043 	struct lru_gen_folio *lrugen;
5044 	struct mem_cgroup *memcg;
5045 	struct hlist_nulls_node *pos;
5046 	bool bypass = false;
5047 
5048 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5049 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5050 restart:
5051 	op = 0;
5052 	memcg = NULL;
5053 
5054 	rcu_read_lock();
5055 
5056 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5057 		if (op) {
5058 			lru_gen_rotate_memcg(lruvec, op);
5059 			op = 0;
5060 		}
5061 
5062 		mem_cgroup_put(memcg);
5063 		memcg = NULL;
5064 
5065 		if (gen != READ_ONCE(lrugen->gen))
5066 			continue;
5067 
5068 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5069 		memcg = lruvec_memcg(lruvec);
5070 
5071 		if (!mem_cgroup_tryget(memcg)) {
5072 			lru_gen_release_memcg(memcg);
5073 			memcg = NULL;
5074 			continue;
5075 		}
5076 
5077 		trace_android_vh_should_memcg_bypass(memcg, sc->priority, &bypass);
5078 		if (bypass)
5079 			continue;
5080 
5081 		rcu_read_unlock();
5082 
5083 		op = shrink_one(lruvec, sc);
5084 
5085 		rcu_read_lock();
5086 
5087 		if (should_abort_scan(lruvec, sc))
5088 			break;
5089 	}
5090 
5091 	rcu_read_unlock();
5092 
5093 	if (op)
5094 		lru_gen_rotate_memcg(lruvec, op);
5095 
5096 	mem_cgroup_put(memcg);
5097 
5098 	if (!is_a_nulls(pos))
5099 		return;
5100 
5101 	/* restart if raced with lru_gen_rotate_memcg() */
5102 	if (gen != get_nulls_value(pos))
5103 		goto restart;
5104 
5105 	/* try the rest of the bins of the current generation */
5106 	bin = get_memcg_bin(bin + 1);
5107 	if (bin != first_bin)
5108 		goto restart;
5109 }
5110 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5111 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5112 {
5113 	struct blk_plug plug;
5114 
5115 	VM_WARN_ON_ONCE(root_reclaim(sc));
5116 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5117 
5118 	lru_add_drain();
5119 
5120 	blk_start_plug(&plug);
5121 
5122 	set_mm_walk(NULL, sc->proactive);
5123 
5124 	if (try_to_shrink_lruvec(lruvec, sc))
5125 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5126 
5127 	clear_mm_walk();
5128 
5129 	blk_finish_plug(&plug);
5130 }
5131 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5132 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5133 {
5134 	struct blk_plug plug;
5135 	unsigned long reclaimed = sc->nr_reclaimed;
5136 
5137 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5138 
5139 	/*
5140 	 * Unmapped clean folios are already prioritized. Scanning for more of
5141 	 * them is likely futile and can cause high reclaim latency when there
5142 	 * is a large number of memcgs.
5143 	 */
5144 	if (!sc->may_writepage || !sc->may_unmap)
5145 		goto done;
5146 
5147 	lru_add_drain();
5148 
5149 	blk_start_plug(&plug);
5150 
5151 	set_mm_walk(pgdat, sc->proactive);
5152 
5153 	set_initial_priority(pgdat, sc);
5154 
5155 	if (current_is_kswapd())
5156 		sc->nr_reclaimed = 0;
5157 
5158 	if (mem_cgroup_disabled())
5159 		shrink_one(&pgdat->__lruvec, sc);
5160 	else
5161 		shrink_many(pgdat, sc);
5162 
5163 	if (current_is_kswapd())
5164 		sc->nr_reclaimed += reclaimed;
5165 
5166 	clear_mm_walk();
5167 
5168 	blk_finish_plug(&plug);
5169 done:
5170 	if (sc->nr_reclaimed > reclaimed)
5171 		pgdat->kswapd_failures = 0;
5172 }
5173 
5174 /******************************************************************************
5175  *                          state change
5176  ******************************************************************************/
5177 
state_is_valid(struct lruvec * lruvec)5178 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5179 {
5180 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5181 
5182 	if (lrugen->enabled) {
5183 		enum lru_list lru;
5184 
5185 		for_each_evictable_lru(lru) {
5186 			if (!list_empty(&lruvec->lists[lru]))
5187 				return false;
5188 		}
5189 	} else {
5190 		int gen, type, zone;
5191 
5192 		for_each_gen_type_zone(gen, type, zone) {
5193 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5194 				return false;
5195 		}
5196 	}
5197 
5198 	return true;
5199 }
5200 
fill_evictable(struct lruvec * lruvec)5201 static bool fill_evictable(struct lruvec *lruvec)
5202 {
5203 	enum lru_list lru;
5204 	int remaining = MAX_LRU_BATCH;
5205 
5206 	for_each_evictable_lru(lru) {
5207 		int type = is_file_lru(lru);
5208 		bool active = is_active_lru(lru);
5209 		struct list_head *head = &lruvec->lists[lru];
5210 
5211 		while (!list_empty(head)) {
5212 			bool success;
5213 			struct folio *folio = lru_to_folio(head);
5214 
5215 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5216 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5217 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5218 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5219 
5220 			lruvec_del_folio(lruvec, folio);
5221 			success = lru_gen_add_folio(lruvec, folio, false);
5222 			VM_WARN_ON_ONCE(!success);
5223 
5224 			if (!--remaining)
5225 				return false;
5226 		}
5227 	}
5228 
5229 	return true;
5230 }
5231 
drain_evictable(struct lruvec * lruvec)5232 static bool drain_evictable(struct lruvec *lruvec)
5233 {
5234 	int gen, type, zone;
5235 	int remaining = MAX_LRU_BATCH;
5236 
5237 	for_each_gen_type_zone(gen, type, zone) {
5238 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5239 
5240 		while (!list_empty(head)) {
5241 			bool success;
5242 			struct folio *folio = lru_to_folio(head);
5243 
5244 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5245 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5246 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5247 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5248 
5249 			success = lru_gen_del_folio(lruvec, folio, false);
5250 			VM_WARN_ON_ONCE(!success);
5251 			lruvec_add_folio(lruvec, folio);
5252 
5253 			if (!--remaining)
5254 				return false;
5255 		}
5256 	}
5257 
5258 	return true;
5259 }
5260 
lru_gen_change_state(bool enabled)5261 static void lru_gen_change_state(bool enabled)
5262 {
5263 	static DEFINE_MUTEX(state_mutex);
5264 
5265 	struct mem_cgroup *memcg;
5266 
5267 	cgroup_lock();
5268 	cpus_read_lock();
5269 	get_online_mems();
5270 	mutex_lock(&state_mutex);
5271 
5272 	if (enabled == lru_gen_enabled())
5273 		goto unlock;
5274 
5275 	if (enabled)
5276 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5277 	else
5278 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5279 
5280 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5281 	do {
5282 		int nid;
5283 
5284 		for_each_node(nid) {
5285 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5286 
5287 			spin_lock_irq(&lruvec->lru_lock);
5288 
5289 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5290 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5291 
5292 			lruvec->lrugen.enabled = enabled;
5293 
5294 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5295 				spin_unlock_irq(&lruvec->lru_lock);
5296 				cond_resched();
5297 				spin_lock_irq(&lruvec->lru_lock);
5298 			}
5299 
5300 			spin_unlock_irq(&lruvec->lru_lock);
5301 		}
5302 
5303 		cond_resched();
5304 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5305 unlock:
5306 	mutex_unlock(&state_mutex);
5307 	put_online_mems();
5308 	cpus_read_unlock();
5309 	cgroup_unlock();
5310 }
5311 
5312 /******************************************************************************
5313  *                          sysfs interface
5314  ******************************************************************************/
5315 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5316 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5317 {
5318 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5319 }
5320 
5321 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5322 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5323 				const char *buf, size_t len)
5324 {
5325 	unsigned int msecs;
5326 
5327 	if (kstrtouint(buf, 0, &msecs))
5328 		return -EINVAL;
5329 
5330 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5331 
5332 	return len;
5333 }
5334 
5335 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5336 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5337 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5338 {
5339 	unsigned int caps = 0;
5340 
5341 	if (get_cap(LRU_GEN_CORE))
5342 		caps |= BIT(LRU_GEN_CORE);
5343 
5344 	if (should_walk_mmu())
5345 		caps |= BIT(LRU_GEN_MM_WALK);
5346 
5347 	if (should_clear_pmd_young())
5348 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5349 
5350 	return sysfs_emit(buf, "0x%04x\n", caps);
5351 }
5352 
5353 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5354 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5355 			     const char *buf, size_t len)
5356 {
5357 	int i;
5358 	unsigned int caps;
5359 
5360 	if (tolower(*buf) == 'n')
5361 		caps = 0;
5362 	else if (tolower(*buf) == 'y')
5363 		caps = -1;
5364 	else if (kstrtouint(buf, 0, &caps))
5365 		return -EINVAL;
5366 
5367 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5368 		bool enabled = caps & BIT(i);
5369 
5370 		if (i == LRU_GEN_CORE)
5371 			lru_gen_change_state(enabled);
5372 		else if (enabled)
5373 			static_branch_enable(&lru_gen_caps[i]);
5374 		else
5375 			static_branch_disable(&lru_gen_caps[i]);
5376 	}
5377 
5378 	return len;
5379 }
5380 
5381 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5382 
5383 static struct attribute *lru_gen_attrs[] = {
5384 	&lru_gen_min_ttl_attr.attr,
5385 	&lru_gen_enabled_attr.attr,
5386 	NULL
5387 };
5388 
5389 static const struct attribute_group lru_gen_attr_group = {
5390 	.name = "lru_gen",
5391 	.attrs = lru_gen_attrs,
5392 };
5393 
5394 /******************************************************************************
5395  *                          debugfs interface
5396  ******************************************************************************/
5397 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5398 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5399 {
5400 	struct mem_cgroup *memcg;
5401 	loff_t nr_to_skip = *pos;
5402 
5403 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5404 	if (!m->private)
5405 		return ERR_PTR(-ENOMEM);
5406 
5407 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5408 	do {
5409 		int nid;
5410 
5411 		for_each_node_state(nid, N_MEMORY) {
5412 			if (!nr_to_skip--)
5413 				return get_lruvec(memcg, nid);
5414 		}
5415 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5416 
5417 	return NULL;
5418 }
5419 
lru_gen_seq_stop(struct seq_file * m,void * v)5420 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5421 {
5422 	if (!IS_ERR_OR_NULL(v))
5423 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5424 
5425 	kvfree(m->private);
5426 	m->private = NULL;
5427 }
5428 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5429 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5430 {
5431 	int nid = lruvec_pgdat(v)->node_id;
5432 	struct mem_cgroup *memcg = lruvec_memcg(v);
5433 
5434 	++*pos;
5435 
5436 	nid = next_memory_node(nid);
5437 	if (nid == MAX_NUMNODES) {
5438 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5439 		if (!memcg)
5440 			return NULL;
5441 
5442 		nid = first_memory_node;
5443 	}
5444 
5445 	return get_lruvec(memcg, nid);
5446 }
5447 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5448 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5449 				  unsigned long max_seq, unsigned long *min_seq,
5450 				  unsigned long seq)
5451 {
5452 	int i;
5453 	int type, tier;
5454 	int hist = lru_hist_from_seq(seq);
5455 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5456 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5457 
5458 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5459 		seq_printf(m, "            %10d", tier);
5460 		for (type = 0; type < ANON_AND_FILE; type++) {
5461 			const char *s = "xxx";
5462 			unsigned long n[3] = {};
5463 
5464 			if (seq == max_seq) {
5465 				s = "RTx";
5466 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5467 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5468 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5469 				s = "rep";
5470 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5471 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5472 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5473 			}
5474 
5475 			for (i = 0; i < 3; i++)
5476 				seq_printf(m, " %10lu%c", n[i], s[i]);
5477 		}
5478 		seq_putc(m, '\n');
5479 	}
5480 
5481 	if (!mm_state)
5482 		return;
5483 
5484 	seq_puts(m, "                      ");
5485 	for (i = 0; i < NR_MM_STATS; i++) {
5486 		const char *s = "xxxx";
5487 		unsigned long n = 0;
5488 
5489 		if (seq == max_seq && NR_HIST_GENS == 1) {
5490 			s = "TYFA";
5491 			n = READ_ONCE(mm_state->stats[hist][i]);
5492 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5493 			s = "tyfa";
5494 			n = READ_ONCE(mm_state->stats[hist][i]);
5495 		}
5496 
5497 		seq_printf(m, " %10lu%c", n, s[i]);
5498 	}
5499 	seq_putc(m, '\n');
5500 }
5501 
5502 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5503 static int lru_gen_seq_show(struct seq_file *m, void *v)
5504 {
5505 	unsigned long seq;
5506 	bool full = !debugfs_real_fops(m->file)->write;
5507 	struct lruvec *lruvec = v;
5508 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5509 	int nid = lruvec_pgdat(lruvec)->node_id;
5510 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5511 	DEFINE_MAX_SEQ(lruvec);
5512 	DEFINE_MIN_SEQ(lruvec);
5513 
5514 	if (nid == first_memory_node) {
5515 		const char *path = memcg ? m->private : "";
5516 
5517 #ifdef CONFIG_MEMCG
5518 		if (memcg)
5519 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5520 #endif
5521 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5522 	}
5523 
5524 	seq_printf(m, " node %5d\n", nid);
5525 
5526 	if (!full)
5527 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5528 	else if (max_seq >= MAX_NR_GENS)
5529 		seq = max_seq - MAX_NR_GENS + 1;
5530 	else
5531 		seq = 0;
5532 
5533 	for (; seq <= max_seq; seq++) {
5534 		int type, zone;
5535 		int gen = lru_gen_from_seq(seq);
5536 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5537 
5538 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5539 
5540 		for (type = 0; type < ANON_AND_FILE; type++) {
5541 			unsigned long size = 0;
5542 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5543 
5544 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5545 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5546 
5547 			seq_printf(m, " %10lu%c", size, mark);
5548 		}
5549 
5550 		seq_putc(m, '\n');
5551 
5552 		if (full)
5553 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5554 	}
5555 
5556 	return 0;
5557 }
5558 
5559 static const struct seq_operations lru_gen_seq_ops = {
5560 	.start = lru_gen_seq_start,
5561 	.stop = lru_gen_seq_stop,
5562 	.next = lru_gen_seq_next,
5563 	.show = lru_gen_seq_show,
5564 };
5565 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5566 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5567 		     int swappiness, bool force_scan)
5568 {
5569 	DEFINE_MAX_SEQ(lruvec);
5570 
5571 	if (seq > max_seq)
5572 		return -EINVAL;
5573 
5574 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5575 }
5576 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5577 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5578 			int swappiness, unsigned long nr_to_reclaim)
5579 {
5580 	DEFINE_MAX_SEQ(lruvec);
5581 
5582 	if (seq + MIN_NR_GENS > max_seq)
5583 		return -EINVAL;
5584 
5585 	sc->nr_reclaimed = 0;
5586 
5587 	while (!signal_pending(current)) {
5588 		DEFINE_MIN_SEQ(lruvec);
5589 
5590 		if (seq < evictable_min_seq(min_seq, swappiness))
5591 			return 0;
5592 
5593 		if (sc->nr_reclaimed >= nr_to_reclaim)
5594 			return 0;
5595 
5596 		if (!evict_folios(lruvec, sc, swappiness))
5597 			return 0;
5598 
5599 		cond_resched();
5600 	}
5601 
5602 	return -EINTR;
5603 }
5604 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5605 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5606 		   struct scan_control *sc, int swappiness, unsigned long opt)
5607 {
5608 	struct lruvec *lruvec;
5609 	int err = -EINVAL;
5610 	struct mem_cgroup *memcg = NULL;
5611 
5612 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5613 		return -EINVAL;
5614 
5615 	if (!mem_cgroup_disabled()) {
5616 		rcu_read_lock();
5617 
5618 		memcg = mem_cgroup_from_id(memcg_id);
5619 		if (!mem_cgroup_tryget(memcg))
5620 			memcg = NULL;
5621 
5622 		rcu_read_unlock();
5623 
5624 		if (!memcg)
5625 			return -EINVAL;
5626 	}
5627 
5628 	if (memcg_id != mem_cgroup_id(memcg))
5629 		goto done;
5630 
5631 	lruvec = get_lruvec(memcg, nid);
5632 
5633 	if (swappiness < MIN_SWAPPINESS)
5634 		swappiness = get_swappiness(lruvec, sc);
5635 	else if (swappiness > MAX_SWAPPINESS + 1)
5636 		goto done;
5637 
5638 	switch (cmd) {
5639 	case '+':
5640 		err = run_aging(lruvec, seq, swappiness, opt);
5641 		break;
5642 	case '-':
5643 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5644 		break;
5645 	}
5646 done:
5647 	mem_cgroup_put(memcg);
5648 
5649 	return err;
5650 }
5651 
5652 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5653 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5654 				 size_t len, loff_t *pos)
5655 {
5656 	void *buf;
5657 	char *cur, *next;
5658 	unsigned int flags;
5659 	struct blk_plug plug;
5660 	int err = -EINVAL;
5661 	struct scan_control sc = {
5662 		.may_writepage = true,
5663 		.may_unmap = true,
5664 		.may_swap = true,
5665 		.reclaim_idx = MAX_NR_ZONES - 1,
5666 		.gfp_mask = GFP_KERNEL,
5667 	};
5668 
5669 	buf = kvmalloc(len + 1, GFP_KERNEL);
5670 	if (!buf)
5671 		return -ENOMEM;
5672 
5673 	if (copy_from_user(buf, src, len)) {
5674 		kvfree(buf);
5675 		return -EFAULT;
5676 	}
5677 
5678 	set_task_reclaim_state(current, &sc.reclaim_state);
5679 	flags = memalloc_noreclaim_save();
5680 	blk_start_plug(&plug);
5681 	if (!set_mm_walk(NULL, true)) {
5682 		err = -ENOMEM;
5683 		goto done;
5684 	}
5685 
5686 	next = buf;
5687 	next[len] = '\0';
5688 
5689 	while ((cur = strsep(&next, ",;\n"))) {
5690 		int n;
5691 		int end;
5692 		char cmd;
5693 		unsigned int memcg_id;
5694 		unsigned int nid;
5695 		unsigned long seq;
5696 		unsigned int swappiness = -1;
5697 		unsigned long opt = -1;
5698 
5699 		cur = skip_spaces(cur);
5700 		if (!*cur)
5701 			continue;
5702 
5703 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5704 			   &seq, &end, &swappiness, &end, &opt, &end);
5705 		if (n < 4 || cur[end]) {
5706 			err = -EINVAL;
5707 			break;
5708 		}
5709 
5710 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5711 		if (err)
5712 			break;
5713 	}
5714 done:
5715 	clear_mm_walk();
5716 	blk_finish_plug(&plug);
5717 	memalloc_noreclaim_restore(flags);
5718 	set_task_reclaim_state(current, NULL);
5719 
5720 	kvfree(buf);
5721 
5722 	return err ? : len;
5723 }
5724 
lru_gen_seq_open(struct inode * inode,struct file * file)5725 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5726 {
5727 	return seq_open(file, &lru_gen_seq_ops);
5728 }
5729 
5730 static const struct file_operations lru_gen_rw_fops = {
5731 	.open = lru_gen_seq_open,
5732 	.read = seq_read,
5733 	.write = lru_gen_seq_write,
5734 	.llseek = seq_lseek,
5735 	.release = seq_release,
5736 };
5737 
5738 static const struct file_operations lru_gen_ro_fops = {
5739 	.open = lru_gen_seq_open,
5740 	.read = seq_read,
5741 	.llseek = seq_lseek,
5742 	.release = seq_release,
5743 };
5744 
5745 /******************************************************************************
5746  *                          initialization
5747  ******************************************************************************/
5748 
lru_gen_init_pgdat(struct pglist_data * pgdat)5749 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5750 {
5751 	int i, j;
5752 
5753 	spin_lock_init(&pgdat->memcg_lru.lock);
5754 
5755 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5756 		for (j = 0; j < MEMCG_NR_BINS; j++)
5757 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5758 	}
5759 }
5760 
lru_gen_init_lruvec(struct lruvec * lruvec)5761 void lru_gen_init_lruvec(struct lruvec *lruvec)
5762 {
5763 	int i;
5764 	int gen, type, zone;
5765 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5766 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5767 
5768 	lrugen->max_seq = MIN_NR_GENS + 1;
5769 	lrugen->enabled = lru_gen_enabled();
5770 
5771 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5772 		lrugen->timestamps[i] = jiffies;
5773 
5774 	for_each_gen_type_zone(gen, type, zone)
5775 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5776 
5777 	if (mm_state)
5778 		mm_state->seq = MIN_NR_GENS;
5779 }
5780 
5781 #ifdef CONFIG_MEMCG
5782 
lru_gen_init_memcg(struct mem_cgroup * memcg)5783 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5784 {
5785 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5786 
5787 	if (!mm_list)
5788 		return;
5789 
5790 	INIT_LIST_HEAD(&mm_list->fifo);
5791 	spin_lock_init(&mm_list->lock);
5792 }
5793 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5794 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5795 {
5796 	int i;
5797 	int nid;
5798 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5799 
5800 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5801 
5802 	for_each_node(nid) {
5803 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5804 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5805 
5806 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5807 					   sizeof(lruvec->lrugen.nr_pages)));
5808 
5809 		lruvec->lrugen.list.next = LIST_POISON1;
5810 
5811 		if (!mm_state)
5812 			continue;
5813 
5814 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5815 			bitmap_free(mm_state->filters[i]);
5816 			mm_state->filters[i] = NULL;
5817 		}
5818 	}
5819 }
5820 
5821 #endif /* CONFIG_MEMCG */
5822 
init_lru_gen(void)5823 static int __init init_lru_gen(void)
5824 {
5825 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5826 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5827 
5828 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5829 		pr_err("lru_gen: failed to create sysfs group\n");
5830 
5831 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5832 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5833 
5834 	return 0;
5835 };
5836 late_initcall(init_lru_gen);
5837 
5838 #else /* !CONFIG_LRU_GEN */
5839 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5840 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5841 {
5842 	BUILD_BUG();
5843 }
5844 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5845 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5846 {
5847 	BUILD_BUG();
5848 }
5849 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5850 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5851 {
5852 	BUILD_BUG();
5853 }
5854 
5855 #endif /* CONFIG_LRU_GEN */
5856 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5857 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5858 {
5859 	unsigned long nr[NR_LRU_LISTS];
5860 	unsigned long targets[NR_LRU_LISTS];
5861 	unsigned long nr_to_scan;
5862 	enum lru_list lru;
5863 	unsigned long nr_reclaimed = 0;
5864 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5865 	bool proportional_reclaim;
5866 	struct blk_plug plug;
5867 	bool bypass = false;
5868 
5869 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5870 		lru_gen_shrink_lruvec(lruvec, sc);
5871 		return;
5872 	}
5873 
5874 	get_scan_count(lruvec, sc, nr);
5875 
5876 	/* Record the original scan target for proportional adjustments later */
5877 	memcpy(targets, nr, sizeof(nr));
5878 
5879 	/*
5880 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5881 	 * event that can occur when there is little memory pressure e.g.
5882 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5883 	 * when the requested number of pages are reclaimed when scanning at
5884 	 * DEF_PRIORITY on the assumption that the fact we are direct
5885 	 * reclaiming implies that kswapd is not keeping up and it is best to
5886 	 * do a batch of work at once. For memcg reclaim one check is made to
5887 	 * abort proportional reclaim if either the file or anon lru has already
5888 	 * dropped to zero at the first pass.
5889 	 */
5890 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5891 				sc->priority == DEF_PRIORITY);
5892 
5893 	blk_start_plug(&plug);
5894 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5895 					nr[LRU_INACTIVE_FILE]) {
5896 		unsigned long nr_anon, nr_file, percentage;
5897 		unsigned long nr_scanned;
5898 
5899 		for_each_evictable_lru(lru) {
5900 			if (nr[lru]) {
5901 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5902 				nr[lru] -= nr_to_scan;
5903 
5904 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5905 							    lruvec, sc);
5906 			}
5907 		}
5908 
5909 		cond_resched();
5910 
5911 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5912 			continue;
5913 
5914 		/*
5915 		 * For kswapd and memcg, reclaim at least the number of pages
5916 		 * requested. Ensure that the anon and file LRUs are scanned
5917 		 * proportionally what was requested by get_scan_count(). We
5918 		 * stop reclaiming one LRU and reduce the amount scanning
5919 		 * proportional to the original scan target.
5920 		 */
5921 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5922 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5923 
5924 		/*
5925 		 * It's just vindictive to attack the larger once the smaller
5926 		 * has gone to zero.  And given the way we stop scanning the
5927 		 * smaller below, this makes sure that we only make one nudge
5928 		 * towards proportionality once we've got nr_to_reclaim.
5929 		 */
5930 		if (!nr_file || !nr_anon)
5931 			break;
5932 
5933 		if (nr_file > nr_anon) {
5934 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5935 						targets[LRU_ACTIVE_ANON] + 1;
5936 			lru = LRU_BASE;
5937 			percentage = nr_anon * 100 / scan_target;
5938 		} else {
5939 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5940 						targets[LRU_ACTIVE_FILE] + 1;
5941 			lru = LRU_FILE;
5942 			percentage = nr_file * 100 / scan_target;
5943 		}
5944 
5945 		/* Stop scanning the smaller of the LRU */
5946 		nr[lru] = 0;
5947 		nr[lru + LRU_ACTIVE] = 0;
5948 
5949 		/*
5950 		 * Recalculate the other LRU scan count based on its original
5951 		 * scan target and the percentage scanning already complete
5952 		 */
5953 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5954 		nr_scanned = targets[lru] - nr[lru];
5955 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5956 		nr[lru] -= min(nr[lru], nr_scanned);
5957 
5958 		lru += LRU_ACTIVE;
5959 		nr_scanned = targets[lru] - nr[lru];
5960 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5961 		nr[lru] -= min(nr[lru], nr_scanned);
5962 	}
5963 	blk_finish_plug(&plug);
5964 	sc->nr_reclaimed += nr_reclaimed;
5965 	trace_android_vh_rebalance_anon_lru_bypass(&bypass);
5966 	if (bypass)
5967 		return;
5968 
5969 	/*
5970 	 * Even if we did not try to evict anon pages at all, we want to
5971 	 * rebalance the anon lru active/inactive ratio.
5972 	 */
5973 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5974 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5975 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5976 				   sc, LRU_ACTIVE_ANON);
5977 }
5978 
5979 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5980 static bool in_reclaim_compaction(struct scan_control *sc)
5981 {
5982 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5983 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5984 			 sc->priority < DEF_PRIORITY - 2))
5985 		return true;
5986 
5987 	return false;
5988 }
5989 
5990 /*
5991  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5992  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5993  * true if more pages should be reclaimed such that when the page allocator
5994  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5995  * It will give up earlier than that if there is difficulty reclaiming pages.
5996  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5997 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5998 					unsigned long nr_reclaimed,
5999 					struct scan_control *sc)
6000 {
6001 	unsigned long pages_for_compaction;
6002 	unsigned long inactive_lru_pages;
6003 	int z;
6004 	bool continue_reclaim = true;
6005 
6006 	/* If not in reclaim/compaction mode, stop */
6007 	if (!in_reclaim_compaction(sc))
6008 		return false;
6009 
6010 	/*
6011 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6012 	 * number of pages that were scanned. This will return to the caller
6013 	 * with the risk reclaim/compaction and the resulting allocation attempt
6014 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6015 	 * allocations through requiring that the full LRU list has been scanned
6016 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6017 	 * scan, but that approximation was wrong, and there were corner cases
6018 	 * where always a non-zero amount of pages were scanned.
6019 	 */
6020 	if (!nr_reclaimed)
6021 		return false;
6022 
6023 	/* If compaction would go ahead or the allocation would succeed, stop */
6024 	for (z = 0; z <= sc->reclaim_idx; z++) {
6025 		struct zone *zone = &pgdat->node_zones[z];
6026 		if (!managed_zone(zone))
6027 			continue;
6028 
6029 		/* Allocation can already succeed, nothing to do */
6030 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6031 				      sc->reclaim_idx, 0))
6032 			return false;
6033 
6034 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6035 			return false;
6036 	}
6037 
6038 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
6039 	trace_android_vh_should_continue_reclaim(&sc->android_vendor_data1,
6040 		&sc->nr_to_reclaim, &sc->nr_reclaimed, &continue_reclaim);
6041 #endif
6042 	if (!continue_reclaim)
6043 		return false;
6044 
6045 	/*
6046 	 * If we have not reclaimed enough pages for compaction and the
6047 	 * inactive lists are large enough, continue reclaiming
6048 	 */
6049 	pages_for_compaction = compact_gap(sc->order);
6050 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6051 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6052 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6053 
6054 	return inactive_lru_pages > pages_for_compaction;
6055 }
6056 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6057 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6058 {
6059 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6060 	struct mem_cgroup_reclaim_cookie reclaim = {
6061 		.pgdat = pgdat,
6062 	};
6063 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
6064 	struct mem_cgroup *memcg;
6065 
6066 	/*
6067 	 * In most cases, direct reclaimers can do partial walks
6068 	 * through the cgroup tree, using an iterator state that
6069 	 * persists across invocations. This strikes a balance between
6070 	 * fairness and allocation latency.
6071 	 *
6072 	 * For kswapd, reliable forward progress is more important
6073 	 * than a quick return to idle. Always do full walks.
6074 	 */
6075 	if (current_is_kswapd() || sc->memcg_full_walk)
6076 		partial = NULL;
6077 
6078 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
6079 	do {
6080 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6081 		unsigned long reclaimed;
6082 		unsigned long scanned;
6083 		bool bypass = false;
6084 		bool skip = false;
6085 
6086 		/*
6087 		 * This loop can become CPU-bound when target memcgs
6088 		 * aren't eligible for reclaim - either because they
6089 		 * don't have any reclaimable pages, or because their
6090 		 * memory is explicitly protected. Avoid soft lockups.
6091 		 */
6092 		cond_resched();
6093 
6094 		trace_android_vh_shrink_node_memcgs(memcg, &skip);
6095 		if (skip)
6096 			continue;
6097 
6098 		mem_cgroup_calculate_protection(target_memcg, memcg);
6099 
6100 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6101 			/*
6102 			 * Hard protection.
6103 			 * If there is no reclaimable memory, OOM.
6104 			 */
6105 			continue;
6106 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6107 			/*
6108 			 * Soft protection.
6109 			 * Respect the protection only as long as
6110 			 * there is an unprotected supply
6111 			 * of reclaimable memory from other cgroups.
6112 			 */
6113 			if (!sc->memcg_low_reclaim) {
6114 				sc->memcg_low_skipped = 1;
6115 				continue;
6116 			}
6117 			memcg_memory_event(memcg, MEMCG_LOW);
6118 		}
6119 
6120 		reclaimed = sc->nr_reclaimed;
6121 		scanned = sc->nr_scanned;
6122 
6123 		shrink_lruvec(lruvec, sc);
6124 
6125 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6126 			    sc->priority);
6127 
6128 		/* Record the group's reclaim efficiency */
6129 		if (!sc->proactive)
6130 			vmpressure(sc->gfp_mask, memcg, false,
6131 				   sc->nr_scanned - scanned,
6132 				   sc->nr_reclaimed - reclaimed);
6133 
6134 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
6135 		trace_android_vh_shrink_node_memcgs_bypass(&sc->android_vendor_data1,
6136 				    partial, sc->nr_to_reclaim, sc->nr_reclaimed,
6137 				    sc->gfp_mask, sc->order, &bypass);
6138 #endif
6139 
6140 		/* If partial walks are allowed, bail once goal is reached */
6141 		if (bypass || (partial && sc->nr_reclaimed >= sc->nr_to_reclaim)) {
6142 			mem_cgroup_iter_break(target_memcg, memcg);
6143 			break;
6144 		}
6145 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6146 }
6147 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6148 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6149 {
6150 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6151 	struct lruvec *target_lruvec;
6152 	bool reclaimable = false;
6153 
6154 	trace_android_vh_shrink_node(pgdat, sc->target_mem_cgroup);
6155 	if (lru_gen_enabled() && root_reclaim(sc)) {
6156 		memset(&sc->nr, 0, sizeof(sc->nr));
6157 		lru_gen_shrink_node(pgdat, sc);
6158 		return;
6159 	}
6160 
6161 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6162 
6163 again:
6164 	memset(&sc->nr, 0, sizeof(sc->nr));
6165 
6166 	nr_reclaimed = sc->nr_reclaimed;
6167 	nr_scanned = sc->nr_scanned;
6168 
6169 	prepare_scan_control(pgdat, sc);
6170 
6171 	shrink_node_memcgs(pgdat, sc);
6172 
6173 	flush_reclaim_state(sc);
6174 
6175 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6176 
6177 	/* Record the subtree's reclaim efficiency */
6178 	if (!sc->proactive)
6179 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6180 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6181 
6182 	if (nr_node_reclaimed)
6183 		reclaimable = true;
6184 
6185 	if (current_is_kswapd()) {
6186 		/*
6187 		 * If reclaim is isolating dirty pages under writeback,
6188 		 * it implies that the long-lived page allocation rate
6189 		 * is exceeding the page laundering rate. Either the
6190 		 * global limits are not being effective at throttling
6191 		 * processes due to the page distribution throughout
6192 		 * zones or there is heavy usage of a slow backing
6193 		 * device. The only option is to throttle from reclaim
6194 		 * context which is not ideal as there is no guarantee
6195 		 * the dirtying process is throttled in the same way
6196 		 * balance_dirty_pages() manages.
6197 		 *
6198 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6199 		 * count the number of pages under pages flagged for
6200 		 * immediate reclaim and stall if any are encountered
6201 		 * in the nr_immediate check below.
6202 		 */
6203 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6204 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6205 
6206 		/* Allow kswapd to start writing pages during reclaim.*/
6207 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6208 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6209 
6210 		/*
6211 		 * If kswapd scans pages marked for immediate
6212 		 * reclaim and under writeback (nr_immediate), it
6213 		 * implies that pages are cycling through the LRU
6214 		 * faster than they are written so forcibly stall
6215 		 * until some pages complete writeback.
6216 		 */
6217 		if (sc->nr.immediate)
6218 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6219 	}
6220 
6221 	/*
6222 	 * Tag a node/memcg as congested if all the dirty pages were marked
6223 	 * for writeback and immediate reclaim (counted in nr.congested).
6224 	 *
6225 	 * Legacy memcg will stall in page writeback so avoid forcibly
6226 	 * stalling in reclaim_throttle().
6227 	 */
6228 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6229 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6230 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6231 
6232 		if (current_is_kswapd())
6233 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6234 	}
6235 
6236 	/*
6237 	 * Stall direct reclaim for IO completions if the lruvec is
6238 	 * node is congested. Allow kswapd to continue until it
6239 	 * starts encountering unqueued dirty pages or cycling through
6240 	 * the LRU too quickly.
6241 	 */
6242 	if (!current_is_kswapd() && current_may_throttle() &&
6243 	    !sc->hibernation_mode &&
6244 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6245 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6246 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6247 
6248 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6249 		goto again;
6250 
6251 	/*
6252 	 * Kswapd gives up on balancing particular nodes after too
6253 	 * many failures to reclaim anything from them and goes to
6254 	 * sleep. On reclaim progress, reset the failure counter. A
6255 	 * successful direct reclaim run will revive a dormant kswapd.
6256 	 */
6257 	if (reclaimable)
6258 		pgdat->kswapd_failures = 0;
6259 	else if (sc->cache_trim_mode)
6260 		sc->cache_trim_mode_failed = 1;
6261 }
6262 
6263 /*
6264  * Returns true if compaction should go ahead for a costly-order request, or
6265  * the allocation would already succeed without compaction. Return false if we
6266  * should reclaim first.
6267  */
compaction_ready(struct zone * zone,struct scan_control * sc)6268 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6269 {
6270 	unsigned long watermark;
6271 
6272 	if (!gfp_compaction_allowed(sc->gfp_mask))
6273 		return false;
6274 
6275 	/* Allocation can already succeed, nothing to do */
6276 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6277 			      sc->reclaim_idx, 0))
6278 		return true;
6279 
6280 	/* Compaction cannot yet proceed. Do reclaim. */
6281 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6282 		return false;
6283 
6284 	/*
6285 	 * Compaction is already possible, but it takes time to run and there
6286 	 * are potentially other callers using the pages just freed. So proceed
6287 	 * with reclaim to make a buffer of free pages available to give
6288 	 * compaction a reasonable chance of completing and allocating the page.
6289 	 * Note that we won't actually reclaim the whole buffer in one attempt
6290 	 * as the target watermark in should_continue_reclaim() is lower. But if
6291 	 * we are already above the high+gap watermark, don't reclaim at all.
6292 	 */
6293 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6294 
6295 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6296 }
6297 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6298 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6299 {
6300 	/*
6301 	 * If reclaim is making progress greater than 12% efficiency then
6302 	 * wake all the NOPROGRESS throttled tasks.
6303 	 */
6304 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6305 		wait_queue_head_t *wqh;
6306 
6307 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6308 		if (waitqueue_active(wqh))
6309 			wake_up(wqh);
6310 
6311 		return;
6312 	}
6313 
6314 	/*
6315 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6316 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6317 	 * under writeback and marked for immediate reclaim at the tail of the
6318 	 * LRU.
6319 	 */
6320 	if (current_is_kswapd() || cgroup_reclaim(sc))
6321 		return;
6322 
6323 	/* Throttle if making no progress at high prioities. */
6324 	if (sc->priority == 1 && !sc->nr_reclaimed)
6325 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6326 }
6327 
6328 /*
6329  * This is the direct reclaim path, for page-allocating processes.  We only
6330  * try to reclaim pages from zones which will satisfy the caller's allocation
6331  * request.
6332  *
6333  * If a zone is deemed to be full of pinned pages then just give it a light
6334  * scan then give up on it.
6335  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6336 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6337 {
6338 	struct zoneref *z;
6339 	struct zone *zone;
6340 	unsigned long nr_soft_reclaimed;
6341 	unsigned long nr_soft_scanned;
6342 	gfp_t orig_mask;
6343 	pg_data_t *last_pgdat = NULL;
6344 	pg_data_t *first_pgdat = NULL;
6345 
6346 	/*
6347 	 * If the number of buffer_heads in the machine exceeds the maximum
6348 	 * allowed level, force direct reclaim to scan the highmem zone as
6349 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6350 	 */
6351 	orig_mask = sc->gfp_mask;
6352 	if (buffer_heads_over_limit) {
6353 		sc->gfp_mask |= __GFP_HIGHMEM;
6354 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6355 	}
6356 
6357 	trace_android_vh_mm_customize_reclaim_idx(sc->order, sc->gfp_mask,
6358 						  &sc->reclaim_idx, NULL);
6359 
6360 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6361 					sc->reclaim_idx, sc->nodemask) {
6362 		/*
6363 		 * Take care memory controller reclaiming has small influence
6364 		 * to global LRU.
6365 		 */
6366 		if (!cgroup_reclaim(sc)) {
6367 			if (!cpuset_zone_allowed(zone,
6368 						 GFP_KERNEL | __GFP_HARDWALL))
6369 				continue;
6370 
6371 			/*
6372 			 * If we already have plenty of memory free for
6373 			 * compaction in this zone, don't free any more.
6374 			 * Even though compaction is invoked for any
6375 			 * non-zero order, only frequent costly order
6376 			 * reclamation is disruptive enough to become a
6377 			 * noticeable problem, like transparent huge
6378 			 * page allocations.
6379 			 */
6380 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6381 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6382 			    compaction_ready(zone, sc)) {
6383 				sc->compaction_ready = true;
6384 				continue;
6385 			}
6386 
6387 			/*
6388 			 * Shrink each node in the zonelist once. If the
6389 			 * zonelist is ordered by zone (not the default) then a
6390 			 * node may be shrunk multiple times but in that case
6391 			 * the user prefers lower zones being preserved.
6392 			 */
6393 			if (zone->zone_pgdat == last_pgdat)
6394 				continue;
6395 
6396 			/*
6397 			 * This steals pages from memory cgroups over softlimit
6398 			 * and returns the number of reclaimed pages and
6399 			 * scanned pages. This works for global memory pressure
6400 			 * and balancing, not for a memcg's limit.
6401 			 */
6402 			nr_soft_scanned = 0;
6403 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6404 								      sc->order, sc->gfp_mask,
6405 								      &nr_soft_scanned);
6406 			sc->nr_reclaimed += nr_soft_reclaimed;
6407 			sc->nr_scanned += nr_soft_scanned;
6408 			/* need some check for avoid more shrink_zone() */
6409 		}
6410 
6411 		if (!first_pgdat)
6412 			first_pgdat = zone->zone_pgdat;
6413 
6414 		/* See comment about same check for global reclaim above */
6415 		if (zone->zone_pgdat == last_pgdat)
6416 			continue;
6417 		last_pgdat = zone->zone_pgdat;
6418 		shrink_node(zone->zone_pgdat, sc);
6419 	}
6420 
6421 	if (first_pgdat)
6422 		consider_reclaim_throttle(first_pgdat, sc);
6423 
6424 	/*
6425 	 * Restore to original mask to avoid the impact on the caller if we
6426 	 * promoted it to __GFP_HIGHMEM.
6427 	 */
6428 	sc->gfp_mask = orig_mask;
6429 }
6430 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6431 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6432 {
6433 	struct lruvec *target_lruvec;
6434 	unsigned long refaults;
6435 
6436 	if (lru_gen_enabled())
6437 		return;
6438 
6439 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6440 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6441 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6442 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6443 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6444 }
6445 
modify_scan_control(struct scan_control * sc)6446 static void modify_scan_control(struct scan_control *sc)
6447 {
6448 	bool file_is_tiny = false, may_writepage = true;
6449 
6450 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
6451 	trace_android_vh_modify_scan_control(&sc->android_vendor_data1,
6452 		&sc->nr_to_reclaim, sc->target_mem_cgroup, &file_is_tiny,
6453 		&may_writepage);
6454 #endif
6455 
6456 	if (file_is_tiny)
6457 		sc->file_is_tiny = true;
6458 	if (!may_writepage)
6459 		sc->may_writepage = false;
6460 }
6461 
6462 /*
6463  * This is the main entry point to direct page reclaim.
6464  *
6465  * If a full scan of the inactive list fails to free enough memory then we
6466  * are "out of memory" and something needs to be killed.
6467  *
6468  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6469  * high - the zone may be full of dirty or under-writeback pages, which this
6470  * caller can't do much about.  We kick the writeback threads and take explicit
6471  * naps in the hope that some of these pages can be written.  But if the
6472  * allocating task holds filesystem locks which prevent writeout this might not
6473  * work, and the allocation attempt will fail.
6474  *
6475  * returns:	0, if no pages reclaimed
6476  * 		else, the number of pages reclaimed
6477  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6478 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6479 					  struct scan_control *sc)
6480 {
6481 	int initial_priority = sc->priority;
6482 	pg_data_t *last_pgdat;
6483 	struct zoneref *z;
6484 	struct zone *zone;
6485 
6486 	modify_scan_control(sc);
6487 retry:
6488 	delayacct_freepages_start();
6489 
6490 	if (!cgroup_reclaim(sc))
6491 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6492 
6493 	do {
6494 		if (!sc->proactive)
6495 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6496 					sc->priority);
6497 		sc->nr_scanned = 0;
6498 		shrink_zones(zonelist, sc);
6499 
6500 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6501 			break;
6502 
6503 		if (sc->compaction_ready)
6504 			break;
6505 
6506 		/*
6507 		 * If we're getting trouble reclaiming, start doing
6508 		 * writepage even in laptop mode.
6509 		 */
6510 		if (sc->priority < DEF_PRIORITY - 2)
6511 			sc->may_writepage = 1;
6512 	} while (--sc->priority >= 0);
6513 
6514 	last_pgdat = NULL;
6515 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6516 					sc->nodemask) {
6517 		if (zone->zone_pgdat == last_pgdat)
6518 			continue;
6519 		last_pgdat = zone->zone_pgdat;
6520 
6521 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6522 
6523 		if (cgroup_reclaim(sc)) {
6524 			struct lruvec *lruvec;
6525 
6526 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6527 						   zone->zone_pgdat);
6528 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6529 		}
6530 	}
6531 
6532 	delayacct_freepages_end();
6533 
6534 	if (sc->nr_reclaimed)
6535 		return sc->nr_reclaimed;
6536 
6537 	/* Aborted reclaim to try compaction? don't OOM, then */
6538 	if (sc->compaction_ready)
6539 		return 1;
6540 
6541 	/*
6542 	 * In most cases, direct reclaimers can do partial walks
6543 	 * through the cgroup tree to meet the reclaim goal while
6544 	 * keeping latency low. Since the iterator state is shared
6545 	 * among all direct reclaim invocations (to retain fairness
6546 	 * among cgroups), though, high concurrency can result in
6547 	 * individual threads not seeing enough cgroups to make
6548 	 * meaningful forward progress. Avoid false OOMs in this case.
6549 	 */
6550 	if (!sc->memcg_full_walk) {
6551 		sc->priority = initial_priority;
6552 		sc->memcg_full_walk = 1;
6553 		goto retry;
6554 	}
6555 
6556 	/*
6557 	 * We make inactive:active ratio decisions based on the node's
6558 	 * composition of memory, but a restrictive reclaim_idx or a
6559 	 * memory.low cgroup setting can exempt large amounts of
6560 	 * memory from reclaim. Neither of which are very common, so
6561 	 * instead of doing costly eligibility calculations of the
6562 	 * entire cgroup subtree up front, we assume the estimates are
6563 	 * good, and retry with forcible deactivation if that fails.
6564 	 */
6565 	if (sc->skipped_deactivate) {
6566 		sc->priority = initial_priority;
6567 		sc->force_deactivate = 1;
6568 		sc->skipped_deactivate = 0;
6569 		goto retry;
6570 	}
6571 
6572 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6573 	if (sc->memcg_low_skipped) {
6574 		sc->priority = initial_priority;
6575 		sc->force_deactivate = 0;
6576 		sc->memcg_low_reclaim = 1;
6577 		sc->memcg_low_skipped = 0;
6578 		goto retry;
6579 	}
6580 
6581 	return 0;
6582 }
6583 
allow_direct_reclaim(pg_data_t * pgdat)6584 static bool allow_direct_reclaim(pg_data_t *pgdat)
6585 {
6586 	struct zone *zone;
6587 	unsigned long pfmemalloc_reserve = 0;
6588 	unsigned long free_pages = 0;
6589 	int i;
6590 	bool wmark_ok;
6591 
6592 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6593 		return true;
6594 
6595 	for (i = 0; i <= ZONE_NORMAL; i++) {
6596 		zone = &pgdat->node_zones[i];
6597 		if (!managed_zone(zone))
6598 			continue;
6599 
6600 		if (!zone_reclaimable_pages(zone))
6601 			continue;
6602 
6603 		pfmemalloc_reserve += min_wmark_pages(zone);
6604 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6605 	}
6606 
6607 	/* If there are no reserves (unexpected config) then do not throttle */
6608 	if (!pfmemalloc_reserve)
6609 		return true;
6610 
6611 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6612 
6613 	/* kswapd must be awake if processes are being throttled */
6614 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6615 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6616 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6617 
6618 		wake_up_interruptible(&pgdat->kswapd_wait);
6619 	}
6620 
6621 	return wmark_ok;
6622 }
6623 
6624 /*
6625  * Throttle direct reclaimers if backing storage is backed by the network
6626  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6627  * depleted. kswapd will continue to make progress and wake the processes
6628  * when the low watermark is reached.
6629  *
6630  * Returns true if a fatal signal was delivered during throttling. If this
6631  * happens, the page allocator should not consider triggering the OOM killer.
6632  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6633 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6634 					nodemask_t *nodemask)
6635 {
6636 	struct zoneref *z;
6637 	struct zone *zone;
6638 	pg_data_t *pgdat = NULL;
6639 	bool bypass = false;
6640 
6641 	/*
6642 	 * Kernel threads should not be throttled as they may be indirectly
6643 	 * responsible for cleaning pages necessary for reclaim to make forward
6644 	 * progress. kjournald for example may enter direct reclaim while
6645 	 * committing a transaction where throttling it could forcing other
6646 	 * processes to block on log_wait_commit().
6647 	 */
6648 	if (current->flags & PF_KTHREAD)
6649 		goto out;
6650 
6651 	/*
6652 	 * If a fatal signal is pending, this process should not throttle.
6653 	 * It should return quickly so it can exit and free its memory
6654 	 */
6655 	if (fatal_signal_pending(current))
6656 		goto out;
6657 
6658 	/*
6659 	 * Check if the pfmemalloc reserves are ok by finding the first node
6660 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6661 	 * GFP_KERNEL will be required for allocating network buffers when
6662 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6663 	 *
6664 	 * Throttling is based on the first usable node and throttled processes
6665 	 * wait on a queue until kswapd makes progress and wakes them. There
6666 	 * is an affinity then between processes waking up and where reclaim
6667 	 * progress has been made assuming the process wakes on the same node.
6668 	 * More importantly, processes running on remote nodes will not compete
6669 	 * for remote pfmemalloc reserves and processes on different nodes
6670 	 * should make reasonable progress.
6671 	 */
6672 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6673 					gfp_zone(gfp_mask), nodemask) {
6674 		if (zone_idx(zone) > ZONE_NORMAL)
6675 			continue;
6676 
6677 		/* Throttle based on the first usable node */
6678 		pgdat = zone->zone_pgdat;
6679 		if (allow_direct_reclaim(pgdat))
6680 			goto out;
6681 		break;
6682 	}
6683 
6684 	/* If no zone was usable by the allocation flags then do not throttle */
6685 	if (!pgdat)
6686 		goto out;
6687 
6688 	trace_android_vh_throttle_direct_reclaim_bypass(&bypass);
6689 	if (bypass)
6690 		goto out;
6691 
6692 	/* Account for the throttling */
6693 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6694 
6695 	/*
6696 	 * If the caller cannot enter the filesystem, it's possible that it
6697 	 * is due to the caller holding an FS lock or performing a journal
6698 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6699 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6700 	 * blocked waiting on the same lock. Instead, throttle for up to a
6701 	 * second before continuing.
6702 	 */
6703 	if (!(gfp_mask & __GFP_FS))
6704 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6705 			allow_direct_reclaim(pgdat), HZ);
6706 	else
6707 		/* Throttle until kswapd wakes the process */
6708 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6709 			allow_direct_reclaim(pgdat));
6710 
6711 	if (fatal_signal_pending(current))
6712 		return true;
6713 
6714 out:
6715 	return false;
6716 }
6717 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6718 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6719 				gfp_t gfp_mask, nodemask_t *nodemask)
6720 {
6721 	unsigned long nr_reclaimed;
6722 	struct scan_control sc = {
6723 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6724 		.gfp_mask = current_gfp_context(gfp_mask),
6725 		.reclaim_idx = gfp_zone(gfp_mask),
6726 		.order = order,
6727 		.nodemask = nodemask,
6728 		.priority = DEF_PRIORITY,
6729 		.may_writepage = !laptop_mode,
6730 		.may_unmap = 1,
6731 		.may_swap = 1,
6732 	};
6733 	bool skip_swap = false;
6734 	int prio = 0;
6735 
6736 	/*
6737 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6738 	 * Confirm they are large enough for max values.
6739 	 */
6740 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6741 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6742 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6743 
6744 	/*
6745 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6746 	 * 1 is returned so that the page allocator does not OOM kill at this
6747 	 * point.
6748 	 */
6749 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6750 		return 1;
6751 
6752 	trace_android_vh_tune_scan_control(&skip_swap);
6753 	if (skip_swap)
6754 		sc.may_swap = 0;
6755 	set_task_reclaim_state(current, &sc.reclaim_state);
6756 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6757 	trace_android_vh_direct_reclaim_begin(&prio);
6758 
6759 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6760 
6761 	trace_android_vh_direct_reclaim_end(prio);
6762 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6763 	set_task_reclaim_state(current, NULL);
6764 
6765 	return nr_reclaimed;
6766 }
6767 
6768 #ifdef CONFIG_MEMCG
6769 
6770 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6771 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6772 						gfp_t gfp_mask, bool noswap,
6773 						pg_data_t *pgdat,
6774 						unsigned long *nr_scanned)
6775 {
6776 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6777 	struct scan_control sc = {
6778 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6779 		.target_mem_cgroup = memcg,
6780 		.may_writepage = !laptop_mode,
6781 		.may_unmap = 1,
6782 		.reclaim_idx = MAX_NR_ZONES - 1,
6783 		.may_swap = !noswap,
6784 	};
6785 
6786 	WARN_ON_ONCE(!current->reclaim_state);
6787 
6788 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6789 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6790 
6791 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6792 						      sc.gfp_mask);
6793 
6794 	/*
6795 	 * NOTE: Although we can get the priority field, using it
6796 	 * here is not a good idea, since it limits the pages we can scan.
6797 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6798 	 * will pick up pages from other mem cgroup's as well. We hack
6799 	 * the priority and make it zero.
6800 	 */
6801 	shrink_lruvec(lruvec, &sc);
6802 
6803 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6804 
6805 	*nr_scanned = sc.nr_scanned;
6806 
6807 	return sc.nr_reclaimed;
6808 }
6809 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6810 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6811 					   unsigned long nr_pages,
6812 					   gfp_t gfp_mask,
6813 					   unsigned int reclaim_options,
6814 					   int *swappiness)
6815 {
6816 	unsigned long nr_reclaimed;
6817 	unsigned int noreclaim_flag;
6818 	struct scan_control sc = {
6819 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6820 		.proactive_swappiness = swappiness,
6821 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6822 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6823 		.reclaim_idx = MAX_NR_ZONES - 1,
6824 		.target_mem_cgroup = memcg,
6825 		.priority = DEF_PRIORITY,
6826 		.may_writepage = !laptop_mode,
6827 		.may_unmap = 1,
6828 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6829 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6830 	};
6831 	/*
6832 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6833 	 * equal pressure on all the nodes. This is based on the assumption that
6834 	 * the reclaim does not bail out early.
6835 	 */
6836 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6837 
6838 	set_task_reclaim_state(current, &sc.reclaim_state);
6839 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6840 	noreclaim_flag = memalloc_noreclaim_save();
6841 
6842 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6843 
6844 	memalloc_noreclaim_restore(noreclaim_flag);
6845 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6846 	set_task_reclaim_state(current, NULL);
6847 
6848 	return nr_reclaimed;
6849 }
6850 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
6851 #endif
6852 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6853 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6854 {
6855 	struct mem_cgroup *memcg;
6856 	struct lruvec *lruvec;
6857 
6858 	if (lru_gen_enabled()) {
6859 		lru_gen_age_node(pgdat, sc);
6860 		return;
6861 	}
6862 
6863 	if (!can_age_anon_pages(pgdat, sc))
6864 		return;
6865 
6866 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6867 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6868 		return;
6869 
6870 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6871 	do {
6872 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6873 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6874 				   sc, LRU_ACTIVE_ANON);
6875 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6876 	} while (memcg);
6877 }
6878 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6879 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6880 {
6881 	int i;
6882 	struct zone *zone;
6883 
6884 	/*
6885 	 * Check for watermark boosts top-down as the higher zones
6886 	 * are more likely to be boosted. Both watermarks and boosts
6887 	 * should not be checked at the same time as reclaim would
6888 	 * start prematurely when there is no boosting and a lower
6889 	 * zone is balanced.
6890 	 */
6891 	for (i = highest_zoneidx; i >= 0; i--) {
6892 		zone = pgdat->node_zones + i;
6893 		if (!managed_zone(zone))
6894 			continue;
6895 
6896 		if (zone->watermark_boost)
6897 			return true;
6898 	}
6899 
6900 	return false;
6901 }
6902 
6903 /*
6904  * Returns true if there is an eligible zone balanced for the request order
6905  * and highest_zoneidx
6906  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6907 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6908 {
6909 	int i;
6910 	unsigned long mark = -1;
6911 	bool customized = false;
6912 	bool balanced = false;
6913 	struct zone *zone;
6914 
6915 	trace_android_vh_mm_customize_pgdat_balanced(order, highest_zoneidx,
6916 						     &balanced, &customized);
6917 	if (customized)
6918 		return balanced;
6919 
6920 	/*
6921 	 * Check watermarks bottom-up as lower zones are more likely to
6922 	 * meet watermarks.
6923 	 */
6924 	for (i = 0; i <= highest_zoneidx; i++) {
6925 		zone = pgdat->node_zones + i;
6926 
6927 		if (!managed_zone(zone))
6928 			continue;
6929 
6930 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6931 			mark = promo_wmark_pages(zone);
6932 		else
6933 			mark = high_wmark_pages(zone);
6934 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6935 			return true;
6936 	}
6937 
6938 	/*
6939 	 * If a node has no managed zone within highest_zoneidx, it does not
6940 	 * need balancing by definition. This can happen if a zone-restricted
6941 	 * allocation tries to wake a remote kswapd.
6942 	 */
6943 	if (mark == -1)
6944 		return true;
6945 
6946 	return false;
6947 }
6948 
6949 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6950 static void clear_pgdat_congested(pg_data_t *pgdat)
6951 {
6952 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6953 
6954 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6955 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6956 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6957 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6958 }
6959 
6960 /*
6961  * Prepare kswapd for sleeping. This verifies that there are no processes
6962  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6963  *
6964  * Returns true if kswapd is ready to sleep
6965  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6966 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6967 				int highest_zoneidx)
6968 {
6969 	/*
6970 	 * The throttled processes are normally woken up in balance_pgdat() as
6971 	 * soon as allow_direct_reclaim() is true. But there is a potential
6972 	 * race between when kswapd checks the watermarks and a process gets
6973 	 * throttled. There is also a potential race if processes get
6974 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6975 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6976 	 * the wake up checks. If kswapd is going to sleep, no process should
6977 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6978 	 * the wake up is premature, processes will wake kswapd and get
6979 	 * throttled again. The difference from wake ups in balance_pgdat() is
6980 	 * that here we are under prepare_to_wait().
6981 	 */
6982 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6983 		wake_up_all(&pgdat->pfmemalloc_wait);
6984 
6985 	/* Hopeless node, leave it to direct reclaim */
6986 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6987 		return true;
6988 
6989 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6990 		clear_pgdat_congested(pgdat);
6991 		return true;
6992 	}
6993 
6994 	return false;
6995 }
6996 
6997 /*
6998  * kswapd shrinks a node of pages that are at or below the highest usable
6999  * zone that is currently unbalanced.
7000  *
7001  * Returns true if kswapd scanned at least the requested number of pages to
7002  * reclaim or if the lack of progress was due to pages under writeback.
7003  * This is used to determine if the scanning priority needs to be raised.
7004  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)7005 static bool kswapd_shrink_node(pg_data_t *pgdat,
7006 			       struct scan_control *sc)
7007 {
7008 	struct zone *zone;
7009 	int z;
7010 	unsigned long nr_reclaimed = sc->nr_reclaimed;
7011 
7012 	/* Reclaim a number of pages proportional to the number of zones */
7013 	sc->nr_to_reclaim = 0;
7014 	for (z = 0; z <= sc->reclaim_idx; z++) {
7015 		zone = pgdat->node_zones + z;
7016 		if (!managed_zone(zone))
7017 			continue;
7018 
7019 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7020 	}
7021 
7022 	/*
7023 	 * Historically care was taken to put equal pressure on all zones but
7024 	 * now pressure is applied based on node LRU order.
7025 	 */
7026 	shrink_node(pgdat, sc);
7027 
7028 	/*
7029 	 * Fragmentation may mean that the system cannot be rebalanced for
7030 	 * high-order allocations. If twice the allocation size has been
7031 	 * reclaimed then recheck watermarks only at order-0 to prevent
7032 	 * excessive reclaim. Assume that a process requested a high-order
7033 	 * can direct reclaim/compact.
7034 	 */
7035 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7036 		sc->order = 0;
7037 
7038 	/* account for progress from mm_account_reclaimed_pages() */
7039 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
7040 }
7041 
7042 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7043 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)7044 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7045 {
7046 	int i;
7047 	struct zone *zone;
7048 
7049 	for (i = 0; i <= highest_zoneidx; i++) {
7050 		zone = pgdat->node_zones + i;
7051 
7052 		if (!managed_zone(zone))
7053 			continue;
7054 
7055 		if (active)
7056 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7057 		else
7058 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7059 	}
7060 }
7061 
7062 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7063 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7064 {
7065 	update_reclaim_active(pgdat, highest_zoneidx, true);
7066 }
7067 
7068 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7069 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7070 {
7071 	update_reclaim_active(pgdat, highest_zoneidx, false);
7072 }
7073 
7074 /*
7075  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7076  * that are eligible for use by the caller until at least one zone is
7077  * balanced.
7078  *
7079  * Returns the order kswapd finished reclaiming at.
7080  *
7081  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7082  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7083  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7084  * or lower is eligible for reclaim until at least one usable zone is
7085  * balanced.
7086  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7087 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7088 {
7089 	int i;
7090 	unsigned long nr_soft_reclaimed;
7091 	unsigned long nr_soft_scanned;
7092 	unsigned long pflags;
7093 	unsigned long nr_boost_reclaim;
7094 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7095 	bool boosted;
7096 	struct zone *zone;
7097 	struct scan_control sc = {
7098 		.gfp_mask = GFP_KERNEL,
7099 		.order = order,
7100 		.may_unmap = 1,
7101 	};
7102 	bool bypass = false;
7103 
7104 	set_task_reclaim_state(current, &sc.reclaim_state);
7105 	trace_android_vh_async_psi_bypass(&bypass);
7106 	if (!bypass)
7107 		psi_memstall_enter(&pflags);
7108 	__fs_reclaim_acquire(_THIS_IP_);
7109 
7110 	count_vm_event(PAGEOUTRUN);
7111 
7112 	/*
7113 	 * Account for the reclaim boost. Note that the zone boost is left in
7114 	 * place so that parallel allocations that are near the watermark will
7115 	 * stall or direct reclaim until kswapd is finished.
7116 	 */
7117 	nr_boost_reclaim = 0;
7118 	for (i = 0; i <= highest_zoneidx; i++) {
7119 		zone = pgdat->node_zones + i;
7120 		if (!managed_zone(zone))
7121 			continue;
7122 
7123 		nr_boost_reclaim += zone->watermark_boost;
7124 		zone_boosts[i] = zone->watermark_boost;
7125 	}
7126 	boosted = nr_boost_reclaim;
7127 
7128 restart:
7129 	set_reclaim_active(pgdat, highest_zoneidx);
7130 	sc.priority = DEF_PRIORITY;
7131 	do {
7132 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7133 		bool raise_priority = true;
7134 		bool balanced;
7135 		bool ret;
7136 		bool was_frozen;
7137 
7138 		sc.reclaim_idx = highest_zoneidx;
7139 
7140 		/*
7141 		 * If the number of buffer_heads exceeds the maximum allowed
7142 		 * then consider reclaiming from all zones. This has a dual
7143 		 * purpose -- on 64-bit systems it is expected that
7144 		 * buffer_heads are stripped during active rotation. On 32-bit
7145 		 * systems, highmem pages can pin lowmem memory and shrinking
7146 		 * buffers can relieve lowmem pressure. Reclaim may still not
7147 		 * go ahead if all eligible zones for the original allocation
7148 		 * request are balanced to avoid excessive reclaim from kswapd.
7149 		 */
7150 		if (buffer_heads_over_limit) {
7151 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7152 				zone = pgdat->node_zones + i;
7153 				if (!managed_zone(zone))
7154 					continue;
7155 
7156 				sc.reclaim_idx = i;
7157 				break;
7158 			}
7159 		}
7160 
7161 		/*
7162 		 * If the pgdat is imbalanced then ignore boosting and preserve
7163 		 * the watermarks for a later time and restart. Note that the
7164 		 * zone watermarks will be still reset at the end of balancing
7165 		 * on the grounds that the normal reclaim should be enough to
7166 		 * re-evaluate if boosting is required when kswapd next wakes.
7167 		 */
7168 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7169 		if (!balanced && nr_boost_reclaim) {
7170 			nr_boost_reclaim = 0;
7171 			goto restart;
7172 		}
7173 
7174 		/*
7175 		 * If boosting is not active then only reclaim if there are no
7176 		 * eligible zones. Note that sc.reclaim_idx is not used as
7177 		 * buffer_heads_over_limit may have adjusted it.
7178 		 */
7179 		if (!nr_boost_reclaim && balanced)
7180 			goto out;
7181 
7182 		/* Limit the priority of boosting to avoid reclaim writeback */
7183 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7184 			raise_priority = false;
7185 
7186 		/*
7187 		 * Do not writeback or swap pages for boosted reclaim. The
7188 		 * intent is to relieve pressure not issue sub-optimal IO
7189 		 * from reclaim context. If no pages are reclaimed, the
7190 		 * reclaim will be aborted.
7191 		 */
7192 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7193 		sc.may_swap = !nr_boost_reclaim;
7194 
7195 		/*
7196 		 * Do some background aging, to give pages a chance to be
7197 		 * referenced before reclaiming. All pages are rotated
7198 		 * regardless of classzone as this is about consistent aging.
7199 		 */
7200 		kswapd_age_node(pgdat, &sc);
7201 
7202 		/*
7203 		 * If we're getting trouble reclaiming, start doing writepage
7204 		 * even in laptop mode.
7205 		 */
7206 		if (sc.priority < DEF_PRIORITY - 2)
7207 			sc.may_writepage = 1;
7208 
7209 		/* Call soft limit reclaim before calling shrink_node. */
7210 		sc.nr_scanned = 0;
7211 		nr_soft_scanned = 0;
7212 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7213 							      sc.gfp_mask, &nr_soft_scanned);
7214 		sc.nr_reclaimed += nr_soft_reclaimed;
7215 
7216 		/*
7217 		 * There should be no need to raise the scanning priority if
7218 		 * enough pages are already being scanned that that high
7219 		 * watermark would be met at 100% efficiency.
7220 		 */
7221 		if (kswapd_shrink_node(pgdat, &sc))
7222 			raise_priority = false;
7223 
7224 		/*
7225 		 * If the low watermark is met there is no need for processes
7226 		 * to be throttled on pfmemalloc_wait as they should not be
7227 		 * able to safely make forward progress. Wake them
7228 		 */
7229 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7230 				allow_direct_reclaim(pgdat))
7231 			wake_up_all(&pgdat->pfmemalloc_wait);
7232 
7233 		/* Check if kswapd should be suspending */
7234 		__fs_reclaim_release(_THIS_IP_);
7235 		ret = kthread_freezable_should_stop(&was_frozen);
7236 		__fs_reclaim_acquire(_THIS_IP_);
7237 		if (was_frozen || ret)
7238 			break;
7239 
7240 		/*
7241 		 * Raise priority if scanning rate is too low or there was no
7242 		 * progress in reclaiming pages
7243 		 */
7244 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7245 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7246 
7247 		/*
7248 		 * If reclaim made no progress for a boost, stop reclaim as
7249 		 * IO cannot be queued and it could be an infinite loop in
7250 		 * extreme circumstances.
7251 		 */
7252 		if (nr_boost_reclaim && !nr_reclaimed)
7253 			break;
7254 
7255 		if (raise_priority || !nr_reclaimed)
7256 			sc.priority--;
7257 	} while (sc.priority >= 1);
7258 
7259 	/*
7260 	 * Restart only if it went through the priority loop all the way,
7261 	 * but cache_trim_mode didn't work.
7262 	 */
7263 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7264 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7265 		sc.no_cache_trim_mode = 1;
7266 		goto restart;
7267 	}
7268 
7269 	if (!sc.nr_reclaimed)
7270 		pgdat->kswapd_failures++;
7271 
7272 out:
7273 	clear_reclaim_active(pgdat, highest_zoneidx);
7274 
7275 	/* If reclaim was boosted, account for the reclaim done in this pass */
7276 	if (boosted) {
7277 		unsigned long flags;
7278 
7279 		for (i = 0; i <= highest_zoneidx; i++) {
7280 			if (!zone_boosts[i])
7281 				continue;
7282 
7283 			/* Increments are under the zone lock */
7284 			zone = pgdat->node_zones + i;
7285 			spin_lock_irqsave(&zone->lock, flags);
7286 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7287 			spin_unlock_irqrestore(&zone->lock, flags);
7288 		}
7289 
7290 		/*
7291 		 * As there is now likely space, wakeup kcompact to defragment
7292 		 * pageblocks.
7293 		 */
7294 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7295 	}
7296 
7297 	snapshot_refaults(NULL, pgdat);
7298 	__fs_reclaim_release(_THIS_IP_);
7299 	if (!bypass)
7300 		psi_memstall_leave(&pflags);
7301 	set_task_reclaim_state(current, NULL);
7302 
7303 	/*
7304 	 * Return the order kswapd stopped reclaiming at as
7305 	 * prepare_kswapd_sleep() takes it into account. If another caller
7306 	 * entered the allocator slow path while kswapd was awake, order will
7307 	 * remain at the higher level.
7308 	 */
7309 	return sc.order;
7310 }
7311 
7312 /*
7313  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7314  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7315  * not a valid index then either kswapd runs for first time or kswapd couldn't
7316  * sleep after previous reclaim attempt (node is still unbalanced). In that
7317  * case return the zone index of the previous kswapd reclaim cycle.
7318  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7319 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7320 					   enum zone_type prev_highest_zoneidx)
7321 {
7322 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7323 
7324 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7325 }
7326 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7327 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7328 				unsigned int highest_zoneidx)
7329 {
7330 	long remaining = 0;
7331 	DEFINE_WAIT(wait);
7332 
7333 	if (freezing(current) || kthread_should_stop())
7334 		return;
7335 
7336 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7337 
7338 	/*
7339 	 * Try to sleep for a short interval. Note that kcompactd will only be
7340 	 * woken if it is possible to sleep for a short interval. This is
7341 	 * deliberate on the assumption that if reclaim cannot keep an
7342 	 * eligible zone balanced that it's also unlikely that compaction will
7343 	 * succeed.
7344 	 */
7345 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7346 		/*
7347 		 * Compaction records what page blocks it recently failed to
7348 		 * isolate pages from and skips them in the future scanning.
7349 		 * When kswapd is going to sleep, it is reasonable to assume
7350 		 * that pages and compaction may succeed so reset the cache.
7351 		 */
7352 		reset_isolation_suitable(pgdat);
7353 
7354 		/*
7355 		 * We have freed the memory, now we should compact it to make
7356 		 * allocation of the requested order possible.
7357 		 */
7358 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7359 
7360 		remaining = schedule_timeout(HZ/10);
7361 
7362 		/*
7363 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7364 		 * order. The values will either be from a wakeup request or
7365 		 * the previous request that slept prematurely.
7366 		 */
7367 		if (remaining) {
7368 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7369 					kswapd_highest_zoneidx(pgdat,
7370 							highest_zoneidx));
7371 
7372 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7373 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7374 		}
7375 
7376 		finish_wait(&pgdat->kswapd_wait, &wait);
7377 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7378 	}
7379 
7380 	/*
7381 	 * After a short sleep, check if it was a premature sleep. If not, then
7382 	 * go fully to sleep until explicitly woken up.
7383 	 */
7384 	if (!remaining &&
7385 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7386 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7387 
7388 		/*
7389 		 * vmstat counters are not perfectly accurate and the estimated
7390 		 * value for counters such as NR_FREE_PAGES can deviate from the
7391 		 * true value by nr_online_cpus * threshold. To avoid the zone
7392 		 * watermarks being breached while under pressure, we reduce the
7393 		 * per-cpu vmstat threshold while kswapd is awake and restore
7394 		 * them before going back to sleep.
7395 		 */
7396 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7397 
7398 		if (!kthread_should_stop())
7399 			schedule();
7400 
7401 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7402 	} else {
7403 		if (remaining)
7404 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7405 		else
7406 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7407 	}
7408 	finish_wait(&pgdat->kswapd_wait, &wait);
7409 }
7410 
7411 /*
7412  * The background pageout daemon, started as a kernel thread
7413  * from the init process.
7414  *
7415  * This basically trickles out pages so that we have _some_
7416  * free memory available even if there is no other activity
7417  * that frees anything up. This is needed for things like routing
7418  * etc, where we otherwise might have all activity going on in
7419  * asynchronous contexts that cannot page things out.
7420  *
7421  * If there are applications that are active memory-allocators
7422  * (most normal use), this basically shouldn't matter.
7423  */
kswapd(void * p)7424 static int kswapd(void *p)
7425 {
7426 	unsigned int alloc_order, reclaim_order;
7427 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7428 	pg_data_t *pgdat = (pg_data_t *)p;
7429 	struct task_struct *tsk = current;
7430 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7431 
7432 	if (!cpumask_empty(cpumask))
7433 		set_cpus_allowed_ptr(tsk, cpumask);
7434 
7435 	/*
7436 	 * Tell the memory management that we're a "memory allocator",
7437 	 * and that if we need more memory we should get access to it
7438 	 * regardless (see "__alloc_pages()"). "kswapd" should
7439 	 * never get caught in the normal page freeing logic.
7440 	 *
7441 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7442 	 * you need a small amount of memory in order to be able to
7443 	 * page out something else, and this flag essentially protects
7444 	 * us from recursively trying to free more memory as we're
7445 	 * trying to free the first piece of memory in the first place).
7446 	 */
7447 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7448 	set_freezable();
7449 
7450 	WRITE_ONCE(pgdat->kswapd_order, 0);
7451 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7452 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7453 	for ( ; ; ) {
7454 		bool was_frozen;
7455 
7456 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7457 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7458 							highest_zoneidx);
7459 
7460 kswapd_try_sleep:
7461 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7462 					highest_zoneidx);
7463 
7464 		/* Read the new order and highest_zoneidx */
7465 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7466 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7467 							highest_zoneidx);
7468 		WRITE_ONCE(pgdat->kswapd_order, 0);
7469 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7470 
7471 		if (kthread_freezable_should_stop(&was_frozen))
7472 			break;
7473 
7474 		/*
7475 		 * We can speed up thawing tasks if we don't call balance_pgdat
7476 		 * after returning from the refrigerator
7477 		 */
7478 		if (was_frozen)
7479 			continue;
7480 
7481 		/*
7482 		 * Reclaim begins at the requested order but if a high-order
7483 		 * reclaim fails then kswapd falls back to reclaiming for
7484 		 * order-0. If that happens, kswapd will consider sleeping
7485 		 * for the order it finished reclaiming at (reclaim_order)
7486 		 * but kcompactd is woken to compact for the original
7487 		 * request (alloc_order).
7488 		 */
7489 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7490 						alloc_order);
7491 		trace_android_rvh_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7492 						alloc_order);
7493 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7494 						highest_zoneidx);
7495 		trace_android_rvh_vmscan_kswapd_done(pgdat->node_id, highest_zoneidx,
7496 						alloc_order, reclaim_order);
7497 		trace_android_vh_vmscan_kswapd_done(pgdat->node_id, highest_zoneidx,
7498 			       			alloc_order, reclaim_order);
7499 		if (reclaim_order < alloc_order)
7500 			goto kswapd_try_sleep;
7501 	}
7502 
7503 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7504 
7505 	return 0;
7506 }
7507 
7508 /*
7509  * A zone is low on free memory or too fragmented for high-order memory.  If
7510  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7511  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7512  * has failed or is not needed, still wake up kcompactd if only compaction is
7513  * needed.
7514  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7515 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7516 		   enum zone_type highest_zoneidx)
7517 {
7518 	pg_data_t *pgdat;
7519 	enum zone_type curr_idx;
7520 
7521 	if (!managed_zone(zone))
7522 		return;
7523 
7524 	if (!cpuset_zone_allowed(zone, gfp_flags))
7525 		return;
7526 
7527 	trace_android_vh_mm_customize_reclaim_idx(order, gfp_flags, NULL,
7528 						  &highest_zoneidx);
7529 
7530 	pgdat = zone->zone_pgdat;
7531 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7532 
7533 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7534 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7535 
7536 	if (READ_ONCE(pgdat->kswapd_order) < order)
7537 		WRITE_ONCE(pgdat->kswapd_order, order);
7538 
7539 	if (!waitqueue_active(&pgdat->kswapd_wait))
7540 		return;
7541 
7542 	/* Hopeless node, leave it to direct reclaim if possible */
7543 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7544 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7545 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7546 		/*
7547 		 * There may be plenty of free memory available, but it's too
7548 		 * fragmented for high-order allocations.  Wake up kcompactd
7549 		 * and rely on compaction_suitable() to determine if it's
7550 		 * needed.  If it fails, it will defer subsequent attempts to
7551 		 * ratelimit its work.
7552 		 */
7553 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7554 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7555 		return;
7556 	}
7557 
7558 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7559 				      gfp_flags);
7560 	wake_up_interruptible(&pgdat->kswapd_wait);
7561 }
7562 
7563 #ifdef CONFIG_HIBERNATION
7564 /*
7565  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7566  * freed pages.
7567  *
7568  * Rather than trying to age LRUs the aim is to preserve the overall
7569  * LRU order by reclaiming preferentially
7570  * inactive > active > active referenced > active mapped
7571  */
shrink_all_memory(unsigned long nr_to_reclaim)7572 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7573 {
7574 	struct scan_control sc = {
7575 		.nr_to_reclaim = nr_to_reclaim,
7576 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7577 		.reclaim_idx = MAX_NR_ZONES - 1,
7578 		.priority = DEF_PRIORITY,
7579 		.may_writepage = 1,
7580 		.may_unmap = 1,
7581 		.may_swap = 1,
7582 		.hibernation_mode = 1,
7583 	};
7584 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7585 	unsigned long nr_reclaimed;
7586 	unsigned int noreclaim_flag;
7587 
7588 	fs_reclaim_acquire(sc.gfp_mask);
7589 	noreclaim_flag = memalloc_noreclaim_save();
7590 	set_task_reclaim_state(current, &sc.reclaim_state);
7591 
7592 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7593 
7594 	set_task_reclaim_state(current, NULL);
7595 	memalloc_noreclaim_restore(noreclaim_flag);
7596 	fs_reclaim_release(sc.gfp_mask);
7597 
7598 	return nr_reclaimed;
7599 }
7600 #endif /* CONFIG_HIBERNATION */
7601 
7602 /*
7603  * This kswapd start function will be called by init and node-hot-add.
7604  */
kswapd_run(int nid)7605 void __meminit kswapd_run(int nid)
7606 {
7607 	pg_data_t *pgdat = NODE_DATA(nid);
7608 
7609 	pgdat_kswapd_lock(pgdat);
7610 	if (!pgdat->kswapd) {
7611 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7612 		if (IS_ERR(pgdat->kswapd)) {
7613 			/* failure at boot is fatal */
7614 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7615 				   nid, PTR_ERR(pgdat->kswapd));
7616 			BUG_ON(system_state < SYSTEM_RUNNING);
7617 			pgdat->kswapd = NULL;
7618 		}
7619 	}
7620 	pgdat_kswapd_unlock(pgdat);
7621 }
7622 
7623 /*
7624  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7625  * be holding mem_hotplug_begin/done().
7626  */
kswapd_stop(int nid)7627 void __meminit kswapd_stop(int nid)
7628 {
7629 	pg_data_t *pgdat = NODE_DATA(nid);
7630 	struct task_struct *kswapd;
7631 
7632 	pgdat_kswapd_lock(pgdat);
7633 	kswapd = pgdat->kswapd;
7634 	if (kswapd) {
7635 		kthread_stop(kswapd);
7636 		pgdat->kswapd = NULL;
7637 	}
7638 	pgdat_kswapd_unlock(pgdat);
7639 }
7640 
kswapd_init(void)7641 static int __init kswapd_init(void)
7642 {
7643 	int nid;
7644 
7645 	swap_setup();
7646 	for_each_node_state(nid, N_MEMORY)
7647  		kswapd_run(nid);
7648 	return 0;
7649 }
7650 
7651 module_init(kswapd_init)
7652 
7653 #ifdef CONFIG_NUMA
7654 /*
7655  * Node reclaim mode
7656  *
7657  * If non-zero call node_reclaim when the number of free pages falls below
7658  * the watermarks.
7659  */
7660 int node_reclaim_mode __read_mostly;
7661 
7662 /*
7663  * Priority for NODE_RECLAIM. This determines the fraction of pages
7664  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7665  * a zone.
7666  */
7667 #define NODE_RECLAIM_PRIORITY 4
7668 
7669 /*
7670  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7671  * occur.
7672  */
7673 int sysctl_min_unmapped_ratio = 1;
7674 
7675 /*
7676  * If the number of slab pages in a zone grows beyond this percentage then
7677  * slab reclaim needs to occur.
7678  */
7679 int sysctl_min_slab_ratio = 5;
7680 
node_unmapped_file_pages(struct pglist_data * pgdat)7681 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7682 {
7683 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7684 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7685 		node_page_state(pgdat, NR_ACTIVE_FILE);
7686 
7687 	/*
7688 	 * It's possible for there to be more file mapped pages than
7689 	 * accounted for by the pages on the file LRU lists because
7690 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7691 	 */
7692 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7693 }
7694 
7695 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7696 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7697 {
7698 	unsigned long nr_pagecache_reclaimable;
7699 	unsigned long delta = 0;
7700 
7701 	/*
7702 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7703 	 * potentially reclaimable. Otherwise, we have to worry about
7704 	 * pages like swapcache and node_unmapped_file_pages() provides
7705 	 * a better estimate
7706 	 */
7707 	if (node_reclaim_mode & RECLAIM_UNMAP)
7708 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7709 	else
7710 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7711 
7712 	/* If we can't clean pages, remove dirty pages from consideration */
7713 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7714 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7715 
7716 	/* Watch for any possible underflows due to delta */
7717 	if (unlikely(delta > nr_pagecache_reclaimable))
7718 		delta = nr_pagecache_reclaimable;
7719 
7720 	return nr_pagecache_reclaimable - delta;
7721 }
7722 
7723 /*
7724  * Try to free up some pages from this node through reclaim.
7725  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7726 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7727 {
7728 	/* Minimum pages needed in order to stay on node */
7729 	const unsigned long nr_pages = 1 << order;
7730 	struct task_struct *p = current;
7731 	unsigned int noreclaim_flag;
7732 	struct scan_control sc = {
7733 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7734 		.gfp_mask = current_gfp_context(gfp_mask),
7735 		.order = order,
7736 		.priority = NODE_RECLAIM_PRIORITY,
7737 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7738 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7739 		.may_swap = 1,
7740 		.reclaim_idx = gfp_zone(gfp_mask),
7741 	};
7742 	unsigned long pflags;
7743 
7744 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7745 					   sc.gfp_mask);
7746 
7747 	cond_resched();
7748 	psi_memstall_enter(&pflags);
7749 	delayacct_freepages_start();
7750 	fs_reclaim_acquire(sc.gfp_mask);
7751 	/*
7752 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7753 	 */
7754 	noreclaim_flag = memalloc_noreclaim_save();
7755 	set_task_reclaim_state(p, &sc.reclaim_state);
7756 
7757 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7758 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7759 		/*
7760 		 * Free memory by calling shrink node with increasing
7761 		 * priorities until we have enough memory freed.
7762 		 */
7763 		do {
7764 			shrink_node(pgdat, &sc);
7765 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7766 	}
7767 
7768 	set_task_reclaim_state(p, NULL);
7769 	memalloc_noreclaim_restore(noreclaim_flag);
7770 	fs_reclaim_release(sc.gfp_mask);
7771 	psi_memstall_leave(&pflags);
7772 	delayacct_freepages_end();
7773 
7774 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7775 
7776 	return sc.nr_reclaimed >= nr_pages;
7777 }
7778 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7779 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7780 {
7781 	int ret;
7782 
7783 	/*
7784 	 * Node reclaim reclaims unmapped file backed pages and
7785 	 * slab pages if we are over the defined limits.
7786 	 *
7787 	 * A small portion of unmapped file backed pages is needed for
7788 	 * file I/O otherwise pages read by file I/O will be immediately
7789 	 * thrown out if the node is overallocated. So we do not reclaim
7790 	 * if less than a specified percentage of the node is used by
7791 	 * unmapped file backed pages.
7792 	 */
7793 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7794 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7795 	    pgdat->min_slab_pages)
7796 		return NODE_RECLAIM_FULL;
7797 
7798 	/*
7799 	 * Do not scan if the allocation should not be delayed.
7800 	 */
7801 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7802 		return NODE_RECLAIM_NOSCAN;
7803 
7804 	/*
7805 	 * Only run node reclaim on the local node or on nodes that do not
7806 	 * have associated processors. This will favor the local processor
7807 	 * over remote processors and spread off node memory allocations
7808 	 * as wide as possible.
7809 	 */
7810 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7811 		return NODE_RECLAIM_NOSCAN;
7812 
7813 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7814 		return NODE_RECLAIM_NOSCAN;
7815 
7816 	ret = __node_reclaim(pgdat, gfp_mask, order);
7817 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7818 
7819 	if (ret)
7820 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7821 	else
7822 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7823 
7824 	return ret;
7825 }
7826 #endif
7827 
7828 /**
7829  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7830  * lru list
7831  * @fbatch: Batch of lru folios to check.
7832  *
7833  * Checks folios for evictability, if an evictable folio is in the unevictable
7834  * lru list, moves it to the appropriate evictable lru list. This function
7835  * should be only used for lru folios.
7836  */
check_move_unevictable_folios(struct folio_batch * fbatch)7837 void check_move_unevictable_folios(struct folio_batch *fbatch)
7838 {
7839 	struct lruvec *lruvec = NULL;
7840 	int pgscanned = 0;
7841 	int pgrescued = 0;
7842 	int i;
7843 
7844 	for (i = 0; i < fbatch->nr; i++) {
7845 		struct folio *folio = fbatch->folios[i];
7846 		int nr_pages = folio_nr_pages(folio);
7847 
7848 		pgscanned += nr_pages;
7849 
7850 		/* block memcg migration while the folio moves between lrus */
7851 		if (!folio_test_clear_lru(folio))
7852 			continue;
7853 
7854 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7855 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7856 			lruvec_del_folio(lruvec, folio);
7857 			folio_clear_unevictable(folio);
7858 			lruvec_add_folio(lruvec, folio);
7859 			pgrescued += nr_pages;
7860 		}
7861 		folio_set_lru(folio);
7862 	}
7863 
7864 	if (lruvec) {
7865 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7866 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7867 		unlock_page_lruvec_irq(lruvec);
7868 	} else if (pgscanned) {
7869 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7870 	}
7871 }
7872 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7873