1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Workingset detection
4 *
5 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6 */
7
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include "internal.h"
20 #include <trace/hooks/mm.h>
21
22 /*
23 * Double CLOCK lists
24 *
25 * Per node, two clock lists are maintained for file pages: the
26 * inactive and the active list. Freshly faulted pages start out at
27 * the head of the inactive list and page reclaim scans pages from the
28 * tail. Pages that are accessed multiple times on the inactive list
29 * are promoted to the active list, to protect them from reclaim,
30 * whereas active pages are demoted to the inactive list when the
31 * active list grows too big.
32 *
33 * fault ------------------------+
34 * |
35 * +--------------+ | +-------------+
36 * reclaim <- | inactive | <-+-- demotion | active | <--+
37 * +--------------+ +-------------+ |
38 * | |
39 * +-------------- promotion ------------------+
40 *
41 *
42 * Access frequency and refault distance
43 *
44 * A workload is thrashing when its pages are frequently used but they
45 * are evicted from the inactive list every time before another access
46 * would have promoted them to the active list.
47 *
48 * In cases where the average access distance between thrashing pages
49 * is bigger than the size of memory there is nothing that can be
50 * done - the thrashing set could never fit into memory under any
51 * circumstance.
52 *
53 * However, the average access distance could be bigger than the
54 * inactive list, yet smaller than the size of memory. In this case,
55 * the set could fit into memory if it weren't for the currently
56 * active pages - which may be used more, hopefully less frequently:
57 *
58 * +-memory available to cache-+
59 * | |
60 * +-inactive------+-active----+
61 * a b | c d e f g h i | J K L M N |
62 * +---------------+-----------+
63 *
64 * It is prohibitively expensive to accurately track access frequency
65 * of pages. But a reasonable approximation can be made to measure
66 * thrashing on the inactive list, after which refaulting pages can be
67 * activated optimistically to compete with the existing active pages.
68 *
69 * Approximating inactive page access frequency - Observations:
70 *
71 * 1. When a page is accessed for the first time, it is added to the
72 * head of the inactive list, slides every existing inactive page
73 * towards the tail by one slot, and pushes the current tail page
74 * out of memory.
75 *
76 * 2. When a page is accessed for the second time, it is promoted to
77 * the active list, shrinking the inactive list by one slot. This
78 * also slides all inactive pages that were faulted into the cache
79 * more recently than the activated page towards the tail of the
80 * inactive list.
81 *
82 * Thus:
83 *
84 * 1. The sum of evictions and activations between any two points in
85 * time indicate the minimum number of inactive pages accessed in
86 * between.
87 *
88 * 2. Moving one inactive page N page slots towards the tail of the
89 * list requires at least N inactive page accesses.
90 *
91 * Combining these:
92 *
93 * 1. When a page is finally evicted from memory, the number of
94 * inactive pages accessed while the page was in cache is at least
95 * the number of page slots on the inactive list.
96 *
97 * 2. In addition, measuring the sum of evictions and activations (E)
98 * at the time of a page's eviction, and comparing it to another
99 * reading (R) at the time the page faults back into memory tells
100 * the minimum number of accesses while the page was not cached.
101 * This is called the refault distance.
102 *
103 * Because the first access of the page was the fault and the second
104 * access the refault, we combine the in-cache distance with the
105 * out-of-cache distance to get the complete minimum access distance
106 * of this page:
107 *
108 * NR_inactive + (R - E)
109 *
110 * And knowing the minimum access distance of a page, we can easily
111 * tell if the page would be able to stay in cache assuming all page
112 * slots in the cache were available:
113 *
114 * NR_inactive + (R - E) <= NR_inactive + NR_active
115 *
116 * If we have swap we should consider about NR_inactive_anon and
117 * NR_active_anon, so for page cache and anonymous respectively:
118 *
119 * NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
120 * + NR_inactive_anon + NR_active_anon
121 *
122 * NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
123 * + NR_inactive_file + NR_active_file
124 *
125 * Which can be further simplified to:
126 *
127 * (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
128 *
129 * (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
130 *
131 * Put into words, the refault distance (out-of-cache) can be seen as
132 * a deficit in inactive list space (in-cache). If the inactive list
133 * had (R - E) more page slots, the page would not have been evicted
134 * in between accesses, but activated instead. And on a full system,
135 * the only thing eating into inactive list space is active pages.
136 *
137 *
138 * Refaulting inactive pages
139 *
140 * All that is known about the active list is that the pages have been
141 * accessed more than once in the past. This means that at any given
142 * time there is actually a good chance that pages on the active list
143 * are no longer in active use.
144 *
145 * So when a refault distance of (R - E) is observed and there are at
146 * least (R - E) pages in the userspace workingset, the refaulting page
147 * is activated optimistically in the hope that (R - E) pages are actually
148 * used less frequently than the refaulting page - or even not used at
149 * all anymore.
150 *
151 * That means if inactive cache is refaulting with a suitable refault
152 * distance, we assume the cache workingset is transitioning and put
153 * pressure on the current workingset.
154 *
155 * If this is wrong and demotion kicks in, the pages which are truly
156 * used more frequently will be reactivated while the less frequently
157 * used once will be evicted from memory.
158 *
159 * But if this is right, the stale pages will be pushed out of memory
160 * and the used pages get to stay in cache.
161 *
162 * Refaulting active pages
163 *
164 * If on the other hand the refaulting pages have recently been
165 * deactivated, it means that the active list is no longer protecting
166 * actively used cache from reclaim. The cache is NOT transitioning to
167 * a different workingset; the existing workingset is thrashing in the
168 * space allocated to the page cache.
169 *
170 *
171 * Implementation
172 *
173 * For each node's LRU lists, a counter for inactive evictions and
174 * activations is maintained (node->nonresident_age).
175 *
176 * On eviction, a snapshot of this counter (along with some bits to
177 * identify the node) is stored in the now empty page cache
178 * slot of the evicted page. This is called a shadow entry.
179 *
180 * On cache misses for which there are shadow entries, an eligible
181 * refault distance will immediately activate the refaulting page.
182 */
183
184 #define WORKINGSET_SHIFT 1
185 #define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \
186 WORKINGSET_SHIFT + NODES_SHIFT + \
187 MEM_CGROUP_ID_SHIFT)
188 #define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
189
190 /*
191 * Eviction timestamps need to be able to cover the full range of
192 * actionable refaults. However, bits are tight in the xarray
193 * entry, and after storing the identifier for the lruvec there might
194 * not be enough left to represent every single actionable refault. In
195 * that case, we have to sacrifice granularity for distance, and group
196 * evictions into coarser buckets by shaving off lower timestamp bits.
197 */
198 static unsigned int bucket_order __read_mostly;
199
pack_shadow(int memcgid,pg_data_t * pgdat,unsigned long eviction,bool workingset)200 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
201 bool workingset)
202 {
203 eviction &= EVICTION_MASK;
204 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
205 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
206 eviction = (eviction << WORKINGSET_SHIFT) | workingset;
207
208 return xa_mk_value(eviction);
209 }
210
unpack_shadow(void * shadow,int * memcgidp,pg_data_t ** pgdat,unsigned long * evictionp,bool * workingsetp)211 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
212 unsigned long *evictionp, bool *workingsetp)
213 {
214 unsigned long entry = xa_to_value(shadow);
215 int memcgid, nid;
216 bool workingset;
217
218 workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
219 entry >>= WORKINGSET_SHIFT;
220 nid = entry & ((1UL << NODES_SHIFT) - 1);
221 entry >>= NODES_SHIFT;
222 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
223 entry >>= MEM_CGROUP_ID_SHIFT;
224
225 *memcgidp = memcgid;
226 *pgdat = NODE_DATA(nid);
227 *evictionp = entry;
228 *workingsetp = workingset;
229 }
230
231 #ifdef CONFIG_LRU_GEN
232
lru_gen_eviction(struct folio * folio)233 static void *lru_gen_eviction(struct folio *folio)
234 {
235 int hist;
236 unsigned long token;
237 unsigned long min_seq;
238 struct lruvec *lruvec;
239 struct lru_gen_folio *lrugen;
240 int type = folio_is_file_lru(folio);
241 int delta = folio_nr_pages(folio);
242 int refs = folio_lru_refs(folio);
243 bool workingset = folio_test_workingset(folio);
244 int tier = lru_tier_from_refs(refs, workingset);
245 struct mem_cgroup *memcg = folio_memcg(folio);
246 struct pglist_data *pgdat = folio_pgdat(folio);
247
248 BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
249
250 lruvec = mem_cgroup_lruvec(memcg, pgdat);
251 lrugen = &lruvec->lrugen;
252 min_seq = READ_ONCE(lrugen->min_seq[type]);
253 token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
254
255 hist = lru_hist_from_seq(min_seq);
256 atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
257
258 return pack_shadow(mem_cgroup_id(memcg), pgdat, token, workingset);
259 }
260
261 /*
262 * Tests if the shadow entry is for a folio that was recently evicted.
263 * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
264 */
lru_gen_test_recent(void * shadow,struct lruvec ** lruvec,unsigned long * token,bool * workingset)265 static bool lru_gen_test_recent(void *shadow, struct lruvec **lruvec,
266 unsigned long *token, bool *workingset)
267 {
268 int memcg_id;
269 unsigned long max_seq;
270 struct mem_cgroup *memcg;
271 struct pglist_data *pgdat;
272
273 unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
274
275 memcg = mem_cgroup_from_id(memcg_id);
276 *lruvec = mem_cgroup_lruvec(memcg, pgdat);
277
278 max_seq = READ_ONCE((*lruvec)->lrugen.max_seq);
279 max_seq &= EVICTION_MASK >> LRU_REFS_WIDTH;
280
281 return abs_diff(max_seq, *token >> LRU_REFS_WIDTH) < MAX_NR_GENS;
282 }
283
lru_gen_refault(struct folio * folio,void * shadow)284 static void lru_gen_refault(struct folio *folio, void *shadow)
285 {
286 bool recent;
287 int hist, tier, refs;
288 bool workingset;
289 unsigned long token;
290 struct lruvec *lruvec;
291 struct lru_gen_folio *lrugen;
292 int type = folio_is_file_lru(folio);
293 int delta = folio_nr_pages(folio);
294
295 rcu_read_lock();
296
297 recent = lru_gen_test_recent(shadow, &lruvec, &token, &workingset);
298 if (lruvec != folio_lruvec(folio))
299 goto unlock;
300
301 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
302
303 if (!recent)
304 goto unlock;
305
306 lrugen = &lruvec->lrugen;
307
308 hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
309 refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + 1;
310 tier = lru_tier_from_refs(refs, workingset);
311
312 atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
313
314 /* see folio_add_lru() where folio_set_active() will be called */
315 if (lru_gen_in_fault())
316 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
317
318 if (workingset) {
319 folio_set_workingset(folio);
320 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
321 } else
322 set_mask_bits(&folio->flags, LRU_REFS_MASK, (refs - 1UL) << LRU_REFS_PGOFF);
323 unlock:
324 rcu_read_unlock();
325 }
326
327 #else /* !CONFIG_LRU_GEN */
328
lru_gen_eviction(struct folio * folio)329 static void *lru_gen_eviction(struct folio *folio)
330 {
331 return NULL;
332 }
333
lru_gen_test_recent(void * shadow,struct lruvec ** lruvec,unsigned long * token,bool * workingset)334 static bool lru_gen_test_recent(void *shadow, struct lruvec **lruvec,
335 unsigned long *token, bool *workingset)
336 {
337 return false;
338 }
339
lru_gen_refault(struct folio * folio,void * shadow)340 static void lru_gen_refault(struct folio *folio, void *shadow)
341 {
342 }
343
344 #endif /* CONFIG_LRU_GEN */
345
346 /**
347 * workingset_age_nonresident - age non-resident entries as LRU ages
348 * @lruvec: the lruvec that was aged
349 * @nr_pages: the number of pages to count
350 *
351 * As in-memory pages are aged, non-resident pages need to be aged as
352 * well, in order for the refault distances later on to be comparable
353 * to the in-memory dimensions. This function allows reclaim and LRU
354 * operations to drive the non-resident aging along in parallel.
355 */
workingset_age_nonresident(struct lruvec * lruvec,unsigned long nr_pages)356 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
357 {
358 /*
359 * Reclaiming a cgroup means reclaiming all its children in a
360 * round-robin fashion. That means that each cgroup has an LRU
361 * order that is composed of the LRU orders of its child
362 * cgroups; and every page has an LRU position not just in the
363 * cgroup that owns it, but in all of that group's ancestors.
364 *
365 * So when the physical inactive list of a leaf cgroup ages,
366 * the virtual inactive lists of all its parents, including
367 * the root cgroup's, age as well.
368 */
369 do {
370 atomic_long_add(nr_pages, &lruvec->nonresident_age);
371 } while ((lruvec = parent_lruvec(lruvec)));
372 }
373
374 /**
375 * workingset_eviction - note the eviction of a folio from memory
376 * @target_memcg: the cgroup that is causing the reclaim
377 * @folio: the folio being evicted
378 *
379 * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
380 * of the evicted @folio so that a later refault can be detected.
381 */
workingset_eviction(struct folio * folio,struct mem_cgroup * target_memcg)382 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
383 {
384 struct pglist_data *pgdat = folio_pgdat(folio);
385 unsigned long eviction;
386 struct lruvec *lruvec;
387 int memcgid;
388
389 /* Folio is fully exclusive and pins folio's memory cgroup pointer */
390 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
391 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
392 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
393
394 if (lru_gen_enabled())
395 return lru_gen_eviction(folio);
396
397 lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
398 /* XXX: target_memcg can be NULL, go through lruvec */
399 memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
400 eviction = atomic_long_read(&lruvec->nonresident_age);
401 eviction >>= bucket_order;
402 workingset_age_nonresident(lruvec, folio_nr_pages(folio));
403 return pack_shadow(memcgid, pgdat, eviction,
404 folio_test_workingset(folio));
405 }
406
407 /**
408 * workingset_test_recent - tests if the shadow entry is for a folio that was
409 * recently evicted. Also fills in @workingset with the value unpacked from
410 * shadow.
411 * @shadow: the shadow entry to be tested.
412 * @file: whether the corresponding folio is from the file lru.
413 * @workingset: where the workingset value unpacked from shadow should
414 * be stored.
415 * @flush: whether to flush cgroup rstat.
416 *
417 * Return: true if the shadow is for a recently evicted folio; false otherwise.
418 */
workingset_test_recent(void * shadow,bool file,bool * workingset,bool flush)419 bool workingset_test_recent(void *shadow, bool file, bool *workingset,
420 bool flush)
421 {
422 struct mem_cgroup *eviction_memcg;
423 struct lruvec *eviction_lruvec;
424 unsigned long refault_distance;
425 unsigned long workingset_size;
426 unsigned long refault;
427 int memcgid;
428 struct pglist_data *pgdat;
429 unsigned long eviction;
430
431 if (lru_gen_enabled()) {
432 bool recent;
433
434 rcu_read_lock();
435 recent = lru_gen_test_recent(shadow, &eviction_lruvec, &eviction, workingset);
436 rcu_read_unlock();
437 return recent;
438 }
439
440 rcu_read_lock();
441 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
442 eviction <<= bucket_order;
443
444 /*
445 * Look up the memcg associated with the stored ID. It might
446 * have been deleted since the folio's eviction.
447 *
448 * Note that in rare events the ID could have been recycled
449 * for a new cgroup that refaults a shared folio. This is
450 * impossible to tell from the available data. However, this
451 * should be a rare and limited disturbance, and activations
452 * are always speculative anyway. Ultimately, it's the aging
453 * algorithm's job to shake out the minimum access frequency
454 * for the active cache.
455 *
456 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
457 * would be better if the root_mem_cgroup existed in all
458 * configurations instead.
459 */
460 eviction_memcg = mem_cgroup_from_id(memcgid);
461 if (!mem_cgroup_tryget(eviction_memcg))
462 eviction_memcg = NULL;
463 rcu_read_unlock();
464
465 if (!mem_cgroup_disabled() && !eviction_memcg)
466 return false;
467 /*
468 * Flush stats (and potentially sleep) outside the RCU read section.
469 *
470 * Note that workingset_test_recent() itself might be called in RCU read
471 * section (for e.g, in cachestat) - these callers need to skip flushing
472 * stats (via the flush argument).
473 *
474 * XXX: With per-memcg flushing and thresholding, is ratelimiting
475 * still needed here?
476 */
477 if (flush)
478 mem_cgroup_flush_stats_ratelimited(eviction_memcg);
479
480 eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
481 refault = atomic_long_read(&eviction_lruvec->nonresident_age);
482
483 /*
484 * Calculate the refault distance
485 *
486 * The unsigned subtraction here gives an accurate distance
487 * across nonresident_age overflows in most cases. There is a
488 * special case: usually, shadow entries have a short lifetime
489 * and are either refaulted or reclaimed along with the inode
490 * before they get too old. But it is not impossible for the
491 * nonresident_age to lap a shadow entry in the field, which
492 * can then result in a false small refault distance, leading
493 * to a false activation should this old entry actually
494 * refault again. However, earlier kernels used to deactivate
495 * unconditionally with *every* reclaim invocation for the
496 * longest time, so the occasional inappropriate activation
497 * leading to pressure on the active list is not a problem.
498 */
499 refault_distance = (refault - eviction) & EVICTION_MASK;
500
501 /*
502 * Compare the distance to the existing workingset size. We
503 * don't activate pages that couldn't stay resident even if
504 * all the memory was available to the workingset. Whether
505 * workingset competition needs to consider anon or not depends
506 * on having free swap space.
507 */
508 workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
509 if (!file) {
510 workingset_size += lruvec_page_state(eviction_lruvec,
511 NR_INACTIVE_FILE);
512 }
513 if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
514 workingset_size += lruvec_page_state(eviction_lruvec,
515 NR_ACTIVE_ANON);
516 if (file) {
517 workingset_size += lruvec_page_state(eviction_lruvec,
518 NR_INACTIVE_ANON);
519 }
520 }
521
522 mem_cgroup_put(eviction_memcg);
523 return refault_distance <= workingset_size;
524 }
525
526 /**
527 * workingset_refault - Evaluate the refault of a previously evicted folio.
528 * @folio: The freshly allocated replacement folio.
529 * @shadow: Shadow entry of the evicted folio.
530 *
531 * Calculates and evaluates the refault distance of the previously
532 * evicted folio in the context of the node and the memcg whose memory
533 * pressure caused the eviction.
534 */
workingset_refault(struct folio * folio,void * shadow)535 void workingset_refault(struct folio *folio, void *shadow)
536 {
537 bool file = folio_is_file_lru(folio);
538 struct pglist_data *pgdat;
539 struct mem_cgroup *memcg;
540 struct lruvec *lruvec;
541 bool workingset;
542 long nr;
543
544 trace_android_vh_count_workingset_refault(folio);
545 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
546 if (lru_gen_enabled()) {
547 lru_gen_refault(folio, shadow);
548 return;
549 }
550
551 /*
552 * The activation decision for this folio is made at the level
553 * where the eviction occurred, as that is where the LRU order
554 * during folio reclaim is being determined.
555 *
556 * However, the cgroup that will own the folio is the one that
557 * is actually experiencing the refault event. Make sure the folio is
558 * locked to guarantee folio_memcg() stability throughout.
559 */
560 nr = folio_nr_pages(folio);
561 memcg = folio_memcg(folio);
562 pgdat = folio_pgdat(folio);
563 lruvec = mem_cgroup_lruvec(memcg, pgdat);
564
565 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
566
567 if (!workingset_test_recent(shadow, file, &workingset, true))
568 return;
569
570 folio_set_active(folio);
571 workingset_age_nonresident(lruvec, nr);
572 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
573
574 /* Folio was active prior to eviction */
575 if (workingset) {
576 folio_set_workingset(folio);
577 /*
578 * XXX: Move to folio_add_lru() when it supports new vs
579 * putback
580 */
581 lru_note_cost_refault(folio);
582 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
583 }
584 }
585
586 /**
587 * workingset_activation - note a page activation
588 * @folio: Folio that is being activated.
589 */
workingset_activation(struct folio * folio)590 void workingset_activation(struct folio *folio)
591 {
592 struct mem_cgroup *memcg;
593
594 rcu_read_lock();
595 /*
596 * Filter non-memcg pages here, e.g. unmap can call
597 * mark_page_accessed() on VDSO pages.
598 *
599 * XXX: See workingset_refault() - this should return
600 * root_mem_cgroup even for !CONFIG_MEMCG.
601 */
602 memcg = folio_memcg_rcu(folio);
603 if (!mem_cgroup_disabled() && !memcg)
604 goto out;
605 workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
606 out:
607 rcu_read_unlock();
608 }
609
610 /*
611 * Shadow entries reflect the share of the working set that does not
612 * fit into memory, so their number depends on the access pattern of
613 * the workload. In most cases, they will refault or get reclaimed
614 * along with the inode, but a (malicious) workload that streams
615 * through files with a total size several times that of available
616 * memory, while preventing the inodes from being reclaimed, can
617 * create excessive amounts of shadow nodes. To keep a lid on this,
618 * track shadow nodes and reclaim them when they grow way past the
619 * point where they would still be useful.
620 */
621
622 struct list_lru shadow_nodes;
623
workingset_update_node(struct xa_node * node)624 void workingset_update_node(struct xa_node *node)
625 {
626 struct address_space *mapping;
627 struct page *page = virt_to_page(node);
628
629 /*
630 * Track non-empty nodes that contain only shadow entries;
631 * unlink those that contain pages or are being freed.
632 *
633 * Avoid acquiring the list_lru lock when the nodes are
634 * already where they should be. The list_empty() test is safe
635 * as node->private_list is protected by the i_pages lock.
636 */
637 mapping = container_of(node->array, struct address_space, i_pages);
638 lockdep_assert_held(&mapping->i_pages.xa_lock);
639
640 if (node->count && node->count == node->nr_values) {
641 if (list_empty(&node->private_list)) {
642 list_lru_add_obj(&shadow_nodes, &node->private_list);
643 __inc_node_page_state(page, WORKINGSET_NODES);
644 }
645 } else {
646 if (!list_empty(&node->private_list)) {
647 list_lru_del_obj(&shadow_nodes, &node->private_list);
648 __dec_node_page_state(page, WORKINGSET_NODES);
649 }
650 }
651 }
652
count_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)653 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
654 struct shrink_control *sc)
655 {
656 unsigned long max_nodes;
657 unsigned long nodes;
658 unsigned long pages;
659
660 nodes = list_lru_shrink_count(&shadow_nodes, sc);
661 if (!nodes)
662 return SHRINK_EMPTY;
663
664 /*
665 * Approximate a reasonable limit for the nodes
666 * containing shadow entries. We don't need to keep more
667 * shadow entries than possible pages on the active list,
668 * since refault distances bigger than that are dismissed.
669 *
670 * The size of the active list converges toward 100% of
671 * overall page cache as memory grows, with only a tiny
672 * inactive list. Assume the total cache size for that.
673 *
674 * Nodes might be sparsely populated, with only one shadow
675 * entry in the extreme case. Obviously, we cannot keep one
676 * node for every eligible shadow entry, so compromise on a
677 * worst-case density of 1/8th. Below that, not all eligible
678 * refaults can be detected anymore.
679 *
680 * On 64-bit with 7 xa_nodes per page and 64 slots
681 * each, this will reclaim shadow entries when they consume
682 * ~1.8% of available memory:
683 *
684 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
685 */
686 #ifdef CONFIG_MEMCG
687 if (sc->memcg) {
688 struct lruvec *lruvec;
689 int i;
690
691 mem_cgroup_flush_stats_ratelimited(sc->memcg);
692 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
693 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
694 pages += lruvec_page_state_local(lruvec,
695 NR_LRU_BASE + i);
696 pages += lruvec_page_state_local(
697 lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
698 pages += lruvec_page_state_local(
699 lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
700 } else
701 #endif
702 pages = node_present_pages(sc->nid);
703
704 max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
705
706 if (nodes <= max_nodes)
707 return 0;
708 return nodes - max_nodes;
709 }
710
shadow_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)711 static enum lru_status shadow_lru_isolate(struct list_head *item,
712 struct list_lru_one *lru,
713 spinlock_t *lru_lock,
714 void *arg) __must_hold(lru_lock)
715 {
716 struct xa_node *node = container_of(item, struct xa_node, private_list);
717 struct address_space *mapping;
718 int ret;
719
720 /*
721 * Page cache insertions and deletions synchronously maintain
722 * the shadow node LRU under the i_pages lock and the
723 * lru_lock. Because the page cache tree is emptied before
724 * the inode can be destroyed, holding the lru_lock pins any
725 * address_space that has nodes on the LRU.
726 *
727 * We can then safely transition to the i_pages lock to
728 * pin only the address_space of the particular node we want
729 * to reclaim, take the node off-LRU, and drop the lru_lock.
730 */
731
732 mapping = container_of(node->array, struct address_space, i_pages);
733
734 /* Coming from the list, invert the lock order */
735 if (!xa_trylock(&mapping->i_pages)) {
736 spin_unlock_irq(lru_lock);
737 ret = LRU_RETRY;
738 goto out;
739 }
740
741 /* For page cache we need to hold i_lock */
742 if (mapping->host != NULL) {
743 if (!spin_trylock(&mapping->host->i_lock)) {
744 xa_unlock(&mapping->i_pages);
745 spin_unlock_irq(lru_lock);
746 ret = LRU_RETRY;
747 goto out;
748 }
749 }
750
751 list_lru_isolate(lru, item);
752 __dec_node_page_state(virt_to_page(node), WORKINGSET_NODES);
753
754 spin_unlock(lru_lock);
755
756 /*
757 * The nodes should only contain one or more shadow entries,
758 * no pages, so we expect to be able to remove them all and
759 * delete and free the empty node afterwards.
760 */
761 if (WARN_ON_ONCE(!node->nr_values))
762 goto out_invalid;
763 if (WARN_ON_ONCE(node->count != node->nr_values))
764 goto out_invalid;
765 xa_delete_node(node, workingset_update_node);
766 __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
767
768 out_invalid:
769 xa_unlock_irq(&mapping->i_pages);
770 if (mapping->host != NULL) {
771 if (mapping_shrinkable(mapping))
772 inode_add_lru(mapping->host);
773 spin_unlock(&mapping->host->i_lock);
774 }
775 ret = LRU_REMOVED_RETRY;
776 out:
777 cond_resched();
778 spin_lock_irq(lru_lock);
779 return ret;
780 }
781
scan_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)782 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
783 struct shrink_control *sc)
784 {
785 /* list_lru lock nests inside the IRQ-safe i_pages lock */
786 return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
787 NULL);
788 }
789
790 /*
791 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
792 * i_pages lock.
793 */
794 static struct lock_class_key shadow_nodes_key;
795
workingset_init(void)796 static int __init workingset_init(void)
797 {
798 struct shrinker *workingset_shadow_shrinker;
799 unsigned int timestamp_bits;
800 unsigned int max_order;
801 int ret = -ENOMEM;
802
803 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
804 /*
805 * Calculate the eviction bucket size to cover the longest
806 * actionable refault distance, which is currently half of
807 * memory (totalram_pages/2). However, memory hotplug may add
808 * some more pages at runtime, so keep working with up to
809 * double the initial memory by using totalram_pages as-is.
810 */
811 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
812 max_order = fls_long(totalram_pages() - 1);
813 if (max_order > timestamp_bits)
814 bucket_order = max_order - timestamp_bits;
815 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
816 timestamp_bits, max_order, bucket_order);
817
818 workingset_shadow_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
819 SHRINKER_MEMCG_AWARE,
820 "mm-shadow");
821 if (!workingset_shadow_shrinker)
822 goto err;
823
824 ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
825 workingset_shadow_shrinker);
826 if (ret)
827 goto err_list_lru;
828
829 workingset_shadow_shrinker->count_objects = count_shadow_nodes;
830 workingset_shadow_shrinker->scan_objects = scan_shadow_nodes;
831 /* ->count reports only fully expendable nodes */
832 workingset_shadow_shrinker->seeks = 0;
833
834 shrinker_register(workingset_shadow_shrinker);
835 return 0;
836 err_list_lru:
837 shrinker_free(workingset_shadow_shrinker);
838 err:
839 return ret;
840 }
841 module_init(workingset_init);
842