• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
47 
48 /*
49  * The statistics below are not protected from concurrent access for
50  * performance reasons so they may not be a 100% accurate.  However,
51  * they do provide useful information on roughly how many times a
52  * certain event is occurring.
53 */
54 
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69 
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 
79 #define ZSWAP_PARAM_UNSET ""
80 
81 static int zswap_setup(void);
82 
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 				   const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 	.set =		zswap_enabled_param_set,
90 	.get =		param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93 
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 				      const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 	.set =		zswap_compressor_param_set,
100 	.get =		param_get_charp,
101 	.free =		param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 		&zswap_compressor, 0644);
105 
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 	.set =		zswap_zpool_param_set,
111 	.get =		param_get_charp,
112 	.free =		param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115 
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119 
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 		   uint, 0644);
124 
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129 
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 	return zswap_enabled;
133 }
134 
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139 
140 /*********************************
141 * data structures
142 **********************************/
143 
144 struct crypto_acomp_ctx {
145 	struct crypto_acomp *acomp;
146 	struct acomp_req *req;
147 	struct crypto_wait wait;
148 	u8 *buffer;
149 	struct mutex mutex;
150 	bool is_sleepable;
151 };
152 
153 /*
154  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155  * The only case where lru_lock is not acquired while holding tree.lock is
156  * when a zswap_entry is taken off the lru for writeback, in that case it
157  * needs to be verified that it's still valid in the tree.
158  */
159 struct zswap_pool {
160 	struct zpool *zpool;
161 	struct crypto_acomp_ctx __percpu *acomp_ctx;
162 	struct percpu_ref ref;
163 	struct list_head list;
164 	struct work_struct release_work;
165 	struct hlist_node node;
166 	char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168 
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171 
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177 
178 /*
179  * struct zswap_entry
180  *
181  * This structure contains the metadata for tracking a single compressed
182  * page within zswap.
183  *
184  * swpentry - associated swap entry, the offset indexes into the red-black tree
185  * length - the length in bytes of the compressed page data.  Needed during
186  *          decompression.
187  * referenced - true if the entry recently entered the zswap pool. Unset by the
188  *              writeback logic. The entry is only reclaimed by the writeback
189  *              logic if referenced is unset. See comments in the shrinker
190  *              section for context.
191  * pool - the zswap_pool the entry's data is in
192  * handle - zpool allocation handle that stores the compressed page data
193  * objcg - the obj_cgroup that the compressed memory is charged to
194  * lru - handle to the pool's lru used to evict pages.
195  */
196 struct zswap_entry {
197 	swp_entry_t swpentry;
198 	unsigned int length;
199 	bool referenced;
200 	struct zswap_pool *pool;
201 	unsigned long handle;
202 	struct obj_cgroup *objcg;
203 	struct list_head lru;
204 };
205 
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208 
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215 
216 enum zswap_init_type {
217 	ZSWAP_UNINIT,
218 	ZSWAP_INIT_SUCCEED,
219 	ZSWAP_INIT_FAILED
220 };
221 
222 static enum zswap_init_type zswap_init_state;
223 
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226 
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229 
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233 
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 		>> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239 
240 #define zswap_pool_debug(msg, p)				\
241 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
242 		 zpool_get_type((p)->zpool))
243 
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248 
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 	struct zswap_pool *pool;
252 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 	int ret, cpu;
255 
256 	if (!zswap_has_pool) {
257 		/* if either are unset, pool initialization failed, and we
258 		 * need both params to be set correctly before trying to
259 		 * create a pool.
260 		 */
261 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 			return NULL;
263 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 			return NULL;
265 	}
266 
267 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 	if (!pool)
269 		return NULL;
270 
271 	/* unique name for each pool specifically required by zsmalloc */
272 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 	pool->zpool = zpool_create_pool(type, name, gfp);
274 	if (!pool->zpool) {
275 		pr_err("%s zpool not available\n", type);
276 		goto error;
277 	}
278 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279 
280 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281 
282 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 	if (!pool->acomp_ctx) {
284 		pr_err("percpu alloc failed\n");
285 		goto error;
286 	}
287 
288 	for_each_possible_cpu(cpu)
289 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
290 
291 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
292 				       &pool->node);
293 	if (ret)
294 		goto error;
295 
296 	/* being the current pool takes 1 ref; this func expects the
297 	 * caller to always add the new pool as the current pool
298 	 */
299 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
300 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
301 	if (ret)
302 		goto ref_fail;
303 	INIT_LIST_HEAD(&pool->list);
304 
305 	zswap_pool_debug("created", pool);
306 
307 	return pool;
308 
309 ref_fail:
310 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
311 error:
312 	if (pool->acomp_ctx)
313 		free_percpu(pool->acomp_ctx);
314 	if (pool->zpool)
315 		zpool_destroy_pool(pool->zpool);
316 	kfree(pool);
317 	return NULL;
318 }
319 
__zswap_pool_create_fallback(void)320 static struct zswap_pool *__zswap_pool_create_fallback(void)
321 {
322 	bool has_comp, has_zpool;
323 
324 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
325 	if (!has_comp && strcmp(zswap_compressor,
326 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
327 		pr_err("compressor %s not available, using default %s\n",
328 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
329 		param_free_charp(&zswap_compressor);
330 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
331 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
332 	}
333 	if (!has_comp) {
334 		pr_err("default compressor %s not available\n",
335 		       zswap_compressor);
336 		param_free_charp(&zswap_compressor);
337 		zswap_compressor = ZSWAP_PARAM_UNSET;
338 	}
339 
340 	has_zpool = zpool_has_pool(zswap_zpool_type);
341 	if (!has_zpool && strcmp(zswap_zpool_type,
342 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
343 		pr_err("zpool %s not available, using default %s\n",
344 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
345 		param_free_charp(&zswap_zpool_type);
346 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
347 		has_zpool = zpool_has_pool(zswap_zpool_type);
348 	}
349 	if (!has_zpool) {
350 		pr_err("default zpool %s not available\n",
351 		       zswap_zpool_type);
352 		param_free_charp(&zswap_zpool_type);
353 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
354 	}
355 
356 	if (!has_comp || !has_zpool)
357 		return NULL;
358 
359 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
360 }
361 
zswap_pool_destroy(struct zswap_pool * pool)362 static void zswap_pool_destroy(struct zswap_pool *pool)
363 {
364 	zswap_pool_debug("destroying", pool);
365 
366 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
367 	free_percpu(pool->acomp_ctx);
368 
369 	zpool_destroy_pool(pool->zpool);
370 	kfree(pool);
371 }
372 
__zswap_pool_release(struct work_struct * work)373 static void __zswap_pool_release(struct work_struct *work)
374 {
375 	struct zswap_pool *pool = container_of(work, typeof(*pool),
376 						release_work);
377 
378 	synchronize_rcu();
379 
380 	/* nobody should have been able to get a ref... */
381 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
382 	percpu_ref_exit(&pool->ref);
383 
384 	/* pool is now off zswap_pools list and has no references. */
385 	zswap_pool_destroy(pool);
386 }
387 
388 static struct zswap_pool *zswap_pool_current(void);
389 
__zswap_pool_empty(struct percpu_ref * ref)390 static void __zswap_pool_empty(struct percpu_ref *ref)
391 {
392 	struct zswap_pool *pool;
393 
394 	pool = container_of(ref, typeof(*pool), ref);
395 
396 	spin_lock_bh(&zswap_pools_lock);
397 
398 	WARN_ON(pool == zswap_pool_current());
399 
400 	list_del_rcu(&pool->list);
401 
402 	INIT_WORK(&pool->release_work, __zswap_pool_release);
403 	schedule_work(&pool->release_work);
404 
405 	spin_unlock_bh(&zswap_pools_lock);
406 }
407 
zswap_pool_get(struct zswap_pool * pool)408 static int __must_check zswap_pool_get(struct zswap_pool *pool)
409 {
410 	if (!pool)
411 		return 0;
412 
413 	return percpu_ref_tryget(&pool->ref);
414 }
415 
zswap_pool_put(struct zswap_pool * pool)416 static void zswap_pool_put(struct zswap_pool *pool)
417 {
418 	percpu_ref_put(&pool->ref);
419 }
420 
__zswap_pool_current(void)421 static struct zswap_pool *__zswap_pool_current(void)
422 {
423 	struct zswap_pool *pool;
424 
425 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
426 	WARN_ONCE(!pool && zswap_has_pool,
427 		  "%s: no page storage pool!\n", __func__);
428 
429 	return pool;
430 }
431 
zswap_pool_current(void)432 static struct zswap_pool *zswap_pool_current(void)
433 {
434 	assert_spin_locked(&zswap_pools_lock);
435 
436 	return __zswap_pool_current();
437 }
438 
zswap_pool_current_get(void)439 static struct zswap_pool *zswap_pool_current_get(void)
440 {
441 	struct zswap_pool *pool;
442 
443 	rcu_read_lock();
444 
445 	pool = __zswap_pool_current();
446 	if (!zswap_pool_get(pool))
447 		pool = NULL;
448 
449 	rcu_read_unlock();
450 
451 	return pool;
452 }
453 
454 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)455 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
456 {
457 	struct zswap_pool *pool;
458 
459 	assert_spin_locked(&zswap_pools_lock);
460 
461 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
462 		if (strcmp(pool->tfm_name, compressor))
463 			continue;
464 		if (strcmp(zpool_get_type(pool->zpool), type))
465 			continue;
466 		/* if we can't get it, it's about to be destroyed */
467 		if (!zswap_pool_get(pool))
468 			continue;
469 		return pool;
470 	}
471 
472 	return NULL;
473 }
474 
zswap_max_pages(void)475 static unsigned long zswap_max_pages(void)
476 {
477 	return totalram_pages() * zswap_max_pool_percent / 100;
478 }
479 
zswap_accept_thr_pages(void)480 static unsigned long zswap_accept_thr_pages(void)
481 {
482 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
483 }
484 
zswap_total_pages(void)485 unsigned long zswap_total_pages(void)
486 {
487 	struct zswap_pool *pool;
488 	unsigned long total = 0;
489 
490 	rcu_read_lock();
491 	list_for_each_entry_rcu(pool, &zswap_pools, list)
492 		total += zpool_get_total_pages(pool->zpool);
493 	rcu_read_unlock();
494 
495 	return total;
496 }
497 
zswap_check_limits(void)498 static bool zswap_check_limits(void)
499 {
500 	unsigned long cur_pages = zswap_total_pages();
501 	unsigned long max_pages = zswap_max_pages();
502 
503 	if (cur_pages >= max_pages) {
504 		zswap_pool_limit_hit++;
505 		zswap_pool_reached_full = true;
506 	} else if (zswap_pool_reached_full &&
507 		   cur_pages <= zswap_accept_thr_pages()) {
508 			zswap_pool_reached_full = false;
509 	}
510 	return zswap_pool_reached_full;
511 }
512 
513 /*********************************
514 * param callbacks
515 **********************************/
516 
zswap_pool_changed(const char * s,const struct kernel_param * kp)517 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
518 {
519 	/* no change required */
520 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
521 		return false;
522 	return true;
523 }
524 
525 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)526 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
527 			     char *type, char *compressor)
528 {
529 	struct zswap_pool *pool, *put_pool = NULL;
530 	char *s = strstrip((char *)val);
531 	int ret = 0;
532 	bool new_pool = false;
533 
534 	mutex_lock(&zswap_init_lock);
535 	switch (zswap_init_state) {
536 	case ZSWAP_UNINIT:
537 		/* if this is load-time (pre-init) param setting,
538 		 * don't create a pool; that's done during init.
539 		 */
540 		ret = param_set_charp(s, kp);
541 		break;
542 	case ZSWAP_INIT_SUCCEED:
543 		new_pool = zswap_pool_changed(s, kp);
544 		break;
545 	case ZSWAP_INIT_FAILED:
546 		pr_err("can't set param, initialization failed\n");
547 		ret = -ENODEV;
548 	}
549 	mutex_unlock(&zswap_init_lock);
550 
551 	/* no need to create a new pool, return directly */
552 	if (!new_pool)
553 		return ret;
554 
555 	if (!type) {
556 		if (!zpool_has_pool(s)) {
557 			pr_err("zpool %s not available\n", s);
558 			return -ENOENT;
559 		}
560 		type = s;
561 	} else if (!compressor) {
562 		if (!crypto_has_acomp(s, 0, 0)) {
563 			pr_err("compressor %s not available\n", s);
564 			return -ENOENT;
565 		}
566 		compressor = s;
567 	} else {
568 		WARN_ON(1);
569 		return -EINVAL;
570 	}
571 
572 	spin_lock_bh(&zswap_pools_lock);
573 
574 	pool = zswap_pool_find_get(type, compressor);
575 	if (pool) {
576 		zswap_pool_debug("using existing", pool);
577 		WARN_ON(pool == zswap_pool_current());
578 		list_del_rcu(&pool->list);
579 	}
580 
581 	spin_unlock_bh(&zswap_pools_lock);
582 
583 	if (!pool)
584 		pool = zswap_pool_create(type, compressor);
585 	else {
586 		/*
587 		 * Restore the initial ref dropped by percpu_ref_kill()
588 		 * when the pool was decommissioned and switch it again
589 		 * to percpu mode.
590 		 */
591 		percpu_ref_resurrect(&pool->ref);
592 
593 		/* Drop the ref from zswap_pool_find_get(). */
594 		zswap_pool_put(pool);
595 	}
596 
597 	if (pool)
598 		ret = param_set_charp(s, kp);
599 	else
600 		ret = -EINVAL;
601 
602 	spin_lock_bh(&zswap_pools_lock);
603 
604 	if (!ret) {
605 		put_pool = zswap_pool_current();
606 		list_add_rcu(&pool->list, &zswap_pools);
607 		zswap_has_pool = true;
608 	} else if (pool) {
609 		/* add the possibly pre-existing pool to the end of the pools
610 		 * list; if it's new (and empty) then it'll be removed and
611 		 * destroyed by the put after we drop the lock
612 		 */
613 		list_add_tail_rcu(&pool->list, &zswap_pools);
614 		put_pool = pool;
615 	}
616 
617 	spin_unlock_bh(&zswap_pools_lock);
618 
619 	if (!zswap_has_pool && !pool) {
620 		/* if initial pool creation failed, and this pool creation also
621 		 * failed, maybe both compressor and zpool params were bad.
622 		 * Allow changing this param, so pool creation will succeed
623 		 * when the other param is changed. We already verified this
624 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
625 		 * checks above.
626 		 */
627 		ret = param_set_charp(s, kp);
628 	}
629 
630 	/* drop the ref from either the old current pool,
631 	 * or the new pool we failed to add
632 	 */
633 	if (put_pool)
634 		percpu_ref_kill(&put_pool->ref);
635 
636 	return ret;
637 }
638 
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)639 static int zswap_compressor_param_set(const char *val,
640 				      const struct kernel_param *kp)
641 {
642 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
643 }
644 
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)645 static int zswap_zpool_param_set(const char *val,
646 				 const struct kernel_param *kp)
647 {
648 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
649 }
650 
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)651 static int zswap_enabled_param_set(const char *val,
652 				   const struct kernel_param *kp)
653 {
654 	int ret = -ENODEV;
655 
656 	/* if this is load-time (pre-init) param setting, only set param. */
657 	if (system_state != SYSTEM_RUNNING)
658 		return param_set_bool(val, kp);
659 
660 	mutex_lock(&zswap_init_lock);
661 	switch (zswap_init_state) {
662 	case ZSWAP_UNINIT:
663 		if (zswap_setup())
664 			break;
665 		fallthrough;
666 	case ZSWAP_INIT_SUCCEED:
667 		if (!zswap_has_pool)
668 			pr_err("can't enable, no pool configured\n");
669 		else
670 			ret = param_set_bool(val, kp);
671 		break;
672 	case ZSWAP_INIT_FAILED:
673 		pr_err("can't enable, initialization failed\n");
674 	}
675 	mutex_unlock(&zswap_init_lock);
676 
677 	return ret;
678 }
679 
680 /*********************************
681 * lru functions
682 **********************************/
683 
684 /* should be called under RCU */
685 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)686 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
687 {
688 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
689 }
690 #else
mem_cgroup_from_entry(struct zswap_entry * entry)691 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
692 {
693 	return NULL;
694 }
695 #endif
696 
entry_to_nid(struct zswap_entry * entry)697 static inline int entry_to_nid(struct zswap_entry *entry)
698 {
699 	return page_to_nid(virt_to_page(entry));
700 }
701 
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)702 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
703 {
704 	int nid = entry_to_nid(entry);
705 	struct mem_cgroup *memcg;
706 
707 	/*
708 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
709 	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
710 	 * used in list_lru lookup, only two scenarios are possible:
711 	 *
712 	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
713 	 *    new entry will be reparented to memcg's parent's list_lru.
714 	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
715 	 *    new entry will be added directly to memcg's parent's list_lru.
716 	 *
717 	 * Similar reasoning holds for list_lru_del().
718 	 */
719 	rcu_read_lock();
720 	memcg = mem_cgroup_from_entry(entry);
721 	/* will always succeed */
722 	list_lru_add(list_lru, &entry->lru, nid, memcg);
723 	rcu_read_unlock();
724 }
725 
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)726 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
727 {
728 	int nid = entry_to_nid(entry);
729 	struct mem_cgroup *memcg;
730 
731 	rcu_read_lock();
732 	memcg = mem_cgroup_from_entry(entry);
733 	/* will always succeed */
734 	list_lru_del(list_lru, &entry->lru, nid, memcg);
735 	rcu_read_unlock();
736 }
737 
zswap_lruvec_state_init(struct lruvec * lruvec)738 void zswap_lruvec_state_init(struct lruvec *lruvec)
739 {
740 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
741 }
742 
zswap_folio_swapin(struct folio * folio)743 void zswap_folio_swapin(struct folio *folio)
744 {
745 	struct lruvec *lruvec;
746 
747 	if (folio) {
748 		lruvec = folio_lruvec(folio);
749 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
750 	}
751 }
752 
753 /*
754  * This function should be called when a memcg is being offlined.
755  *
756  * Since the global shrinker shrink_worker() may hold a reference
757  * of the memcg, we must check and release the reference in
758  * zswap_next_shrink.
759  *
760  * shrink_worker() must handle the case where this function releases
761  * the reference of memcg being shrunk.
762  */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)763 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
764 {
765 	/* lock out zswap shrinker walking memcg tree */
766 	spin_lock(&zswap_shrink_lock);
767 	if (zswap_next_shrink == memcg) {
768 		do {
769 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
770 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
771 	}
772 	spin_unlock(&zswap_shrink_lock);
773 }
774 
775 /*********************************
776 * zswap entry functions
777 **********************************/
778 static struct kmem_cache *zswap_entry_cache;
779 
zswap_entry_cache_alloc(gfp_t gfp,int nid)780 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
781 {
782 	struct zswap_entry *entry;
783 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
784 	if (!entry)
785 		return NULL;
786 	return entry;
787 }
788 
zswap_entry_cache_free(struct zswap_entry * entry)789 static void zswap_entry_cache_free(struct zswap_entry *entry)
790 {
791 	kmem_cache_free(zswap_entry_cache, entry);
792 }
793 
794 /*
795  * Carries out the common pattern of freeing and entry's zpool allocation,
796  * freeing the entry itself, and decrementing the number of stored pages.
797  */
zswap_entry_free(struct zswap_entry * entry)798 static void zswap_entry_free(struct zswap_entry *entry)
799 {
800 	zswap_lru_del(&zswap_list_lru, entry);
801 	zpool_free(entry->pool->zpool, entry->handle);
802 	zswap_pool_put(entry->pool);
803 	if (entry->objcg) {
804 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
805 		obj_cgroup_put(entry->objcg);
806 	}
807 	zswap_entry_cache_free(entry);
808 	atomic_dec(&zswap_stored_pages);
809 }
810 
811 /*********************************
812 * compressed storage functions
813 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)814 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
815 {
816 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
817 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
818 	struct crypto_acomp *acomp = NULL;
819 	struct acomp_req *req = NULL;
820 	u8 *buffer = NULL;
821 	int ret;
822 
823 	buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
824 	if (!buffer) {
825 		ret = -ENOMEM;
826 		goto fail;
827 	}
828 
829 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
830 	if (IS_ERR(acomp)) {
831 		pr_err("could not alloc crypto acomp %s : %ld\n",
832 				pool->tfm_name, PTR_ERR(acomp));
833 		ret = PTR_ERR(acomp);
834 		goto fail;
835 	}
836 
837 	req = acomp_request_alloc(acomp);
838 	if (!req) {
839 		pr_err("could not alloc crypto acomp_request %s\n",
840 		       pool->tfm_name);
841 		ret = -ENOMEM;
842 		goto fail;
843 	}
844 
845 	/*
846 	 * Only hold the mutex after completing allocations, otherwise we may
847 	 * recurse into zswap through reclaim and attempt to hold the mutex
848 	 * again resulting in a deadlock.
849 	 */
850 	mutex_lock(&acomp_ctx->mutex);
851 	crypto_init_wait(&acomp_ctx->wait);
852 
853 	/*
854 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
855 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
856 	 * won't be called, crypto_wait_req() will return without blocking.
857 	 */
858 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
859 				   crypto_req_done, &acomp_ctx->wait);
860 
861 	acomp_ctx->buffer = buffer;
862 	acomp_ctx->acomp = acomp;
863 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
864 	acomp_ctx->req = req;
865 	mutex_unlock(&acomp_ctx->mutex);
866 	return 0;
867 
868 fail:
869 	if (acomp)
870 		crypto_free_acomp(acomp);
871 	kfree(buffer);
872 	return ret;
873 }
874 
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)875 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
876 {
877 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
878 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
879 	struct acomp_req *req;
880 	struct crypto_acomp *acomp;
881 	u8 *buffer;
882 
883 	if (IS_ERR_OR_NULL(acomp_ctx))
884 		return 0;
885 
886 	mutex_lock(&acomp_ctx->mutex);
887 	req = acomp_ctx->req;
888 	acomp = acomp_ctx->acomp;
889 	buffer = acomp_ctx->buffer;
890 	acomp_ctx->req = NULL;
891 	acomp_ctx->acomp = NULL;
892 	acomp_ctx->buffer = NULL;
893 	mutex_unlock(&acomp_ctx->mutex);
894 
895 	/*
896 	 * Do the actual freeing after releasing the mutex to avoid subtle
897 	 * locking dependencies causing deadlocks.
898 	 */
899 	if (!IS_ERR_OR_NULL(req))
900 		acomp_request_free(req);
901 	if (!IS_ERR_OR_NULL(acomp))
902 		crypto_free_acomp(acomp);
903 	kfree(buffer);
904 
905 	return 0;
906 }
907 
acomp_ctx_get_cpu_lock(struct zswap_pool * pool)908 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
909 {
910 	struct crypto_acomp_ctx *acomp_ctx;
911 
912 	for (;;) {
913 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
914 		mutex_lock(&acomp_ctx->mutex);
915 		if (likely(acomp_ctx->req))
916 			return acomp_ctx;
917 		/*
918 		 * It is possible that we were migrated to a different CPU after
919 		 * getting the per-CPU ctx but before the mutex was acquired. If
920 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
921 		 * already freed ctx->req (among other things) and set it to
922 		 * NULL. Just try again on the new CPU that we ended up on.
923 		 */
924 		mutex_unlock(&acomp_ctx->mutex);
925 	}
926 }
927 
acomp_ctx_put_unlock(struct crypto_acomp_ctx * acomp_ctx)928 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
929 {
930 	mutex_unlock(&acomp_ctx->mutex);
931 }
932 
zswap_compress(struct folio * folio,struct zswap_entry * entry)933 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
934 {
935 	struct crypto_acomp_ctx *acomp_ctx;
936 	struct scatterlist input, output;
937 	int comp_ret = 0, alloc_ret = 0;
938 	unsigned int dlen = PAGE_SIZE;
939 	unsigned long handle;
940 	struct zpool *zpool;
941 	char *buf;
942 	gfp_t gfp;
943 	u8 *dst;
944 
945 	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
946 	dst = acomp_ctx->buffer;
947 	sg_init_table(&input, 1);
948 	sg_set_folio(&input, folio, PAGE_SIZE, 0);
949 
950 	/*
951 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
952 	 * and hardware-accelerators may won't check the dst buffer size, so
953 	 * giving the dst buffer with enough length to avoid buffer overflow.
954 	 */
955 	sg_init_one(&output, dst, PAGE_SIZE * 2);
956 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
957 
958 	/*
959 	 * it maybe looks a little bit silly that we send an asynchronous request,
960 	 * then wait for its completion synchronously. This makes the process look
961 	 * synchronous in fact.
962 	 * Theoretically, acomp supports users send multiple acomp requests in one
963 	 * acomp instance, then get those requests done simultaneously. but in this
964 	 * case, zswap actually does store and load page by page, there is no
965 	 * existing method to send the second page before the first page is done
966 	 * in one thread doing zwap.
967 	 * but in different threads running on different cpu, we have different
968 	 * acomp instance, so multiple threads can do (de)compression in parallel.
969 	 */
970 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
971 	dlen = acomp_ctx->req->dlen;
972 	if (comp_ret)
973 		goto unlock;
974 
975 	zpool = entry->pool->zpool;
976 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
977 	if (zpool_malloc_support_movable(zpool))
978 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
979 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
980 	if (alloc_ret)
981 		goto unlock;
982 
983 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
984 	memcpy(buf, dst, dlen);
985 	zpool_unmap_handle(zpool, handle);
986 
987 	entry->handle = handle;
988 	entry->length = dlen;
989 
990 unlock:
991 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
992 		zswap_reject_compress_poor++;
993 	else if (comp_ret)
994 		zswap_reject_compress_fail++;
995 	else if (alloc_ret)
996 		zswap_reject_alloc_fail++;
997 
998 	acomp_ctx_put_unlock(acomp_ctx);
999 	return comp_ret == 0 && alloc_ret == 0;
1000 }
1001 
zswap_decompress(struct zswap_entry * entry,struct folio * folio)1002 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
1003 {
1004 	struct zpool *zpool = entry->pool->zpool;
1005 	struct scatterlist input, output;
1006 	struct crypto_acomp_ctx *acomp_ctx;
1007 	u8 *src;
1008 
1009 	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1010 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1011 	/*
1012 	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1013 	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1014 	 * resort to copying the buffer to a temporary one.
1015 	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1016 	 * such as a kmap address of high memory or even ever a vmap address.
1017 	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1018 	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1019 	 */
1020 	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1021 	    !virt_addr_valid(src)) {
1022 		memcpy(acomp_ctx->buffer, src, entry->length);
1023 		src = acomp_ctx->buffer;
1024 		zpool_unmap_handle(zpool, entry->handle);
1025 	}
1026 
1027 	sg_init_one(&input, src, entry->length);
1028 	sg_init_table(&output, 1);
1029 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
1030 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1031 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1032 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1033 
1034 	if (src != acomp_ctx->buffer)
1035 		zpool_unmap_handle(zpool, entry->handle);
1036 	acomp_ctx_put_unlock(acomp_ctx);
1037 }
1038 
1039 /*********************************
1040 * writeback code
1041 **********************************/
1042 /*
1043  * Attempts to free an entry by adding a folio to the swap cache,
1044  * decompressing the entry data into the folio, and issuing a
1045  * bio write to write the folio back to the swap device.
1046  *
1047  * This can be thought of as a "resumed writeback" of the folio
1048  * to the swap device.  We are basically resuming the same swap
1049  * writeback path that was intercepted with the zswap_store()
1050  * in the first place.  After the folio has been decompressed into
1051  * the swap cache, the compressed version stored by zswap can be
1052  * freed.
1053  */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1054 static int zswap_writeback_entry(struct zswap_entry *entry,
1055 				 swp_entry_t swpentry)
1056 {
1057 	struct xarray *tree;
1058 	pgoff_t offset = swp_offset(swpentry);
1059 	struct folio *folio;
1060 	struct mempolicy *mpol;
1061 	bool folio_was_allocated;
1062 	struct writeback_control wbc = {
1063 		.sync_mode = WB_SYNC_NONE,
1064 	};
1065 
1066 	/* try to allocate swap cache folio */
1067 	mpol = get_task_policy(current);
1068 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1069 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1070 	if (!folio)
1071 		return -ENOMEM;
1072 
1073 	/*
1074 	 * Found an existing folio, we raced with swapin or concurrent
1075 	 * shrinker. We generally writeback cold folios from zswap, and
1076 	 * swapin means the folio just became hot, so skip this folio.
1077 	 * For unlikely concurrent shrinker case, it will be unlinked
1078 	 * and freed when invalidated by the concurrent shrinker anyway.
1079 	 */
1080 	if (!folio_was_allocated) {
1081 		folio_put(folio);
1082 		return -EEXIST;
1083 	}
1084 
1085 	/*
1086 	 * folio is locked, and the swapcache is now secured against
1087 	 * concurrent swapping to and from the slot, and concurrent
1088 	 * swapoff so we can safely dereference the zswap tree here.
1089 	 * Verify that the swap entry hasn't been invalidated and recycled
1090 	 * behind our backs, to avoid overwriting a new swap folio with
1091 	 * old compressed data. Only when this is successful can the entry
1092 	 * be dereferenced.
1093 	 */
1094 	tree = swap_zswap_tree(swpentry);
1095 	if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1096 		delete_from_swap_cache(folio);
1097 		folio_unlock(folio);
1098 		folio_put(folio);
1099 		return -ENOMEM;
1100 	}
1101 
1102 	zswap_decompress(entry, folio);
1103 
1104 	count_vm_event(ZSWPWB);
1105 	if (entry->objcg)
1106 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1107 
1108 	zswap_entry_free(entry);
1109 
1110 	/* folio is up to date */
1111 	folio_mark_uptodate(folio);
1112 
1113 	/* move it to the tail of the inactive list after end_writeback */
1114 	folio_set_reclaim(folio);
1115 
1116 	/* start writeback */
1117 	__swap_writepage(folio, &wbc);
1118 	folio_put(folio);
1119 
1120 	return 0;
1121 }
1122 
1123 /*********************************
1124 * shrinker functions
1125 **********************************/
1126 /*
1127  * The dynamic shrinker is modulated by the following factors:
1128  *
1129  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1130  *    the entry a second chance) before rotating it in the LRU list. If the
1131  *    entry is considered again by the shrinker, with its referenced bit unset,
1132  *    it is written back. The writeback rate as a result is dynamically
1133  *    adjusted by the pool activities - if the pool is dominated by new entries
1134  *    (i.e lots of recent zswapouts), these entries will be protected and
1135  *    the writeback rate will slow down. On the other hand, if the pool has a
1136  *    lot of stagnant entries, these entries will be reclaimed immediately,
1137  *    effectively increasing the writeback rate.
1138  *
1139  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1140  *    overshrinking and should slow down. We maintain a swapins counter, which
1141  *    is consumed and subtract from the number of eligible objects on the LRU
1142  *    in zswap_shrinker_count().
1143  *
1144  * 3. Compression ratio. The better the workload compresses, the less gains we
1145  *    can expect from writeback. We scale down the number of objects available
1146  *    for reclaim by this ratio.
1147  */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,spinlock_t * lock,void * arg)1148 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1149 				       spinlock_t *lock, void *arg)
1150 {
1151 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1152 	bool *encountered_page_in_swapcache = (bool *)arg;
1153 	swp_entry_t swpentry;
1154 	enum lru_status ret = LRU_REMOVED_RETRY;
1155 	int writeback_result;
1156 
1157 	/*
1158 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1159 	 * a second chance. Only clear the referenced bit and rotate it in the
1160 	 * zswap's LRU list.
1161 	 */
1162 	if (entry->referenced) {
1163 		entry->referenced = false;
1164 		return LRU_ROTATE;
1165 	}
1166 
1167 	/*
1168 	 * As soon as we drop the LRU lock, the entry can be freed by
1169 	 * a concurrent invalidation. This means the following:
1170 	 *
1171 	 * 1. We extract the swp_entry_t to the stack, allowing
1172 	 *    zswap_writeback_entry() to pin the swap entry and
1173 	 *    then validate the zwap entry against that swap entry's
1174 	 *    tree using pointer value comparison. Only when that
1175 	 *    is successful can the entry be dereferenced.
1176 	 *
1177 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1178 	 *    this case this isn't possible, because if reclaim fails
1179 	 *    for whatever reason, we have no means of knowing if the
1180 	 *    entry is alive to put it back on the LRU.
1181 	 *
1182 	 *    So rotate it before dropping the lock. If the entry is
1183 	 *    written back or invalidated, the free path will unlink
1184 	 *    it. For failures, rotation is the right thing as well.
1185 	 *
1186 	 *    Temporary failures, where the same entry should be tried
1187 	 *    again immediately, almost never happen for this shrinker.
1188 	 *    We don't do any trylocking; -ENOMEM comes closest,
1189 	 *    but that's extremely rare and doesn't happen spuriously
1190 	 *    either. Don't bother distinguishing this case.
1191 	 */
1192 	list_move_tail(item, &l->list);
1193 
1194 	/*
1195 	 * Once the lru lock is dropped, the entry might get freed. The
1196 	 * swpentry is copied to the stack, and entry isn't deref'd again
1197 	 * until the entry is verified to still be alive in the tree.
1198 	 */
1199 	swpentry = entry->swpentry;
1200 
1201 	/*
1202 	 * It's safe to drop the lock here because we return either
1203 	 * LRU_REMOVED_RETRY or LRU_RETRY.
1204 	 */
1205 	spin_unlock(lock);
1206 
1207 	writeback_result = zswap_writeback_entry(entry, swpentry);
1208 
1209 	if (writeback_result) {
1210 		zswap_reject_reclaim_fail++;
1211 		ret = LRU_RETRY;
1212 
1213 		/*
1214 		 * Encountering a page already in swap cache is a sign that we are shrinking
1215 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1216 		 * shrinker context).
1217 		 */
1218 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1219 			ret = LRU_STOP;
1220 			*encountered_page_in_swapcache = true;
1221 		}
1222 	} else {
1223 		zswap_written_back_pages++;
1224 	}
1225 
1226 	spin_lock(lock);
1227 	return ret;
1228 }
1229 
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1230 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1231 		struct shrink_control *sc)
1232 {
1233 	unsigned long shrink_ret;
1234 	bool encountered_page_in_swapcache = false;
1235 
1236 	if (!zswap_shrinker_enabled ||
1237 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1238 		sc->nr_scanned = 0;
1239 		return SHRINK_STOP;
1240 	}
1241 
1242 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1243 		&encountered_page_in_swapcache);
1244 
1245 	if (encountered_page_in_swapcache)
1246 		return SHRINK_STOP;
1247 
1248 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1249 }
1250 
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1251 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1252 		struct shrink_control *sc)
1253 {
1254 	struct mem_cgroup *memcg = sc->memcg;
1255 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1256 	atomic_long_t *nr_disk_swapins =
1257 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1258 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1259 		nr_remain;
1260 
1261 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1262 		return 0;
1263 
1264 	/*
1265 	 * The shrinker resumes swap writeback, which will enter block
1266 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1267 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1268 	 */
1269 	if (!gfp_has_io_fs(sc->gfp_mask))
1270 		return 0;
1271 
1272 	/*
1273 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1274 	 * have them per-node and thus per-lruvec. Careful if memcg is
1275 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1276 	 * for the lruvec, but not for memcg_page_state().
1277 	 *
1278 	 * Without memcg, use the zswap pool-wide metrics.
1279 	 */
1280 	if (!mem_cgroup_disabled()) {
1281 		mem_cgroup_flush_stats(memcg);
1282 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1283 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1284 	} else {
1285 		nr_backing = zswap_total_pages();
1286 		nr_stored = atomic_read(&zswap_stored_pages);
1287 	}
1288 
1289 	if (!nr_stored)
1290 		return 0;
1291 
1292 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1293 	if (!nr_freeable)
1294 		return 0;
1295 
1296 	/*
1297 	 * Subtract from the lru size the number of pages that are recently swapped
1298 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1299 	 * amount of pages, these disk swapins would not have happened.
1300 	 */
1301 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1302 	do {
1303 		if (nr_freeable >= nr_disk_swapins_cur)
1304 			nr_remain = 0;
1305 		else
1306 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1307 	} while (!atomic_long_try_cmpxchg(
1308 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1309 
1310 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1311 	if (!nr_freeable)
1312 		return 0;
1313 
1314 	/*
1315 	 * Scale the number of freeable pages by the memory saving factor.
1316 	 * This ensures that the better zswap compresses memory, the fewer
1317 	 * pages we will evict to swap (as it will otherwise incur IO for
1318 	 * relatively small memory saving).
1319 	 */
1320 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1321 }
1322 
zswap_alloc_shrinker(void)1323 static struct shrinker *zswap_alloc_shrinker(void)
1324 {
1325 	struct shrinker *shrinker;
1326 
1327 	shrinker =
1328 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1329 	if (!shrinker)
1330 		return NULL;
1331 
1332 	shrinker->scan_objects = zswap_shrinker_scan;
1333 	shrinker->count_objects = zswap_shrinker_count;
1334 	shrinker->batch = 0;
1335 	shrinker->seeks = DEFAULT_SEEKS;
1336 	return shrinker;
1337 }
1338 
shrink_memcg(struct mem_cgroup * memcg)1339 static int shrink_memcg(struct mem_cgroup *memcg)
1340 {
1341 	int nid, shrunk = 0, scanned = 0;
1342 
1343 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1344 		return -ENOENT;
1345 
1346 	/*
1347 	 * Skip zombies because their LRUs are reparented and we would be
1348 	 * reclaiming from the parent instead of the dead memcg.
1349 	 */
1350 	if (memcg && !mem_cgroup_online(memcg))
1351 		return -ENOENT;
1352 
1353 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1354 		unsigned long nr_to_walk = 1;
1355 
1356 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1357 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1358 		scanned += 1 - nr_to_walk;
1359 	}
1360 
1361 	if (!scanned)
1362 		return -ENOENT;
1363 
1364 	return shrunk ? 0 : -EAGAIN;
1365 }
1366 
shrink_worker(struct work_struct * w)1367 static void shrink_worker(struct work_struct *w)
1368 {
1369 	struct mem_cgroup *memcg;
1370 	int ret, failures = 0, attempts = 0;
1371 	unsigned long thr;
1372 
1373 	/* Reclaim down to the accept threshold */
1374 	thr = zswap_accept_thr_pages();
1375 
1376 	/*
1377 	 * Global reclaim will select cgroup in a round-robin fashion from all
1378 	 * online memcgs, but memcgs that have no pages in zswap and
1379 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1380 	 * candidates for shrinking.
1381 	 *
1382 	 * Shrinking will be aborted if we encounter the following
1383 	 * MAX_RECLAIM_RETRIES times:
1384 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1385 	 * - Shrinking a writeback-candidate memcg failed.
1386 	 *
1387 	 * We save iteration cursor memcg into zswap_next_shrink,
1388 	 * which can be modified by the offline memcg cleaner
1389 	 * zswap_memcg_offline_cleanup().
1390 	 *
1391 	 * Since the offline cleaner is called only once, we cannot leave an
1392 	 * offline memcg reference in zswap_next_shrink.
1393 	 * We can rely on the cleaner only if we get online memcg under lock.
1394 	 *
1395 	 * If we get an offline memcg, we cannot determine if the cleaner has
1396 	 * already been called or will be called later. We must put back the
1397 	 * reference before returning from this function. Otherwise, the
1398 	 * offline memcg left in zswap_next_shrink will hold the reference
1399 	 * until the next run of shrink_worker().
1400 	 */
1401 	do {
1402 		/*
1403 		 * Start shrinking from the next memcg after zswap_next_shrink.
1404 		 * When the offline cleaner has already advanced the cursor,
1405 		 * advancing the cursor here overlooks one memcg, but this
1406 		 * should be negligibly rare.
1407 		 *
1408 		 * If we get an online memcg, keep the extra reference in case
1409 		 * the original one obtained by mem_cgroup_iter() is dropped by
1410 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1411 		 * memcg.
1412 		 */
1413 		spin_lock(&zswap_shrink_lock);
1414 		do {
1415 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1416 			zswap_next_shrink = memcg;
1417 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1418 		spin_unlock(&zswap_shrink_lock);
1419 
1420 		if (!memcg) {
1421 			/*
1422 			 * Continue shrinking without incrementing failures if
1423 			 * we found candidate memcgs in the last tree walk.
1424 			 */
1425 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1426 				break;
1427 
1428 			attempts = 0;
1429 			goto resched;
1430 		}
1431 
1432 		ret = shrink_memcg(memcg);
1433 		/* drop the extra reference */
1434 		mem_cgroup_put(memcg);
1435 
1436 		/*
1437 		 * There are no writeback-candidate pages in the memcg.
1438 		 * This is not an issue as long as we can find another memcg
1439 		 * with pages in zswap. Skip this without incrementing attempts
1440 		 * and failures.
1441 		 */
1442 		if (ret == -ENOENT)
1443 			continue;
1444 		++attempts;
1445 
1446 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1447 			break;
1448 resched:
1449 		cond_resched();
1450 	} while (zswap_total_pages() > thr);
1451 }
1452 
1453 /*********************************
1454 * main API
1455 **********************************/
zswap_store(struct folio * folio)1456 bool zswap_store(struct folio *folio)
1457 {
1458 	swp_entry_t swp = folio->swap;
1459 	pgoff_t offset = swp_offset(swp);
1460 	struct xarray *tree = swap_zswap_tree(swp);
1461 	struct zswap_entry *entry, *old;
1462 	struct obj_cgroup *objcg = NULL;
1463 	struct mem_cgroup *memcg = NULL;
1464 
1465 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1466 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1467 
1468 	/* Large folios aren't supported */
1469 	if (folio_test_large(folio))
1470 		return false;
1471 
1472 	if (!zswap_enabled)
1473 		goto check_old;
1474 
1475 	/* Check cgroup limits */
1476 	objcg = get_obj_cgroup_from_folio(folio);
1477 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1478 		memcg = get_mem_cgroup_from_objcg(objcg);
1479 		if (shrink_memcg(memcg)) {
1480 			mem_cgroup_put(memcg);
1481 			goto reject;
1482 		}
1483 		mem_cgroup_put(memcg);
1484 	}
1485 
1486 	if (zswap_check_limits())
1487 		goto reject;
1488 
1489 	/* allocate entry */
1490 	entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1491 	if (!entry) {
1492 		zswap_reject_kmemcache_fail++;
1493 		goto reject;
1494 	}
1495 
1496 	/* if entry is successfully added, it keeps the reference */
1497 	entry->pool = zswap_pool_current_get();
1498 	if (!entry->pool)
1499 		goto freepage;
1500 
1501 	if (objcg) {
1502 		memcg = get_mem_cgroup_from_objcg(objcg);
1503 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1504 			mem_cgroup_put(memcg);
1505 			goto put_pool;
1506 		}
1507 		mem_cgroup_put(memcg);
1508 	}
1509 
1510 	if (!zswap_compress(folio, entry))
1511 		goto put_pool;
1512 
1513 	entry->swpentry = swp;
1514 	entry->objcg = objcg;
1515 	entry->referenced = true;
1516 
1517 	old = xa_store(tree, offset, entry, GFP_KERNEL);
1518 	if (xa_is_err(old)) {
1519 		int err = xa_err(old);
1520 
1521 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1522 		zswap_reject_alloc_fail++;
1523 		goto store_failed;
1524 	}
1525 
1526 	/*
1527 	 * We may have had an existing entry that became stale when
1528 	 * the folio was redirtied and now the new version is being
1529 	 * swapped out. Get rid of the old.
1530 	 */
1531 	if (old)
1532 		zswap_entry_free(old);
1533 
1534 	if (objcg) {
1535 		obj_cgroup_charge_zswap(objcg, entry->length);
1536 		count_objcg_events(objcg, ZSWPOUT, 1);
1537 	}
1538 
1539 	/*
1540 	 * We finish initializing the entry while it's already in xarray.
1541 	 * This is safe because:
1542 	 *
1543 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1544 	 *
1545 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1546 	 *    The publishing order matters to prevent writeback from seeing
1547 	 *    an incoherent entry.
1548 	 */
1549 	if (entry->length) {
1550 		INIT_LIST_HEAD(&entry->lru);
1551 		zswap_lru_add(&zswap_list_lru, entry);
1552 	}
1553 
1554 	/* update stats */
1555 	atomic_inc(&zswap_stored_pages);
1556 	count_vm_event(ZSWPOUT);
1557 
1558 	return true;
1559 
1560 store_failed:
1561 	zpool_free(entry->pool->zpool, entry->handle);
1562 put_pool:
1563 	zswap_pool_put(entry->pool);
1564 freepage:
1565 	zswap_entry_cache_free(entry);
1566 reject:
1567 	obj_cgroup_put(objcg);
1568 	if (zswap_pool_reached_full)
1569 		queue_work(shrink_wq, &zswap_shrink_work);
1570 check_old:
1571 	/*
1572 	 * If the zswap store fails or zswap is disabled, we must invalidate the
1573 	 * possibly stale entry which was previously stored at this offset.
1574 	 * Otherwise, writeback could overwrite the new data in the swapfile.
1575 	 */
1576 	entry = xa_erase(tree, offset);
1577 	if (entry)
1578 		zswap_entry_free(entry);
1579 	return false;
1580 }
1581 
zswap_load(struct folio * folio)1582 bool zswap_load(struct folio *folio)
1583 {
1584 	swp_entry_t swp = folio->swap;
1585 	pgoff_t offset = swp_offset(swp);
1586 	bool swapcache = folio_test_swapcache(folio);
1587 	struct xarray *tree = swap_zswap_tree(swp);
1588 	struct zswap_entry *entry;
1589 
1590 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1591 
1592 	if (zswap_never_enabled())
1593 		return false;
1594 
1595 	/*
1596 	 * Large folios should not be swapped in while zswap is being used, as
1597 	 * they are not properly handled. Zswap does not properly load large
1598 	 * folios, and a large folio may only be partially in zswap.
1599 	 *
1600 	 * Return true without marking the folio uptodate so that an IO error is
1601 	 * emitted (e.g. do_swap_page() will sigbus).
1602 	 */
1603 	if (WARN_ON_ONCE(folio_test_large(folio)))
1604 		return true;
1605 
1606 	/*
1607 	 * When reading into the swapcache, invalidate our entry. The
1608 	 * swapcache can be the authoritative owner of the page and
1609 	 * its mappings, and the pressure that results from having two
1610 	 * in-memory copies outweighs any benefits of caching the
1611 	 * compression work.
1612 	 *
1613 	 * (Most swapins go through the swapcache. The notable
1614 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1615 	 * files, which reads into a private page and may free it if
1616 	 * the fault fails. We remain the primary owner of the entry.)
1617 	 */
1618 	if (swapcache)
1619 		entry = xa_erase(tree, offset);
1620 	else
1621 		entry = xa_load(tree, offset);
1622 
1623 	if (!entry)
1624 		return false;
1625 
1626 	zswap_decompress(entry, folio);
1627 
1628 	count_vm_event(ZSWPIN);
1629 	if (entry->objcg)
1630 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1631 
1632 	if (swapcache) {
1633 		zswap_entry_free(entry);
1634 		folio_mark_dirty(folio);
1635 	}
1636 
1637 	folio_mark_uptodate(folio);
1638 	return true;
1639 }
1640 
zswap_invalidate(swp_entry_t swp)1641 void zswap_invalidate(swp_entry_t swp)
1642 {
1643 	pgoff_t offset = swp_offset(swp);
1644 	struct xarray *tree = swap_zswap_tree(swp);
1645 	struct zswap_entry *entry;
1646 
1647 	entry = xa_erase(tree, offset);
1648 	if (entry)
1649 		zswap_entry_free(entry);
1650 }
1651 
zswap_swapon(int type,unsigned long nr_pages)1652 int zswap_swapon(int type, unsigned long nr_pages)
1653 {
1654 	struct xarray *trees, *tree;
1655 	unsigned int nr, i;
1656 
1657 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1658 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1659 	if (!trees) {
1660 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	for (i = 0; i < nr; i++)
1665 		xa_init(trees + i);
1666 
1667 	nr_zswap_trees[type] = nr;
1668 	zswap_trees[type] = trees;
1669 	return 0;
1670 }
1671 
zswap_swapoff(int type)1672 void zswap_swapoff(int type)
1673 {
1674 	struct xarray *trees = zswap_trees[type];
1675 	unsigned int i;
1676 
1677 	if (!trees)
1678 		return;
1679 
1680 	/* try_to_unuse() invalidated all the entries already */
1681 	for (i = 0; i < nr_zswap_trees[type]; i++)
1682 		WARN_ON_ONCE(!xa_empty(trees + i));
1683 
1684 	kvfree(trees);
1685 	nr_zswap_trees[type] = 0;
1686 	zswap_trees[type] = NULL;
1687 }
1688 
1689 /*********************************
1690 * debugfs functions
1691 **********************************/
1692 #ifdef CONFIG_DEBUG_FS
1693 #include <linux/debugfs.h>
1694 
1695 static struct dentry *zswap_debugfs_root;
1696 
debugfs_get_total_size(void * data,u64 * val)1697 static int debugfs_get_total_size(void *data, u64 *val)
1698 {
1699 	*val = zswap_total_pages() * PAGE_SIZE;
1700 	return 0;
1701 }
1702 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1703 
zswap_debugfs_init(void)1704 static int zswap_debugfs_init(void)
1705 {
1706 	if (!debugfs_initialized())
1707 		return -ENODEV;
1708 
1709 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1710 
1711 	debugfs_create_u64("pool_limit_hit", 0444,
1712 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1713 	debugfs_create_u64("reject_reclaim_fail", 0444,
1714 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1715 	debugfs_create_u64("reject_alloc_fail", 0444,
1716 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1717 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1718 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1719 	debugfs_create_u64("reject_compress_fail", 0444,
1720 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1721 	debugfs_create_u64("reject_compress_poor", 0444,
1722 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1723 	debugfs_create_u64("written_back_pages", 0444,
1724 			   zswap_debugfs_root, &zswap_written_back_pages);
1725 	debugfs_create_file("pool_total_size", 0444,
1726 			    zswap_debugfs_root, NULL, &total_size_fops);
1727 	debugfs_create_atomic_t("stored_pages", 0444,
1728 				zswap_debugfs_root, &zswap_stored_pages);
1729 
1730 	return 0;
1731 }
1732 #else
zswap_debugfs_init(void)1733 static int zswap_debugfs_init(void)
1734 {
1735 	return 0;
1736 }
1737 #endif
1738 
1739 /*********************************
1740 * module init and exit
1741 **********************************/
zswap_setup(void)1742 static int zswap_setup(void)
1743 {
1744 	struct zswap_pool *pool;
1745 	int ret;
1746 
1747 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1748 	if (!zswap_entry_cache) {
1749 		pr_err("entry cache creation failed\n");
1750 		goto cache_fail;
1751 	}
1752 
1753 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1754 				      "mm/zswap_pool:prepare",
1755 				      zswap_cpu_comp_prepare,
1756 				      zswap_cpu_comp_dead);
1757 	if (ret)
1758 		goto hp_fail;
1759 
1760 	shrink_wq = alloc_workqueue("zswap-shrink",
1761 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1762 	if (!shrink_wq)
1763 		goto shrink_wq_fail;
1764 
1765 	zswap_shrinker = zswap_alloc_shrinker();
1766 	if (!zswap_shrinker)
1767 		goto shrinker_fail;
1768 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1769 		goto lru_fail;
1770 	shrinker_register(zswap_shrinker);
1771 
1772 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1773 
1774 	pool = __zswap_pool_create_fallback();
1775 	if (pool) {
1776 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1777 			zpool_get_type(pool->zpool));
1778 		list_add(&pool->list, &zswap_pools);
1779 		zswap_has_pool = true;
1780 		static_branch_enable(&zswap_ever_enabled);
1781 	} else {
1782 		pr_err("pool creation failed\n");
1783 		zswap_enabled = false;
1784 	}
1785 
1786 	if (zswap_debugfs_init())
1787 		pr_warn("debugfs initialization failed\n");
1788 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1789 	return 0;
1790 
1791 lru_fail:
1792 	shrinker_free(zswap_shrinker);
1793 shrinker_fail:
1794 	destroy_workqueue(shrink_wq);
1795 shrink_wq_fail:
1796 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1797 hp_fail:
1798 	kmem_cache_destroy(zswap_entry_cache);
1799 cache_fail:
1800 	/* if built-in, we aren't unloaded on failure; don't allow use */
1801 	zswap_init_state = ZSWAP_INIT_FAILED;
1802 	zswap_enabled = false;
1803 	return -ENOMEM;
1804 }
1805 
zswap_init(void)1806 static int __init zswap_init(void)
1807 {
1808 	if (!zswap_enabled)
1809 		return 0;
1810 	return zswap_setup();
1811 }
1812 /* must be late so crypto has time to come up */
1813 late_initcall(zswap_init);
1814 
1815 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1816 MODULE_DESCRIPTION("Compressed cache for swap pages");
1817