1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38
39 #include "swap.h"
40 #include "internal.h"
41
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
47
48 /*
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
53 */
54
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 #define ZSWAP_PARAM_UNSET ""
80
81 static int zswap_setup(void);
82
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 return zswap_enabled;
133 }
134
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
148 u8 *buffer;
149 struct mutex mutex;
150 bool is_sleepable;
151 };
152
153 /*
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
158 */
159 struct zswap_pool {
160 struct zpool *zpool;
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177
178 /*
179 * struct zswap_entry
180 *
181 * This structure contains the metadata for tracking a single compressed
182 * page within zswap.
183 *
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
186 * decompression.
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
195 */
196 struct zswap_entry {
197 swp_entry_t swpentry;
198 unsigned int length;
199 bool referenced;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
204 };
205
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 enum zswap_init_type {
217 ZSWAP_UNINIT,
218 ZSWAP_INIT_SUCCEED,
219 ZSWAP_INIT_FAILED
220 };
221
222 static enum zswap_init_type zswap_init_state;
223
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
243
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 int ret, cpu;
255
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
259 * create a pool.
260 */
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 return NULL;
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 return NULL;
265 }
266
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 if (!pool)
269 return NULL;
270
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
274 if (!pool->zpool) {
275 pr_err("%s zpool not available\n", type);
276 goto error;
277 }
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
285 goto error;
286 }
287
288 for_each_possible_cpu(cpu)
289 mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
290
291 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
292 &pool->node);
293 if (ret)
294 goto error;
295
296 /* being the current pool takes 1 ref; this func expects the
297 * caller to always add the new pool as the current pool
298 */
299 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
300 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
301 if (ret)
302 goto ref_fail;
303 INIT_LIST_HEAD(&pool->list);
304
305 zswap_pool_debug("created", pool);
306
307 return pool;
308
309 ref_fail:
310 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
311 error:
312 if (pool->acomp_ctx)
313 free_percpu(pool->acomp_ctx);
314 if (pool->zpool)
315 zpool_destroy_pool(pool->zpool);
316 kfree(pool);
317 return NULL;
318 }
319
__zswap_pool_create_fallback(void)320 static struct zswap_pool *__zswap_pool_create_fallback(void)
321 {
322 bool has_comp, has_zpool;
323
324 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
325 if (!has_comp && strcmp(zswap_compressor,
326 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
327 pr_err("compressor %s not available, using default %s\n",
328 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
329 param_free_charp(&zswap_compressor);
330 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
331 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
332 }
333 if (!has_comp) {
334 pr_err("default compressor %s not available\n",
335 zswap_compressor);
336 param_free_charp(&zswap_compressor);
337 zswap_compressor = ZSWAP_PARAM_UNSET;
338 }
339
340 has_zpool = zpool_has_pool(zswap_zpool_type);
341 if (!has_zpool && strcmp(zswap_zpool_type,
342 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
343 pr_err("zpool %s not available, using default %s\n",
344 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
345 param_free_charp(&zswap_zpool_type);
346 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
347 has_zpool = zpool_has_pool(zswap_zpool_type);
348 }
349 if (!has_zpool) {
350 pr_err("default zpool %s not available\n",
351 zswap_zpool_type);
352 param_free_charp(&zswap_zpool_type);
353 zswap_zpool_type = ZSWAP_PARAM_UNSET;
354 }
355
356 if (!has_comp || !has_zpool)
357 return NULL;
358
359 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
360 }
361
zswap_pool_destroy(struct zswap_pool * pool)362 static void zswap_pool_destroy(struct zswap_pool *pool)
363 {
364 zswap_pool_debug("destroying", pool);
365
366 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
367 free_percpu(pool->acomp_ctx);
368
369 zpool_destroy_pool(pool->zpool);
370 kfree(pool);
371 }
372
__zswap_pool_release(struct work_struct * work)373 static void __zswap_pool_release(struct work_struct *work)
374 {
375 struct zswap_pool *pool = container_of(work, typeof(*pool),
376 release_work);
377
378 synchronize_rcu();
379
380 /* nobody should have been able to get a ref... */
381 WARN_ON(!percpu_ref_is_zero(&pool->ref));
382 percpu_ref_exit(&pool->ref);
383
384 /* pool is now off zswap_pools list and has no references. */
385 zswap_pool_destroy(pool);
386 }
387
388 static struct zswap_pool *zswap_pool_current(void);
389
__zswap_pool_empty(struct percpu_ref * ref)390 static void __zswap_pool_empty(struct percpu_ref *ref)
391 {
392 struct zswap_pool *pool;
393
394 pool = container_of(ref, typeof(*pool), ref);
395
396 spin_lock_bh(&zswap_pools_lock);
397
398 WARN_ON(pool == zswap_pool_current());
399
400 list_del_rcu(&pool->list);
401
402 INIT_WORK(&pool->release_work, __zswap_pool_release);
403 schedule_work(&pool->release_work);
404
405 spin_unlock_bh(&zswap_pools_lock);
406 }
407
zswap_pool_get(struct zswap_pool * pool)408 static int __must_check zswap_pool_get(struct zswap_pool *pool)
409 {
410 if (!pool)
411 return 0;
412
413 return percpu_ref_tryget(&pool->ref);
414 }
415
zswap_pool_put(struct zswap_pool * pool)416 static void zswap_pool_put(struct zswap_pool *pool)
417 {
418 percpu_ref_put(&pool->ref);
419 }
420
__zswap_pool_current(void)421 static struct zswap_pool *__zswap_pool_current(void)
422 {
423 struct zswap_pool *pool;
424
425 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
426 WARN_ONCE(!pool && zswap_has_pool,
427 "%s: no page storage pool!\n", __func__);
428
429 return pool;
430 }
431
zswap_pool_current(void)432 static struct zswap_pool *zswap_pool_current(void)
433 {
434 assert_spin_locked(&zswap_pools_lock);
435
436 return __zswap_pool_current();
437 }
438
zswap_pool_current_get(void)439 static struct zswap_pool *zswap_pool_current_get(void)
440 {
441 struct zswap_pool *pool;
442
443 rcu_read_lock();
444
445 pool = __zswap_pool_current();
446 if (!zswap_pool_get(pool))
447 pool = NULL;
448
449 rcu_read_unlock();
450
451 return pool;
452 }
453
454 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)455 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
456 {
457 struct zswap_pool *pool;
458
459 assert_spin_locked(&zswap_pools_lock);
460
461 list_for_each_entry_rcu(pool, &zswap_pools, list) {
462 if (strcmp(pool->tfm_name, compressor))
463 continue;
464 if (strcmp(zpool_get_type(pool->zpool), type))
465 continue;
466 /* if we can't get it, it's about to be destroyed */
467 if (!zswap_pool_get(pool))
468 continue;
469 return pool;
470 }
471
472 return NULL;
473 }
474
zswap_max_pages(void)475 static unsigned long zswap_max_pages(void)
476 {
477 return totalram_pages() * zswap_max_pool_percent / 100;
478 }
479
zswap_accept_thr_pages(void)480 static unsigned long zswap_accept_thr_pages(void)
481 {
482 return zswap_max_pages() * zswap_accept_thr_percent / 100;
483 }
484
zswap_total_pages(void)485 unsigned long zswap_total_pages(void)
486 {
487 struct zswap_pool *pool;
488 unsigned long total = 0;
489
490 rcu_read_lock();
491 list_for_each_entry_rcu(pool, &zswap_pools, list)
492 total += zpool_get_total_pages(pool->zpool);
493 rcu_read_unlock();
494
495 return total;
496 }
497
zswap_check_limits(void)498 static bool zswap_check_limits(void)
499 {
500 unsigned long cur_pages = zswap_total_pages();
501 unsigned long max_pages = zswap_max_pages();
502
503 if (cur_pages >= max_pages) {
504 zswap_pool_limit_hit++;
505 zswap_pool_reached_full = true;
506 } else if (zswap_pool_reached_full &&
507 cur_pages <= zswap_accept_thr_pages()) {
508 zswap_pool_reached_full = false;
509 }
510 return zswap_pool_reached_full;
511 }
512
513 /*********************************
514 * param callbacks
515 **********************************/
516
zswap_pool_changed(const char * s,const struct kernel_param * kp)517 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
518 {
519 /* no change required */
520 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
521 return false;
522 return true;
523 }
524
525 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)526 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
527 char *type, char *compressor)
528 {
529 struct zswap_pool *pool, *put_pool = NULL;
530 char *s = strstrip((char *)val);
531 int ret = 0;
532 bool new_pool = false;
533
534 mutex_lock(&zswap_init_lock);
535 switch (zswap_init_state) {
536 case ZSWAP_UNINIT:
537 /* if this is load-time (pre-init) param setting,
538 * don't create a pool; that's done during init.
539 */
540 ret = param_set_charp(s, kp);
541 break;
542 case ZSWAP_INIT_SUCCEED:
543 new_pool = zswap_pool_changed(s, kp);
544 break;
545 case ZSWAP_INIT_FAILED:
546 pr_err("can't set param, initialization failed\n");
547 ret = -ENODEV;
548 }
549 mutex_unlock(&zswap_init_lock);
550
551 /* no need to create a new pool, return directly */
552 if (!new_pool)
553 return ret;
554
555 if (!type) {
556 if (!zpool_has_pool(s)) {
557 pr_err("zpool %s not available\n", s);
558 return -ENOENT;
559 }
560 type = s;
561 } else if (!compressor) {
562 if (!crypto_has_acomp(s, 0, 0)) {
563 pr_err("compressor %s not available\n", s);
564 return -ENOENT;
565 }
566 compressor = s;
567 } else {
568 WARN_ON(1);
569 return -EINVAL;
570 }
571
572 spin_lock_bh(&zswap_pools_lock);
573
574 pool = zswap_pool_find_get(type, compressor);
575 if (pool) {
576 zswap_pool_debug("using existing", pool);
577 WARN_ON(pool == zswap_pool_current());
578 list_del_rcu(&pool->list);
579 }
580
581 spin_unlock_bh(&zswap_pools_lock);
582
583 if (!pool)
584 pool = zswap_pool_create(type, compressor);
585 else {
586 /*
587 * Restore the initial ref dropped by percpu_ref_kill()
588 * when the pool was decommissioned and switch it again
589 * to percpu mode.
590 */
591 percpu_ref_resurrect(&pool->ref);
592
593 /* Drop the ref from zswap_pool_find_get(). */
594 zswap_pool_put(pool);
595 }
596
597 if (pool)
598 ret = param_set_charp(s, kp);
599 else
600 ret = -EINVAL;
601
602 spin_lock_bh(&zswap_pools_lock);
603
604 if (!ret) {
605 put_pool = zswap_pool_current();
606 list_add_rcu(&pool->list, &zswap_pools);
607 zswap_has_pool = true;
608 } else if (pool) {
609 /* add the possibly pre-existing pool to the end of the pools
610 * list; if it's new (and empty) then it'll be removed and
611 * destroyed by the put after we drop the lock
612 */
613 list_add_tail_rcu(&pool->list, &zswap_pools);
614 put_pool = pool;
615 }
616
617 spin_unlock_bh(&zswap_pools_lock);
618
619 if (!zswap_has_pool && !pool) {
620 /* if initial pool creation failed, and this pool creation also
621 * failed, maybe both compressor and zpool params were bad.
622 * Allow changing this param, so pool creation will succeed
623 * when the other param is changed. We already verified this
624 * param is ok in the zpool_has_pool() or crypto_has_acomp()
625 * checks above.
626 */
627 ret = param_set_charp(s, kp);
628 }
629
630 /* drop the ref from either the old current pool,
631 * or the new pool we failed to add
632 */
633 if (put_pool)
634 percpu_ref_kill(&put_pool->ref);
635
636 return ret;
637 }
638
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)639 static int zswap_compressor_param_set(const char *val,
640 const struct kernel_param *kp)
641 {
642 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
643 }
644
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)645 static int zswap_zpool_param_set(const char *val,
646 const struct kernel_param *kp)
647 {
648 return __zswap_param_set(val, kp, NULL, zswap_compressor);
649 }
650
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)651 static int zswap_enabled_param_set(const char *val,
652 const struct kernel_param *kp)
653 {
654 int ret = -ENODEV;
655
656 /* if this is load-time (pre-init) param setting, only set param. */
657 if (system_state != SYSTEM_RUNNING)
658 return param_set_bool(val, kp);
659
660 mutex_lock(&zswap_init_lock);
661 switch (zswap_init_state) {
662 case ZSWAP_UNINIT:
663 if (zswap_setup())
664 break;
665 fallthrough;
666 case ZSWAP_INIT_SUCCEED:
667 if (!zswap_has_pool)
668 pr_err("can't enable, no pool configured\n");
669 else
670 ret = param_set_bool(val, kp);
671 break;
672 case ZSWAP_INIT_FAILED:
673 pr_err("can't enable, initialization failed\n");
674 }
675 mutex_unlock(&zswap_init_lock);
676
677 return ret;
678 }
679
680 /*********************************
681 * lru functions
682 **********************************/
683
684 /* should be called under RCU */
685 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)686 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
687 {
688 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
689 }
690 #else
mem_cgroup_from_entry(struct zswap_entry * entry)691 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
692 {
693 return NULL;
694 }
695 #endif
696
entry_to_nid(struct zswap_entry * entry)697 static inline int entry_to_nid(struct zswap_entry *entry)
698 {
699 return page_to_nid(virt_to_page(entry));
700 }
701
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)702 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
703 {
704 int nid = entry_to_nid(entry);
705 struct mem_cgroup *memcg;
706
707 /*
708 * Note that it is safe to use rcu_read_lock() here, even in the face of
709 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
710 * used in list_lru lookup, only two scenarios are possible:
711 *
712 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
713 * new entry will be reparented to memcg's parent's list_lru.
714 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
715 * new entry will be added directly to memcg's parent's list_lru.
716 *
717 * Similar reasoning holds for list_lru_del().
718 */
719 rcu_read_lock();
720 memcg = mem_cgroup_from_entry(entry);
721 /* will always succeed */
722 list_lru_add(list_lru, &entry->lru, nid, memcg);
723 rcu_read_unlock();
724 }
725
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)726 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
727 {
728 int nid = entry_to_nid(entry);
729 struct mem_cgroup *memcg;
730
731 rcu_read_lock();
732 memcg = mem_cgroup_from_entry(entry);
733 /* will always succeed */
734 list_lru_del(list_lru, &entry->lru, nid, memcg);
735 rcu_read_unlock();
736 }
737
zswap_lruvec_state_init(struct lruvec * lruvec)738 void zswap_lruvec_state_init(struct lruvec *lruvec)
739 {
740 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
741 }
742
zswap_folio_swapin(struct folio * folio)743 void zswap_folio_swapin(struct folio *folio)
744 {
745 struct lruvec *lruvec;
746
747 if (folio) {
748 lruvec = folio_lruvec(folio);
749 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
750 }
751 }
752
753 /*
754 * This function should be called when a memcg is being offlined.
755 *
756 * Since the global shrinker shrink_worker() may hold a reference
757 * of the memcg, we must check and release the reference in
758 * zswap_next_shrink.
759 *
760 * shrink_worker() must handle the case where this function releases
761 * the reference of memcg being shrunk.
762 */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)763 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
764 {
765 /* lock out zswap shrinker walking memcg tree */
766 spin_lock(&zswap_shrink_lock);
767 if (zswap_next_shrink == memcg) {
768 do {
769 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
770 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
771 }
772 spin_unlock(&zswap_shrink_lock);
773 }
774
775 /*********************************
776 * zswap entry functions
777 **********************************/
778 static struct kmem_cache *zswap_entry_cache;
779
zswap_entry_cache_alloc(gfp_t gfp,int nid)780 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
781 {
782 struct zswap_entry *entry;
783 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
784 if (!entry)
785 return NULL;
786 return entry;
787 }
788
zswap_entry_cache_free(struct zswap_entry * entry)789 static void zswap_entry_cache_free(struct zswap_entry *entry)
790 {
791 kmem_cache_free(zswap_entry_cache, entry);
792 }
793
794 /*
795 * Carries out the common pattern of freeing and entry's zpool allocation,
796 * freeing the entry itself, and decrementing the number of stored pages.
797 */
zswap_entry_free(struct zswap_entry * entry)798 static void zswap_entry_free(struct zswap_entry *entry)
799 {
800 zswap_lru_del(&zswap_list_lru, entry);
801 zpool_free(entry->pool->zpool, entry->handle);
802 zswap_pool_put(entry->pool);
803 if (entry->objcg) {
804 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
805 obj_cgroup_put(entry->objcg);
806 }
807 zswap_entry_cache_free(entry);
808 atomic_dec(&zswap_stored_pages);
809 }
810
811 /*********************************
812 * compressed storage functions
813 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)814 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
815 {
816 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
817 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
818 struct crypto_acomp *acomp = NULL;
819 struct acomp_req *req = NULL;
820 u8 *buffer = NULL;
821 int ret;
822
823 buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
824 if (!buffer) {
825 ret = -ENOMEM;
826 goto fail;
827 }
828
829 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
830 if (IS_ERR(acomp)) {
831 pr_err("could not alloc crypto acomp %s : %ld\n",
832 pool->tfm_name, PTR_ERR(acomp));
833 ret = PTR_ERR(acomp);
834 goto fail;
835 }
836
837 req = acomp_request_alloc(acomp);
838 if (!req) {
839 pr_err("could not alloc crypto acomp_request %s\n",
840 pool->tfm_name);
841 ret = -ENOMEM;
842 goto fail;
843 }
844
845 /*
846 * Only hold the mutex after completing allocations, otherwise we may
847 * recurse into zswap through reclaim and attempt to hold the mutex
848 * again resulting in a deadlock.
849 */
850 mutex_lock(&acomp_ctx->mutex);
851 crypto_init_wait(&acomp_ctx->wait);
852
853 /*
854 * if the backend of acomp is async zip, crypto_req_done() will wakeup
855 * crypto_wait_req(); if the backend of acomp is scomp, the callback
856 * won't be called, crypto_wait_req() will return without blocking.
857 */
858 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
859 crypto_req_done, &acomp_ctx->wait);
860
861 acomp_ctx->buffer = buffer;
862 acomp_ctx->acomp = acomp;
863 acomp_ctx->is_sleepable = acomp_is_async(acomp);
864 acomp_ctx->req = req;
865 mutex_unlock(&acomp_ctx->mutex);
866 return 0;
867
868 fail:
869 if (acomp)
870 crypto_free_acomp(acomp);
871 kfree(buffer);
872 return ret;
873 }
874
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)875 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
876 {
877 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
878 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
879 struct acomp_req *req;
880 struct crypto_acomp *acomp;
881 u8 *buffer;
882
883 if (IS_ERR_OR_NULL(acomp_ctx))
884 return 0;
885
886 mutex_lock(&acomp_ctx->mutex);
887 req = acomp_ctx->req;
888 acomp = acomp_ctx->acomp;
889 buffer = acomp_ctx->buffer;
890 acomp_ctx->req = NULL;
891 acomp_ctx->acomp = NULL;
892 acomp_ctx->buffer = NULL;
893 mutex_unlock(&acomp_ctx->mutex);
894
895 /*
896 * Do the actual freeing after releasing the mutex to avoid subtle
897 * locking dependencies causing deadlocks.
898 */
899 if (!IS_ERR_OR_NULL(req))
900 acomp_request_free(req);
901 if (!IS_ERR_OR_NULL(acomp))
902 crypto_free_acomp(acomp);
903 kfree(buffer);
904
905 return 0;
906 }
907
acomp_ctx_get_cpu_lock(struct zswap_pool * pool)908 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
909 {
910 struct crypto_acomp_ctx *acomp_ctx;
911
912 for (;;) {
913 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
914 mutex_lock(&acomp_ctx->mutex);
915 if (likely(acomp_ctx->req))
916 return acomp_ctx;
917 /*
918 * It is possible that we were migrated to a different CPU after
919 * getting the per-CPU ctx but before the mutex was acquired. If
920 * the old CPU got offlined, zswap_cpu_comp_dead() could have
921 * already freed ctx->req (among other things) and set it to
922 * NULL. Just try again on the new CPU that we ended up on.
923 */
924 mutex_unlock(&acomp_ctx->mutex);
925 }
926 }
927
acomp_ctx_put_unlock(struct crypto_acomp_ctx * acomp_ctx)928 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
929 {
930 mutex_unlock(&acomp_ctx->mutex);
931 }
932
zswap_compress(struct folio * folio,struct zswap_entry * entry)933 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
934 {
935 struct crypto_acomp_ctx *acomp_ctx;
936 struct scatterlist input, output;
937 int comp_ret = 0, alloc_ret = 0;
938 unsigned int dlen = PAGE_SIZE;
939 unsigned long handle;
940 struct zpool *zpool;
941 char *buf;
942 gfp_t gfp;
943 u8 *dst;
944
945 acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
946 dst = acomp_ctx->buffer;
947 sg_init_table(&input, 1);
948 sg_set_folio(&input, folio, PAGE_SIZE, 0);
949
950 /*
951 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
952 * and hardware-accelerators may won't check the dst buffer size, so
953 * giving the dst buffer with enough length to avoid buffer overflow.
954 */
955 sg_init_one(&output, dst, PAGE_SIZE * 2);
956 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
957
958 /*
959 * it maybe looks a little bit silly that we send an asynchronous request,
960 * then wait for its completion synchronously. This makes the process look
961 * synchronous in fact.
962 * Theoretically, acomp supports users send multiple acomp requests in one
963 * acomp instance, then get those requests done simultaneously. but in this
964 * case, zswap actually does store and load page by page, there is no
965 * existing method to send the second page before the first page is done
966 * in one thread doing zwap.
967 * but in different threads running on different cpu, we have different
968 * acomp instance, so multiple threads can do (de)compression in parallel.
969 */
970 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
971 dlen = acomp_ctx->req->dlen;
972 if (comp_ret)
973 goto unlock;
974
975 zpool = entry->pool->zpool;
976 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
977 if (zpool_malloc_support_movable(zpool))
978 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
979 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
980 if (alloc_ret)
981 goto unlock;
982
983 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
984 memcpy(buf, dst, dlen);
985 zpool_unmap_handle(zpool, handle);
986
987 entry->handle = handle;
988 entry->length = dlen;
989
990 unlock:
991 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
992 zswap_reject_compress_poor++;
993 else if (comp_ret)
994 zswap_reject_compress_fail++;
995 else if (alloc_ret)
996 zswap_reject_alloc_fail++;
997
998 acomp_ctx_put_unlock(acomp_ctx);
999 return comp_ret == 0 && alloc_ret == 0;
1000 }
1001
zswap_decompress(struct zswap_entry * entry,struct folio * folio)1002 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
1003 {
1004 struct zpool *zpool = entry->pool->zpool;
1005 struct scatterlist input, output;
1006 struct crypto_acomp_ctx *acomp_ctx;
1007 u8 *src;
1008
1009 acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1010 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1011 /*
1012 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1013 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1014 * resort to copying the buffer to a temporary one.
1015 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1016 * such as a kmap address of high memory or even ever a vmap address.
1017 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1018 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1019 */
1020 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1021 !virt_addr_valid(src)) {
1022 memcpy(acomp_ctx->buffer, src, entry->length);
1023 src = acomp_ctx->buffer;
1024 zpool_unmap_handle(zpool, entry->handle);
1025 }
1026
1027 sg_init_one(&input, src, entry->length);
1028 sg_init_table(&output, 1);
1029 sg_set_folio(&output, folio, PAGE_SIZE, 0);
1030 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1031 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1032 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1033
1034 if (src != acomp_ctx->buffer)
1035 zpool_unmap_handle(zpool, entry->handle);
1036 acomp_ctx_put_unlock(acomp_ctx);
1037 }
1038
1039 /*********************************
1040 * writeback code
1041 **********************************/
1042 /*
1043 * Attempts to free an entry by adding a folio to the swap cache,
1044 * decompressing the entry data into the folio, and issuing a
1045 * bio write to write the folio back to the swap device.
1046 *
1047 * This can be thought of as a "resumed writeback" of the folio
1048 * to the swap device. We are basically resuming the same swap
1049 * writeback path that was intercepted with the zswap_store()
1050 * in the first place. After the folio has been decompressed into
1051 * the swap cache, the compressed version stored by zswap can be
1052 * freed.
1053 */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1054 static int zswap_writeback_entry(struct zswap_entry *entry,
1055 swp_entry_t swpentry)
1056 {
1057 struct xarray *tree;
1058 pgoff_t offset = swp_offset(swpentry);
1059 struct folio *folio;
1060 struct mempolicy *mpol;
1061 bool folio_was_allocated;
1062 struct writeback_control wbc = {
1063 .sync_mode = WB_SYNC_NONE,
1064 };
1065
1066 /* try to allocate swap cache folio */
1067 mpol = get_task_policy(current);
1068 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1069 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1070 if (!folio)
1071 return -ENOMEM;
1072
1073 /*
1074 * Found an existing folio, we raced with swapin or concurrent
1075 * shrinker. We generally writeback cold folios from zswap, and
1076 * swapin means the folio just became hot, so skip this folio.
1077 * For unlikely concurrent shrinker case, it will be unlinked
1078 * and freed when invalidated by the concurrent shrinker anyway.
1079 */
1080 if (!folio_was_allocated) {
1081 folio_put(folio);
1082 return -EEXIST;
1083 }
1084
1085 /*
1086 * folio is locked, and the swapcache is now secured against
1087 * concurrent swapping to and from the slot, and concurrent
1088 * swapoff so we can safely dereference the zswap tree here.
1089 * Verify that the swap entry hasn't been invalidated and recycled
1090 * behind our backs, to avoid overwriting a new swap folio with
1091 * old compressed data. Only when this is successful can the entry
1092 * be dereferenced.
1093 */
1094 tree = swap_zswap_tree(swpentry);
1095 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1096 delete_from_swap_cache(folio);
1097 folio_unlock(folio);
1098 folio_put(folio);
1099 return -ENOMEM;
1100 }
1101
1102 zswap_decompress(entry, folio);
1103
1104 count_vm_event(ZSWPWB);
1105 if (entry->objcg)
1106 count_objcg_events(entry->objcg, ZSWPWB, 1);
1107
1108 zswap_entry_free(entry);
1109
1110 /* folio is up to date */
1111 folio_mark_uptodate(folio);
1112
1113 /* move it to the tail of the inactive list after end_writeback */
1114 folio_set_reclaim(folio);
1115
1116 /* start writeback */
1117 __swap_writepage(folio, &wbc);
1118 folio_put(folio);
1119
1120 return 0;
1121 }
1122
1123 /*********************************
1124 * shrinker functions
1125 **********************************/
1126 /*
1127 * The dynamic shrinker is modulated by the following factors:
1128 *
1129 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1130 * the entry a second chance) before rotating it in the LRU list. If the
1131 * entry is considered again by the shrinker, with its referenced bit unset,
1132 * it is written back. The writeback rate as a result is dynamically
1133 * adjusted by the pool activities - if the pool is dominated by new entries
1134 * (i.e lots of recent zswapouts), these entries will be protected and
1135 * the writeback rate will slow down. On the other hand, if the pool has a
1136 * lot of stagnant entries, these entries will be reclaimed immediately,
1137 * effectively increasing the writeback rate.
1138 *
1139 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1140 * overshrinking and should slow down. We maintain a swapins counter, which
1141 * is consumed and subtract from the number of eligible objects on the LRU
1142 * in zswap_shrinker_count().
1143 *
1144 * 3. Compression ratio. The better the workload compresses, the less gains we
1145 * can expect from writeback. We scale down the number of objects available
1146 * for reclaim by this ratio.
1147 */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,spinlock_t * lock,void * arg)1148 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1149 spinlock_t *lock, void *arg)
1150 {
1151 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1152 bool *encountered_page_in_swapcache = (bool *)arg;
1153 swp_entry_t swpentry;
1154 enum lru_status ret = LRU_REMOVED_RETRY;
1155 int writeback_result;
1156
1157 /*
1158 * Second chance algorithm: if the entry has its referenced bit set, give it
1159 * a second chance. Only clear the referenced bit and rotate it in the
1160 * zswap's LRU list.
1161 */
1162 if (entry->referenced) {
1163 entry->referenced = false;
1164 return LRU_ROTATE;
1165 }
1166
1167 /*
1168 * As soon as we drop the LRU lock, the entry can be freed by
1169 * a concurrent invalidation. This means the following:
1170 *
1171 * 1. We extract the swp_entry_t to the stack, allowing
1172 * zswap_writeback_entry() to pin the swap entry and
1173 * then validate the zwap entry against that swap entry's
1174 * tree using pointer value comparison. Only when that
1175 * is successful can the entry be dereferenced.
1176 *
1177 * 2. Usually, objects are taken off the LRU for reclaim. In
1178 * this case this isn't possible, because if reclaim fails
1179 * for whatever reason, we have no means of knowing if the
1180 * entry is alive to put it back on the LRU.
1181 *
1182 * So rotate it before dropping the lock. If the entry is
1183 * written back or invalidated, the free path will unlink
1184 * it. For failures, rotation is the right thing as well.
1185 *
1186 * Temporary failures, where the same entry should be tried
1187 * again immediately, almost never happen for this shrinker.
1188 * We don't do any trylocking; -ENOMEM comes closest,
1189 * but that's extremely rare and doesn't happen spuriously
1190 * either. Don't bother distinguishing this case.
1191 */
1192 list_move_tail(item, &l->list);
1193
1194 /*
1195 * Once the lru lock is dropped, the entry might get freed. The
1196 * swpentry is copied to the stack, and entry isn't deref'd again
1197 * until the entry is verified to still be alive in the tree.
1198 */
1199 swpentry = entry->swpentry;
1200
1201 /*
1202 * It's safe to drop the lock here because we return either
1203 * LRU_REMOVED_RETRY or LRU_RETRY.
1204 */
1205 spin_unlock(lock);
1206
1207 writeback_result = zswap_writeback_entry(entry, swpentry);
1208
1209 if (writeback_result) {
1210 zswap_reject_reclaim_fail++;
1211 ret = LRU_RETRY;
1212
1213 /*
1214 * Encountering a page already in swap cache is a sign that we are shrinking
1215 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1216 * shrinker context).
1217 */
1218 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1219 ret = LRU_STOP;
1220 *encountered_page_in_swapcache = true;
1221 }
1222 } else {
1223 zswap_written_back_pages++;
1224 }
1225
1226 spin_lock(lock);
1227 return ret;
1228 }
1229
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1230 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1231 struct shrink_control *sc)
1232 {
1233 unsigned long shrink_ret;
1234 bool encountered_page_in_swapcache = false;
1235
1236 if (!zswap_shrinker_enabled ||
1237 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1238 sc->nr_scanned = 0;
1239 return SHRINK_STOP;
1240 }
1241
1242 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1243 &encountered_page_in_swapcache);
1244
1245 if (encountered_page_in_swapcache)
1246 return SHRINK_STOP;
1247
1248 return shrink_ret ? shrink_ret : SHRINK_STOP;
1249 }
1250
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1251 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1252 struct shrink_control *sc)
1253 {
1254 struct mem_cgroup *memcg = sc->memcg;
1255 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1256 atomic_long_t *nr_disk_swapins =
1257 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1258 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1259 nr_remain;
1260
1261 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1262 return 0;
1263
1264 /*
1265 * The shrinker resumes swap writeback, which will enter block
1266 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1267 * rules (may_enter_fs()), which apply on a per-folio basis.
1268 */
1269 if (!gfp_has_io_fs(sc->gfp_mask))
1270 return 0;
1271
1272 /*
1273 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1274 * have them per-node and thus per-lruvec. Careful if memcg is
1275 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1276 * for the lruvec, but not for memcg_page_state().
1277 *
1278 * Without memcg, use the zswap pool-wide metrics.
1279 */
1280 if (!mem_cgroup_disabled()) {
1281 mem_cgroup_flush_stats(memcg);
1282 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1283 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1284 } else {
1285 nr_backing = zswap_total_pages();
1286 nr_stored = atomic_read(&zswap_stored_pages);
1287 }
1288
1289 if (!nr_stored)
1290 return 0;
1291
1292 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1293 if (!nr_freeable)
1294 return 0;
1295
1296 /*
1297 * Subtract from the lru size the number of pages that are recently swapped
1298 * in from disk. The idea is that had we protect the zswap's LRU by this
1299 * amount of pages, these disk swapins would not have happened.
1300 */
1301 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1302 do {
1303 if (nr_freeable >= nr_disk_swapins_cur)
1304 nr_remain = 0;
1305 else
1306 nr_remain = nr_disk_swapins_cur - nr_freeable;
1307 } while (!atomic_long_try_cmpxchg(
1308 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1309
1310 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1311 if (!nr_freeable)
1312 return 0;
1313
1314 /*
1315 * Scale the number of freeable pages by the memory saving factor.
1316 * This ensures that the better zswap compresses memory, the fewer
1317 * pages we will evict to swap (as it will otherwise incur IO for
1318 * relatively small memory saving).
1319 */
1320 return mult_frac(nr_freeable, nr_backing, nr_stored);
1321 }
1322
zswap_alloc_shrinker(void)1323 static struct shrinker *zswap_alloc_shrinker(void)
1324 {
1325 struct shrinker *shrinker;
1326
1327 shrinker =
1328 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1329 if (!shrinker)
1330 return NULL;
1331
1332 shrinker->scan_objects = zswap_shrinker_scan;
1333 shrinker->count_objects = zswap_shrinker_count;
1334 shrinker->batch = 0;
1335 shrinker->seeks = DEFAULT_SEEKS;
1336 return shrinker;
1337 }
1338
shrink_memcg(struct mem_cgroup * memcg)1339 static int shrink_memcg(struct mem_cgroup *memcg)
1340 {
1341 int nid, shrunk = 0, scanned = 0;
1342
1343 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1344 return -ENOENT;
1345
1346 /*
1347 * Skip zombies because their LRUs are reparented and we would be
1348 * reclaiming from the parent instead of the dead memcg.
1349 */
1350 if (memcg && !mem_cgroup_online(memcg))
1351 return -ENOENT;
1352
1353 for_each_node_state(nid, N_NORMAL_MEMORY) {
1354 unsigned long nr_to_walk = 1;
1355
1356 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1357 &shrink_memcg_cb, NULL, &nr_to_walk);
1358 scanned += 1 - nr_to_walk;
1359 }
1360
1361 if (!scanned)
1362 return -ENOENT;
1363
1364 return shrunk ? 0 : -EAGAIN;
1365 }
1366
shrink_worker(struct work_struct * w)1367 static void shrink_worker(struct work_struct *w)
1368 {
1369 struct mem_cgroup *memcg;
1370 int ret, failures = 0, attempts = 0;
1371 unsigned long thr;
1372
1373 /* Reclaim down to the accept threshold */
1374 thr = zswap_accept_thr_pages();
1375
1376 /*
1377 * Global reclaim will select cgroup in a round-robin fashion from all
1378 * online memcgs, but memcgs that have no pages in zswap and
1379 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1380 * candidates for shrinking.
1381 *
1382 * Shrinking will be aborted if we encounter the following
1383 * MAX_RECLAIM_RETRIES times:
1384 * - No writeback-candidate memcgs found in a memcg tree walk.
1385 * - Shrinking a writeback-candidate memcg failed.
1386 *
1387 * We save iteration cursor memcg into zswap_next_shrink,
1388 * which can be modified by the offline memcg cleaner
1389 * zswap_memcg_offline_cleanup().
1390 *
1391 * Since the offline cleaner is called only once, we cannot leave an
1392 * offline memcg reference in zswap_next_shrink.
1393 * We can rely on the cleaner only if we get online memcg under lock.
1394 *
1395 * If we get an offline memcg, we cannot determine if the cleaner has
1396 * already been called or will be called later. We must put back the
1397 * reference before returning from this function. Otherwise, the
1398 * offline memcg left in zswap_next_shrink will hold the reference
1399 * until the next run of shrink_worker().
1400 */
1401 do {
1402 /*
1403 * Start shrinking from the next memcg after zswap_next_shrink.
1404 * When the offline cleaner has already advanced the cursor,
1405 * advancing the cursor here overlooks one memcg, but this
1406 * should be negligibly rare.
1407 *
1408 * If we get an online memcg, keep the extra reference in case
1409 * the original one obtained by mem_cgroup_iter() is dropped by
1410 * zswap_memcg_offline_cleanup() while we are shrinking the
1411 * memcg.
1412 */
1413 spin_lock(&zswap_shrink_lock);
1414 do {
1415 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1416 zswap_next_shrink = memcg;
1417 } while (memcg && !mem_cgroup_tryget_online(memcg));
1418 spin_unlock(&zswap_shrink_lock);
1419
1420 if (!memcg) {
1421 /*
1422 * Continue shrinking without incrementing failures if
1423 * we found candidate memcgs in the last tree walk.
1424 */
1425 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1426 break;
1427
1428 attempts = 0;
1429 goto resched;
1430 }
1431
1432 ret = shrink_memcg(memcg);
1433 /* drop the extra reference */
1434 mem_cgroup_put(memcg);
1435
1436 /*
1437 * There are no writeback-candidate pages in the memcg.
1438 * This is not an issue as long as we can find another memcg
1439 * with pages in zswap. Skip this without incrementing attempts
1440 * and failures.
1441 */
1442 if (ret == -ENOENT)
1443 continue;
1444 ++attempts;
1445
1446 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1447 break;
1448 resched:
1449 cond_resched();
1450 } while (zswap_total_pages() > thr);
1451 }
1452
1453 /*********************************
1454 * main API
1455 **********************************/
zswap_store(struct folio * folio)1456 bool zswap_store(struct folio *folio)
1457 {
1458 swp_entry_t swp = folio->swap;
1459 pgoff_t offset = swp_offset(swp);
1460 struct xarray *tree = swap_zswap_tree(swp);
1461 struct zswap_entry *entry, *old;
1462 struct obj_cgroup *objcg = NULL;
1463 struct mem_cgroup *memcg = NULL;
1464
1465 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1466 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1467
1468 /* Large folios aren't supported */
1469 if (folio_test_large(folio))
1470 return false;
1471
1472 if (!zswap_enabled)
1473 goto check_old;
1474
1475 /* Check cgroup limits */
1476 objcg = get_obj_cgroup_from_folio(folio);
1477 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1478 memcg = get_mem_cgroup_from_objcg(objcg);
1479 if (shrink_memcg(memcg)) {
1480 mem_cgroup_put(memcg);
1481 goto reject;
1482 }
1483 mem_cgroup_put(memcg);
1484 }
1485
1486 if (zswap_check_limits())
1487 goto reject;
1488
1489 /* allocate entry */
1490 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1491 if (!entry) {
1492 zswap_reject_kmemcache_fail++;
1493 goto reject;
1494 }
1495
1496 /* if entry is successfully added, it keeps the reference */
1497 entry->pool = zswap_pool_current_get();
1498 if (!entry->pool)
1499 goto freepage;
1500
1501 if (objcg) {
1502 memcg = get_mem_cgroup_from_objcg(objcg);
1503 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1504 mem_cgroup_put(memcg);
1505 goto put_pool;
1506 }
1507 mem_cgroup_put(memcg);
1508 }
1509
1510 if (!zswap_compress(folio, entry))
1511 goto put_pool;
1512
1513 entry->swpentry = swp;
1514 entry->objcg = objcg;
1515 entry->referenced = true;
1516
1517 old = xa_store(tree, offset, entry, GFP_KERNEL);
1518 if (xa_is_err(old)) {
1519 int err = xa_err(old);
1520
1521 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1522 zswap_reject_alloc_fail++;
1523 goto store_failed;
1524 }
1525
1526 /*
1527 * We may have had an existing entry that became stale when
1528 * the folio was redirtied and now the new version is being
1529 * swapped out. Get rid of the old.
1530 */
1531 if (old)
1532 zswap_entry_free(old);
1533
1534 if (objcg) {
1535 obj_cgroup_charge_zswap(objcg, entry->length);
1536 count_objcg_events(objcg, ZSWPOUT, 1);
1537 }
1538
1539 /*
1540 * We finish initializing the entry while it's already in xarray.
1541 * This is safe because:
1542 *
1543 * 1. Concurrent stores and invalidations are excluded by folio lock.
1544 *
1545 * 2. Writeback is excluded by the entry not being on the LRU yet.
1546 * The publishing order matters to prevent writeback from seeing
1547 * an incoherent entry.
1548 */
1549 if (entry->length) {
1550 INIT_LIST_HEAD(&entry->lru);
1551 zswap_lru_add(&zswap_list_lru, entry);
1552 }
1553
1554 /* update stats */
1555 atomic_inc(&zswap_stored_pages);
1556 count_vm_event(ZSWPOUT);
1557
1558 return true;
1559
1560 store_failed:
1561 zpool_free(entry->pool->zpool, entry->handle);
1562 put_pool:
1563 zswap_pool_put(entry->pool);
1564 freepage:
1565 zswap_entry_cache_free(entry);
1566 reject:
1567 obj_cgroup_put(objcg);
1568 if (zswap_pool_reached_full)
1569 queue_work(shrink_wq, &zswap_shrink_work);
1570 check_old:
1571 /*
1572 * If the zswap store fails or zswap is disabled, we must invalidate the
1573 * possibly stale entry which was previously stored at this offset.
1574 * Otherwise, writeback could overwrite the new data in the swapfile.
1575 */
1576 entry = xa_erase(tree, offset);
1577 if (entry)
1578 zswap_entry_free(entry);
1579 return false;
1580 }
1581
zswap_load(struct folio * folio)1582 bool zswap_load(struct folio *folio)
1583 {
1584 swp_entry_t swp = folio->swap;
1585 pgoff_t offset = swp_offset(swp);
1586 bool swapcache = folio_test_swapcache(folio);
1587 struct xarray *tree = swap_zswap_tree(swp);
1588 struct zswap_entry *entry;
1589
1590 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1591
1592 if (zswap_never_enabled())
1593 return false;
1594
1595 /*
1596 * Large folios should not be swapped in while zswap is being used, as
1597 * they are not properly handled. Zswap does not properly load large
1598 * folios, and a large folio may only be partially in zswap.
1599 *
1600 * Return true without marking the folio uptodate so that an IO error is
1601 * emitted (e.g. do_swap_page() will sigbus).
1602 */
1603 if (WARN_ON_ONCE(folio_test_large(folio)))
1604 return true;
1605
1606 /*
1607 * When reading into the swapcache, invalidate our entry. The
1608 * swapcache can be the authoritative owner of the page and
1609 * its mappings, and the pressure that results from having two
1610 * in-memory copies outweighs any benefits of caching the
1611 * compression work.
1612 *
1613 * (Most swapins go through the swapcache. The notable
1614 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1615 * files, which reads into a private page and may free it if
1616 * the fault fails. We remain the primary owner of the entry.)
1617 */
1618 if (swapcache)
1619 entry = xa_erase(tree, offset);
1620 else
1621 entry = xa_load(tree, offset);
1622
1623 if (!entry)
1624 return false;
1625
1626 zswap_decompress(entry, folio);
1627
1628 count_vm_event(ZSWPIN);
1629 if (entry->objcg)
1630 count_objcg_events(entry->objcg, ZSWPIN, 1);
1631
1632 if (swapcache) {
1633 zswap_entry_free(entry);
1634 folio_mark_dirty(folio);
1635 }
1636
1637 folio_mark_uptodate(folio);
1638 return true;
1639 }
1640
zswap_invalidate(swp_entry_t swp)1641 void zswap_invalidate(swp_entry_t swp)
1642 {
1643 pgoff_t offset = swp_offset(swp);
1644 struct xarray *tree = swap_zswap_tree(swp);
1645 struct zswap_entry *entry;
1646
1647 entry = xa_erase(tree, offset);
1648 if (entry)
1649 zswap_entry_free(entry);
1650 }
1651
zswap_swapon(int type,unsigned long nr_pages)1652 int zswap_swapon(int type, unsigned long nr_pages)
1653 {
1654 struct xarray *trees, *tree;
1655 unsigned int nr, i;
1656
1657 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1658 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1659 if (!trees) {
1660 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1661 return -ENOMEM;
1662 }
1663
1664 for (i = 0; i < nr; i++)
1665 xa_init(trees + i);
1666
1667 nr_zswap_trees[type] = nr;
1668 zswap_trees[type] = trees;
1669 return 0;
1670 }
1671
zswap_swapoff(int type)1672 void zswap_swapoff(int type)
1673 {
1674 struct xarray *trees = zswap_trees[type];
1675 unsigned int i;
1676
1677 if (!trees)
1678 return;
1679
1680 /* try_to_unuse() invalidated all the entries already */
1681 for (i = 0; i < nr_zswap_trees[type]; i++)
1682 WARN_ON_ONCE(!xa_empty(trees + i));
1683
1684 kvfree(trees);
1685 nr_zswap_trees[type] = 0;
1686 zswap_trees[type] = NULL;
1687 }
1688
1689 /*********************************
1690 * debugfs functions
1691 **********************************/
1692 #ifdef CONFIG_DEBUG_FS
1693 #include <linux/debugfs.h>
1694
1695 static struct dentry *zswap_debugfs_root;
1696
debugfs_get_total_size(void * data,u64 * val)1697 static int debugfs_get_total_size(void *data, u64 *val)
1698 {
1699 *val = zswap_total_pages() * PAGE_SIZE;
1700 return 0;
1701 }
1702 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1703
zswap_debugfs_init(void)1704 static int zswap_debugfs_init(void)
1705 {
1706 if (!debugfs_initialized())
1707 return -ENODEV;
1708
1709 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1710
1711 debugfs_create_u64("pool_limit_hit", 0444,
1712 zswap_debugfs_root, &zswap_pool_limit_hit);
1713 debugfs_create_u64("reject_reclaim_fail", 0444,
1714 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1715 debugfs_create_u64("reject_alloc_fail", 0444,
1716 zswap_debugfs_root, &zswap_reject_alloc_fail);
1717 debugfs_create_u64("reject_kmemcache_fail", 0444,
1718 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1719 debugfs_create_u64("reject_compress_fail", 0444,
1720 zswap_debugfs_root, &zswap_reject_compress_fail);
1721 debugfs_create_u64("reject_compress_poor", 0444,
1722 zswap_debugfs_root, &zswap_reject_compress_poor);
1723 debugfs_create_u64("written_back_pages", 0444,
1724 zswap_debugfs_root, &zswap_written_back_pages);
1725 debugfs_create_file("pool_total_size", 0444,
1726 zswap_debugfs_root, NULL, &total_size_fops);
1727 debugfs_create_atomic_t("stored_pages", 0444,
1728 zswap_debugfs_root, &zswap_stored_pages);
1729
1730 return 0;
1731 }
1732 #else
zswap_debugfs_init(void)1733 static int zswap_debugfs_init(void)
1734 {
1735 return 0;
1736 }
1737 #endif
1738
1739 /*********************************
1740 * module init and exit
1741 **********************************/
zswap_setup(void)1742 static int zswap_setup(void)
1743 {
1744 struct zswap_pool *pool;
1745 int ret;
1746
1747 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1748 if (!zswap_entry_cache) {
1749 pr_err("entry cache creation failed\n");
1750 goto cache_fail;
1751 }
1752
1753 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1754 "mm/zswap_pool:prepare",
1755 zswap_cpu_comp_prepare,
1756 zswap_cpu_comp_dead);
1757 if (ret)
1758 goto hp_fail;
1759
1760 shrink_wq = alloc_workqueue("zswap-shrink",
1761 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1762 if (!shrink_wq)
1763 goto shrink_wq_fail;
1764
1765 zswap_shrinker = zswap_alloc_shrinker();
1766 if (!zswap_shrinker)
1767 goto shrinker_fail;
1768 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1769 goto lru_fail;
1770 shrinker_register(zswap_shrinker);
1771
1772 INIT_WORK(&zswap_shrink_work, shrink_worker);
1773
1774 pool = __zswap_pool_create_fallback();
1775 if (pool) {
1776 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1777 zpool_get_type(pool->zpool));
1778 list_add(&pool->list, &zswap_pools);
1779 zswap_has_pool = true;
1780 static_branch_enable(&zswap_ever_enabled);
1781 } else {
1782 pr_err("pool creation failed\n");
1783 zswap_enabled = false;
1784 }
1785
1786 if (zswap_debugfs_init())
1787 pr_warn("debugfs initialization failed\n");
1788 zswap_init_state = ZSWAP_INIT_SUCCEED;
1789 return 0;
1790
1791 lru_fail:
1792 shrinker_free(zswap_shrinker);
1793 shrinker_fail:
1794 destroy_workqueue(shrink_wq);
1795 shrink_wq_fail:
1796 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1797 hp_fail:
1798 kmem_cache_destroy(zswap_entry_cache);
1799 cache_fail:
1800 /* if built-in, we aren't unloaded on failure; don't allow use */
1801 zswap_init_state = ZSWAP_INIT_FAILED;
1802 zswap_enabled = false;
1803 return -ENOMEM;
1804 }
1805
zswap_init(void)1806 static int __init zswap_init(void)
1807 {
1808 if (!zswap_enabled)
1809 return 0;
1810 return zswap_setup();
1811 }
1812 /* must be late so crypto has time to come up */
1813 late_initcall(zswap_init);
1814
1815 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1816 MODULE_DESCRIPTION("Compressed cache for swap pages");
1817