• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 #include <trace/hooks/net.h>
95 
96 static const struct bpf_func_proto *
97 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
98 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)99 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
100 {
101 	if (in_compat_syscall()) {
102 		struct compat_sock_fprog f32;
103 
104 		if (len != sizeof(f32))
105 			return -EINVAL;
106 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
107 			return -EFAULT;
108 		memset(dst, 0, sizeof(*dst));
109 		dst->len = f32.len;
110 		dst->filter = compat_ptr(f32.filter);
111 	} else {
112 		if (len != sizeof(*dst))
113 			return -EINVAL;
114 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
115 			return -EFAULT;
116 	}
117 
118 	return 0;
119 }
120 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
121 
122 /**
123  *	sk_filter_trim_cap - run a packet through a socket filter
124  *	@sk: sock associated with &sk_buff
125  *	@skb: buffer to filter
126  *	@cap: limit on how short the eBPF program may trim the packet
127  *
128  * Run the eBPF program and then cut skb->data to correct size returned by
129  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
130  * than pkt_len we keep whole skb->data. This is the socket level
131  * wrapper to bpf_prog_run. It returns 0 if the packet should
132  * be accepted or -EPERM if the packet should be tossed.
133  *
134  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)135 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		return -ENOMEM;
148 	}
149 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
150 	if (err)
151 		return err;
152 
153 	err = security_sock_rcv_skb(sk, skb);
154 	if (err)
155 		return err;
156 
157 	rcu_read_lock();
158 	filter = rcu_dereference(sk->sk_filter);
159 	if (filter) {
160 		struct sock *save_sk = skb->sk;
161 		unsigned int pkt_len;
162 
163 		skb->sk = sk;
164 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
165 		skb->sk = save_sk;
166 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
167 	}
168 	rcu_read_unlock();
169 
170 	return err;
171 }
172 EXPORT_SYMBOL(sk_filter_trim_cap);
173 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)174 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
175 {
176 	return skb_get_poff(skb);
177 }
178 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)179 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
180 {
181 	struct nlattr *nla;
182 
183 	if (skb_is_nonlinear(skb))
184 		return 0;
185 
186 	if (skb->len < sizeof(struct nlattr))
187 		return 0;
188 
189 	if (a > skb->len - sizeof(struct nlattr))
190 		return 0;
191 
192 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
193 	if (nla)
194 		return (void *) nla - (void *) skb->data;
195 
196 	return 0;
197 }
198 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)199 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
200 {
201 	struct nlattr *nla;
202 
203 	if (skb_is_nonlinear(skb))
204 		return 0;
205 
206 	if (skb->len < sizeof(struct nlattr))
207 		return 0;
208 
209 	if (a > skb->len - sizeof(struct nlattr))
210 		return 0;
211 
212 	nla = (struct nlattr *) &skb->data[a];
213 	if (!nla_ok(nla, skb->len - a))
214 		return 0;
215 
216 	nla = nla_find_nested(nla, x);
217 	if (nla)
218 		return (void *) nla - (void *) skb->data;
219 
220 	return 0;
221 }
222 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)223 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
224 {
225 	if (likely(offset >= 0))
226 		return offset;
227 
228 	if (offset >= SKF_NET_OFF)
229 		return offset - SKF_NET_OFF + skb_network_offset(skb);
230 
231 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
232 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
233 
234 	return INT_MIN;
235 }
236 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)237 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
238 	   data, int, headlen, int, offset)
239 {
240 	u8 tmp;
241 	const int len = sizeof(tmp);
242 
243 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
244 	if (offset == INT_MIN)
245 		return -EFAULT;
246 
247 	if (headlen - offset >= len)
248 		return *(u8 *)(data + offset);
249 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
250 		return tmp;
251 	else
252 		return -EFAULT;
253 }
254 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
259 					 offset);
260 }
261 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	__be16 tmp;
266 	const int len = sizeof(tmp);
267 
268 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
269 	if (offset == INT_MIN)
270 		return -EFAULT;
271 
272 	if (headlen - offset >= len)
273 		return get_unaligned_be16(data + offset);
274 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
275 		return be16_to_cpu(tmp);
276 	else
277 		return -EFAULT;
278 }
279 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)280 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
281 	   int, offset)
282 {
283 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
284 					  offset);
285 }
286 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)287 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
288 	   data, int, headlen, int, offset)
289 {
290 	__be32 tmp;
291 	const int len = sizeof(tmp);
292 
293 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
294 	if (offset == INT_MIN)
295 		return -EFAULT;
296 
297 	if (headlen - offset >= len)
298 		return get_unaligned_be32(data + offset);
299 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
300 		return be32_to_cpu(tmp);
301 	else
302 		return -EFAULT;
303 }
304 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)305 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
306 	   int, offset)
307 {
308 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
309 					  offset);
310 }
311 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)312 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
313 			      struct bpf_insn *insn_buf)
314 {
315 	struct bpf_insn *insn = insn_buf;
316 
317 	switch (skb_field) {
318 	case SKF_AD_MARK:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
320 
321 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, mark));
323 		break;
324 
325 	case SKF_AD_PKTTYPE:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
327 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
328 #ifdef __BIG_ENDIAN_BITFIELD
329 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
330 #endif
331 		break;
332 
333 	case SKF_AD_QUEUE:
334 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
335 
336 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
337 				      offsetof(struct sk_buff, queue_mapping));
338 		break;
339 
340 	case SKF_AD_VLAN_TAG:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
342 
343 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
344 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
345 				      offsetof(struct sk_buff, vlan_tci));
346 		break;
347 	case SKF_AD_VLAN_TAG_PRESENT:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
349 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
350 				      offsetof(struct sk_buff, vlan_all));
351 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
352 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
353 		break;
354 	}
355 
356 	return insn - insn_buf;
357 }
358 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)359 static bool convert_bpf_extensions(struct sock_filter *fp,
360 				   struct bpf_insn **insnp)
361 {
362 	struct bpf_insn *insn = *insnp;
363 	u32 cnt;
364 
365 	switch (fp->k) {
366 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
367 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
368 
369 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
370 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
371 				      offsetof(struct sk_buff, protocol));
372 		/* A = ntohs(A) [emitting a nop or swap16] */
373 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
374 		break;
375 
376 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
377 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
378 		insn += cnt - 1;
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_IFINDEX:
382 	case SKF_AD_OFF + SKF_AD_HATYPE:
383 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
384 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
385 
386 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
387 				      BPF_REG_TMP, BPF_REG_CTX,
388 				      offsetof(struct sk_buff, dev));
389 		/* if (tmp != 0) goto pc + 1 */
390 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
391 		*insn++ = BPF_EXIT_INSN();
392 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
393 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
394 					    offsetof(struct net_device, ifindex));
395 		else
396 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
397 					    offsetof(struct net_device, type));
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_MARK:
401 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
402 		insn += cnt - 1;
403 		break;
404 
405 	case SKF_AD_OFF + SKF_AD_RXHASH:
406 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
407 
408 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
409 				    offsetof(struct sk_buff, hash));
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_QUEUE:
413 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
414 		insn += cnt - 1;
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
418 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
419 					 BPF_REG_A, BPF_REG_CTX, insn);
420 		insn += cnt - 1;
421 		break;
422 
423 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
424 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
425 					 BPF_REG_A, BPF_REG_CTX, insn);
426 		insn += cnt - 1;
427 		break;
428 
429 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
430 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
431 
432 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
433 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
434 				      offsetof(struct sk_buff, vlan_proto));
435 		/* A = ntohs(A) [emitting a nop or swap16] */
436 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
437 		break;
438 
439 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
440 	case SKF_AD_OFF + SKF_AD_NLATTR:
441 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 	case SKF_AD_OFF + SKF_AD_CPU:
443 	case SKF_AD_OFF + SKF_AD_RANDOM:
444 		/* arg1 = CTX */
445 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
446 		/* arg2 = A */
447 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
448 		/* arg3 = X */
449 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
450 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
451 		switch (fp->k) {
452 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
453 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
454 			break;
455 		case SKF_AD_OFF + SKF_AD_NLATTR:
456 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
457 			break;
458 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
459 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
460 			break;
461 		case SKF_AD_OFF + SKF_AD_CPU:
462 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
463 			break;
464 		case SKF_AD_OFF + SKF_AD_RANDOM:
465 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
466 			bpf_user_rnd_init_once();
467 			break;
468 		}
469 		break;
470 
471 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
472 		/* A ^= X */
473 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
474 		break;
475 
476 	default:
477 		/* This is just a dummy call to avoid letting the compiler
478 		 * evict __bpf_call_base() as an optimization. Placed here
479 		 * where no-one bothers.
480 		 */
481 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
482 		return false;
483 	}
484 
485 	*insnp = insn;
486 	return true;
487 }
488 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)489 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
490 {
491 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
492 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
493 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
494 		      BPF_SIZE(fp->code) == BPF_W;
495 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
496 	const int ip_align = NET_IP_ALIGN;
497 	struct bpf_insn *insn = *insnp;
498 	int offset = fp->k;
499 
500 	if (!indirect &&
501 	    ((unaligned_ok && offset >= 0) ||
502 	     (!unaligned_ok && offset >= 0 &&
503 	      offset + ip_align >= 0 &&
504 	      offset + ip_align % size == 0))) {
505 		bool ldx_off_ok = offset <= S16_MAX;
506 
507 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
508 		if (offset)
509 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
510 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
511 				      size, 2 + endian + (!ldx_off_ok * 2));
512 		if (ldx_off_ok) {
513 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
514 					      BPF_REG_D, offset);
515 		} else {
516 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
517 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
518 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
519 					      BPF_REG_TMP, 0);
520 		}
521 		if (endian)
522 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
523 		*insn++ = BPF_JMP_A(8);
524 	}
525 
526 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
527 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
528 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
529 	if (!indirect) {
530 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
531 	} else {
532 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
533 		if (fp->k)
534 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
535 	}
536 
537 	switch (BPF_SIZE(fp->code)) {
538 	case BPF_B:
539 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
540 		break;
541 	case BPF_H:
542 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
543 		break;
544 	case BPF_W:
545 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
546 		break;
547 	default:
548 		return false;
549 	}
550 
551 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
552 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
553 	*insn   = BPF_EXIT_INSN();
554 
555 	*insnp = insn;
556 	return true;
557 }
558 
559 /**
560  *	bpf_convert_filter - convert filter program
561  *	@prog: the user passed filter program
562  *	@len: the length of the user passed filter program
563  *	@new_prog: allocated 'struct bpf_prog' or NULL
564  *	@new_len: pointer to store length of converted program
565  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
566  *
567  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
568  * style extended BPF (eBPF).
569  * Conversion workflow:
570  *
571  * 1) First pass for calculating the new program length:
572  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
573  *
574  * 2) 2nd pass to remap in two passes: 1st pass finds new
575  *    jump offsets, 2nd pass remapping:
576  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
577  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)578 static int bpf_convert_filter(struct sock_filter *prog, int len,
579 			      struct bpf_prog *new_prog, int *new_len,
580 			      bool *seen_ld_abs)
581 {
582 	int new_flen = 0, pass = 0, target, i, stack_off;
583 	struct bpf_insn *new_insn, *first_insn = NULL;
584 	struct sock_filter *fp;
585 	int *addrs = NULL;
586 	u8 bpf_src;
587 
588 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
589 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
590 
591 	if (len <= 0 || len > BPF_MAXINSNS)
592 		return -EINVAL;
593 
594 	if (new_prog) {
595 		first_insn = new_prog->insnsi;
596 		addrs = kcalloc(len, sizeof(*addrs),
597 				GFP_KERNEL | __GFP_NOWARN);
598 		if (!addrs)
599 			return -ENOMEM;
600 	}
601 
602 do_pass:
603 	new_insn = first_insn;
604 	fp = prog;
605 
606 	/* Classic BPF related prologue emission. */
607 	if (new_prog) {
608 		/* Classic BPF expects A and X to be reset first. These need
609 		 * to be guaranteed to be the first two instructions.
610 		 */
611 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
612 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
613 
614 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
615 		 * In eBPF case it's done by the compiler, here we need to
616 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
617 		 */
618 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
619 		if (*seen_ld_abs) {
620 			/* For packet access in classic BPF, cache skb->data
621 			 * in callee-saved BPF R8 and skb->len - skb->data_len
622 			 * (headlen) in BPF R9. Since classic BPF is read-only
623 			 * on CTX, we only need to cache it once.
624 			 */
625 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
626 						  BPF_REG_D, BPF_REG_CTX,
627 						  offsetof(struct sk_buff, data));
628 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
629 						  offsetof(struct sk_buff, len));
630 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
631 						  offsetof(struct sk_buff, data_len));
632 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
633 		}
634 	} else {
635 		new_insn += 3;
636 	}
637 
638 	for (i = 0; i < len; fp++, i++) {
639 		struct bpf_insn tmp_insns[32] = { };
640 		struct bpf_insn *insn = tmp_insns;
641 
642 		if (addrs)
643 			addrs[i] = new_insn - first_insn;
644 
645 		switch (fp->code) {
646 		/* All arithmetic insns and skb loads map as-is. */
647 		case BPF_ALU | BPF_ADD | BPF_X:
648 		case BPF_ALU | BPF_ADD | BPF_K:
649 		case BPF_ALU | BPF_SUB | BPF_X:
650 		case BPF_ALU | BPF_SUB | BPF_K:
651 		case BPF_ALU | BPF_AND | BPF_X:
652 		case BPF_ALU | BPF_AND | BPF_K:
653 		case BPF_ALU | BPF_OR | BPF_X:
654 		case BPF_ALU | BPF_OR | BPF_K:
655 		case BPF_ALU | BPF_LSH | BPF_X:
656 		case BPF_ALU | BPF_LSH | BPF_K:
657 		case BPF_ALU | BPF_RSH | BPF_X:
658 		case BPF_ALU | BPF_RSH | BPF_K:
659 		case BPF_ALU | BPF_XOR | BPF_X:
660 		case BPF_ALU | BPF_XOR | BPF_K:
661 		case BPF_ALU | BPF_MUL | BPF_X:
662 		case BPF_ALU | BPF_MUL | BPF_K:
663 		case BPF_ALU | BPF_DIV | BPF_X:
664 		case BPF_ALU | BPF_DIV | BPF_K:
665 		case BPF_ALU | BPF_MOD | BPF_X:
666 		case BPF_ALU | BPF_MOD | BPF_K:
667 		case BPF_ALU | BPF_NEG:
668 		case BPF_LD | BPF_ABS | BPF_W:
669 		case BPF_LD | BPF_ABS | BPF_H:
670 		case BPF_LD | BPF_ABS | BPF_B:
671 		case BPF_LD | BPF_IND | BPF_W:
672 		case BPF_LD | BPF_IND | BPF_H:
673 		case BPF_LD | BPF_IND | BPF_B:
674 			/* Check for overloaded BPF extension and
675 			 * directly convert it if found, otherwise
676 			 * just move on with mapping.
677 			 */
678 			if (BPF_CLASS(fp->code) == BPF_LD &&
679 			    BPF_MODE(fp->code) == BPF_ABS &&
680 			    convert_bpf_extensions(fp, &insn))
681 				break;
682 			if (BPF_CLASS(fp->code) == BPF_LD &&
683 			    convert_bpf_ld_abs(fp, &insn)) {
684 				*seen_ld_abs = true;
685 				break;
686 			}
687 
688 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
689 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
690 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
691 				/* Error with exception code on div/mod by 0.
692 				 * For cBPF programs, this was always return 0.
693 				 */
694 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
695 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
696 				*insn++ = BPF_EXIT_INSN();
697 			}
698 
699 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
700 			break;
701 
702 		/* Jump transformation cannot use BPF block macros
703 		 * everywhere as offset calculation and target updates
704 		 * require a bit more work than the rest, i.e. jump
705 		 * opcodes map as-is, but offsets need adjustment.
706 		 */
707 
708 #define BPF_EMIT_JMP							\
709 	do {								\
710 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
711 		s32 off;						\
712 									\
713 		if (target >= len || target < 0)			\
714 			goto err;					\
715 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
716 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
717 		off -= insn - tmp_insns;				\
718 		/* Reject anything not fitting into insn->off. */	\
719 		if (off < off_min || off > off_max)			\
720 			goto err;					\
721 		insn->off = off;					\
722 	} while (0)
723 
724 		case BPF_JMP | BPF_JA:
725 			target = i + fp->k + 1;
726 			insn->code = fp->code;
727 			BPF_EMIT_JMP;
728 			break;
729 
730 		case BPF_JMP | BPF_JEQ | BPF_K:
731 		case BPF_JMP | BPF_JEQ | BPF_X:
732 		case BPF_JMP | BPF_JSET | BPF_K:
733 		case BPF_JMP | BPF_JSET | BPF_X:
734 		case BPF_JMP | BPF_JGT | BPF_K:
735 		case BPF_JMP | BPF_JGT | BPF_X:
736 		case BPF_JMP | BPF_JGE | BPF_K:
737 		case BPF_JMP | BPF_JGE | BPF_X:
738 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
739 				/* BPF immediates are signed, zero extend
740 				 * immediate into tmp register and use it
741 				 * in compare insn.
742 				 */
743 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
744 
745 				insn->dst_reg = BPF_REG_A;
746 				insn->src_reg = BPF_REG_TMP;
747 				bpf_src = BPF_X;
748 			} else {
749 				insn->dst_reg = BPF_REG_A;
750 				insn->imm = fp->k;
751 				bpf_src = BPF_SRC(fp->code);
752 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
753 			}
754 
755 			/* Common case where 'jump_false' is next insn. */
756 			if (fp->jf == 0) {
757 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
758 				target = i + fp->jt + 1;
759 				BPF_EMIT_JMP;
760 				break;
761 			}
762 
763 			/* Convert some jumps when 'jump_true' is next insn. */
764 			if (fp->jt == 0) {
765 				switch (BPF_OP(fp->code)) {
766 				case BPF_JEQ:
767 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
768 					break;
769 				case BPF_JGT:
770 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
771 					break;
772 				case BPF_JGE:
773 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
774 					break;
775 				default:
776 					goto jmp_rest;
777 				}
778 
779 				target = i + fp->jf + 1;
780 				BPF_EMIT_JMP;
781 				break;
782 			}
783 jmp_rest:
784 			/* Other jumps are mapped into two insns: Jxx and JA. */
785 			target = i + fp->jt + 1;
786 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
787 			BPF_EMIT_JMP;
788 			insn++;
789 
790 			insn->code = BPF_JMP | BPF_JA;
791 			target = i + fp->jf + 1;
792 			BPF_EMIT_JMP;
793 			break;
794 
795 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
796 		case BPF_LDX | BPF_MSH | BPF_B: {
797 			struct sock_filter tmp = {
798 				.code	= BPF_LD | BPF_ABS | BPF_B,
799 				.k	= fp->k,
800 			};
801 
802 			*seen_ld_abs = true;
803 
804 			/* X = A */
805 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
806 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
807 			convert_bpf_ld_abs(&tmp, &insn);
808 			insn++;
809 			/* A &= 0xf */
810 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
811 			/* A <<= 2 */
812 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
813 			/* tmp = X */
814 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
815 			/* X = A */
816 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
817 			/* A = tmp */
818 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
819 			break;
820 		}
821 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
822 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
823 		 */
824 		case BPF_RET | BPF_A:
825 		case BPF_RET | BPF_K:
826 			if (BPF_RVAL(fp->code) == BPF_K)
827 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
828 							0, fp->k);
829 			*insn = BPF_EXIT_INSN();
830 			break;
831 
832 		/* Store to stack. */
833 		case BPF_ST:
834 		case BPF_STX:
835 			stack_off = fp->k * 4  + 4;
836 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
837 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
838 					    -stack_off);
839 			/* check_load_and_stores() verifies that classic BPF can
840 			 * load from stack only after write, so tracking
841 			 * stack_depth for ST|STX insns is enough
842 			 */
843 			if (new_prog && new_prog->aux->stack_depth < stack_off)
844 				new_prog->aux->stack_depth = stack_off;
845 			break;
846 
847 		/* Load from stack. */
848 		case BPF_LD | BPF_MEM:
849 		case BPF_LDX | BPF_MEM:
850 			stack_off = fp->k * 4  + 4;
851 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
852 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
853 					    -stack_off);
854 			break;
855 
856 		/* A = K or X = K */
857 		case BPF_LD | BPF_IMM:
858 		case BPF_LDX | BPF_IMM:
859 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
860 					      BPF_REG_A : BPF_REG_X, fp->k);
861 			break;
862 
863 		/* X = A */
864 		case BPF_MISC | BPF_TAX:
865 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
866 			break;
867 
868 		/* A = X */
869 		case BPF_MISC | BPF_TXA:
870 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
871 			break;
872 
873 		/* A = skb->len or X = skb->len */
874 		case BPF_LD | BPF_W | BPF_LEN:
875 		case BPF_LDX | BPF_W | BPF_LEN:
876 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
877 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
878 					    offsetof(struct sk_buff, len));
879 			break;
880 
881 		/* Access seccomp_data fields. */
882 		case BPF_LDX | BPF_ABS | BPF_W:
883 			/* A = *(u32 *) (ctx + K) */
884 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
885 			break;
886 
887 		/* Unknown instruction. */
888 		default:
889 			goto err;
890 		}
891 
892 		insn++;
893 		if (new_prog)
894 			memcpy(new_insn, tmp_insns,
895 			       sizeof(*insn) * (insn - tmp_insns));
896 		new_insn += insn - tmp_insns;
897 	}
898 
899 	if (!new_prog) {
900 		/* Only calculating new length. */
901 		*new_len = new_insn - first_insn;
902 		if (*seen_ld_abs)
903 			*new_len += 4; /* Prologue bits. */
904 		return 0;
905 	}
906 
907 	pass++;
908 	if (new_flen != new_insn - first_insn) {
909 		new_flen = new_insn - first_insn;
910 		if (pass > 2)
911 			goto err;
912 		goto do_pass;
913 	}
914 
915 	kfree(addrs);
916 	BUG_ON(*new_len != new_flen);
917 	return 0;
918 err:
919 	kfree(addrs);
920 	return -EINVAL;
921 }
922 
923 /* Security:
924  *
925  * As we dont want to clear mem[] array for each packet going through
926  * __bpf_prog_run(), we check that filter loaded by user never try to read
927  * a cell if not previously written, and we check all branches to be sure
928  * a malicious user doesn't try to abuse us.
929  */
check_load_and_stores(const struct sock_filter * filter,int flen)930 static int check_load_and_stores(const struct sock_filter *filter, int flen)
931 {
932 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
933 	int pc, ret = 0;
934 
935 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
936 
937 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
938 	if (!masks)
939 		return -ENOMEM;
940 
941 	memset(masks, 0xff, flen * sizeof(*masks));
942 
943 	for (pc = 0; pc < flen; pc++) {
944 		memvalid &= masks[pc];
945 
946 		switch (filter[pc].code) {
947 		case BPF_ST:
948 		case BPF_STX:
949 			memvalid |= (1 << filter[pc].k);
950 			break;
951 		case BPF_LD | BPF_MEM:
952 		case BPF_LDX | BPF_MEM:
953 			if (!(memvalid & (1 << filter[pc].k))) {
954 				ret = -EINVAL;
955 				goto error;
956 			}
957 			break;
958 		case BPF_JMP | BPF_JA:
959 			/* A jump must set masks on target */
960 			masks[pc + 1 + filter[pc].k] &= memvalid;
961 			memvalid = ~0;
962 			break;
963 		case BPF_JMP | BPF_JEQ | BPF_K:
964 		case BPF_JMP | BPF_JEQ | BPF_X:
965 		case BPF_JMP | BPF_JGE | BPF_K:
966 		case BPF_JMP | BPF_JGE | BPF_X:
967 		case BPF_JMP | BPF_JGT | BPF_K:
968 		case BPF_JMP | BPF_JGT | BPF_X:
969 		case BPF_JMP | BPF_JSET | BPF_K:
970 		case BPF_JMP | BPF_JSET | BPF_X:
971 			/* A jump must set masks on targets */
972 			masks[pc + 1 + filter[pc].jt] &= memvalid;
973 			masks[pc + 1 + filter[pc].jf] &= memvalid;
974 			memvalid = ~0;
975 			break;
976 		}
977 	}
978 error:
979 	kfree(masks);
980 	return ret;
981 }
982 
chk_code_allowed(u16 code_to_probe)983 static bool chk_code_allowed(u16 code_to_probe)
984 {
985 	static const bool codes[] = {
986 		/* 32 bit ALU operations */
987 		[BPF_ALU | BPF_ADD | BPF_K] = true,
988 		[BPF_ALU | BPF_ADD | BPF_X] = true,
989 		[BPF_ALU | BPF_SUB | BPF_K] = true,
990 		[BPF_ALU | BPF_SUB | BPF_X] = true,
991 		[BPF_ALU | BPF_MUL | BPF_K] = true,
992 		[BPF_ALU | BPF_MUL | BPF_X] = true,
993 		[BPF_ALU | BPF_DIV | BPF_K] = true,
994 		[BPF_ALU | BPF_DIV | BPF_X] = true,
995 		[BPF_ALU | BPF_MOD | BPF_K] = true,
996 		[BPF_ALU | BPF_MOD | BPF_X] = true,
997 		[BPF_ALU | BPF_AND | BPF_K] = true,
998 		[BPF_ALU | BPF_AND | BPF_X] = true,
999 		[BPF_ALU | BPF_OR | BPF_K] = true,
1000 		[BPF_ALU | BPF_OR | BPF_X] = true,
1001 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1002 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1003 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1004 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1005 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1006 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1007 		[BPF_ALU | BPF_NEG] = true,
1008 		/* Load instructions */
1009 		[BPF_LD | BPF_W | BPF_ABS] = true,
1010 		[BPF_LD | BPF_H | BPF_ABS] = true,
1011 		[BPF_LD | BPF_B | BPF_ABS] = true,
1012 		[BPF_LD | BPF_W | BPF_LEN] = true,
1013 		[BPF_LD | BPF_W | BPF_IND] = true,
1014 		[BPF_LD | BPF_H | BPF_IND] = true,
1015 		[BPF_LD | BPF_B | BPF_IND] = true,
1016 		[BPF_LD | BPF_IMM] = true,
1017 		[BPF_LD | BPF_MEM] = true,
1018 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1019 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1020 		[BPF_LDX | BPF_IMM] = true,
1021 		[BPF_LDX | BPF_MEM] = true,
1022 		/* Store instructions */
1023 		[BPF_ST] = true,
1024 		[BPF_STX] = true,
1025 		/* Misc instructions */
1026 		[BPF_MISC | BPF_TAX] = true,
1027 		[BPF_MISC | BPF_TXA] = true,
1028 		/* Return instructions */
1029 		[BPF_RET | BPF_K] = true,
1030 		[BPF_RET | BPF_A] = true,
1031 		/* Jump instructions */
1032 		[BPF_JMP | BPF_JA] = true,
1033 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1034 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1035 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1036 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1037 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1038 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1039 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1040 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1041 	};
1042 
1043 	if (code_to_probe >= ARRAY_SIZE(codes))
1044 		return false;
1045 
1046 	return codes[code_to_probe];
1047 }
1048 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1049 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1050 				unsigned int flen)
1051 {
1052 	if (filter == NULL)
1053 		return false;
1054 	if (flen == 0 || flen > BPF_MAXINSNS)
1055 		return false;
1056 
1057 	return true;
1058 }
1059 
1060 /**
1061  *	bpf_check_classic - verify socket filter code
1062  *	@filter: filter to verify
1063  *	@flen: length of filter
1064  *
1065  * Check the user's filter code. If we let some ugly
1066  * filter code slip through kaboom! The filter must contain
1067  * no references or jumps that are out of range, no illegal
1068  * instructions, and must end with a RET instruction.
1069  *
1070  * All jumps are forward as they are not signed.
1071  *
1072  * Returns 0 if the rule set is legal or -EINVAL if not.
1073  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1074 static int bpf_check_classic(const struct sock_filter *filter,
1075 			     unsigned int flen)
1076 {
1077 	bool anc_found;
1078 	int pc;
1079 
1080 	/* Check the filter code now */
1081 	for (pc = 0; pc < flen; pc++) {
1082 		const struct sock_filter *ftest = &filter[pc];
1083 
1084 		/* May we actually operate on this code? */
1085 		if (!chk_code_allowed(ftest->code))
1086 			return -EINVAL;
1087 
1088 		/* Some instructions need special checks */
1089 		switch (ftest->code) {
1090 		case BPF_ALU | BPF_DIV | BPF_K:
1091 		case BPF_ALU | BPF_MOD | BPF_K:
1092 			/* Check for division by zero */
1093 			if (ftest->k == 0)
1094 				return -EINVAL;
1095 			break;
1096 		case BPF_ALU | BPF_LSH | BPF_K:
1097 		case BPF_ALU | BPF_RSH | BPF_K:
1098 			if (ftest->k >= 32)
1099 				return -EINVAL;
1100 			break;
1101 		case BPF_LD | BPF_MEM:
1102 		case BPF_LDX | BPF_MEM:
1103 		case BPF_ST:
1104 		case BPF_STX:
1105 			/* Check for invalid memory addresses */
1106 			if (ftest->k >= BPF_MEMWORDS)
1107 				return -EINVAL;
1108 			break;
1109 		case BPF_JMP | BPF_JA:
1110 			/* Note, the large ftest->k might cause loops.
1111 			 * Compare this with conditional jumps below,
1112 			 * where offsets are limited. --ANK (981016)
1113 			 */
1114 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1115 				return -EINVAL;
1116 			break;
1117 		case BPF_JMP | BPF_JEQ | BPF_K:
1118 		case BPF_JMP | BPF_JEQ | BPF_X:
1119 		case BPF_JMP | BPF_JGE | BPF_K:
1120 		case BPF_JMP | BPF_JGE | BPF_X:
1121 		case BPF_JMP | BPF_JGT | BPF_K:
1122 		case BPF_JMP | BPF_JGT | BPF_X:
1123 		case BPF_JMP | BPF_JSET | BPF_K:
1124 		case BPF_JMP | BPF_JSET | BPF_X:
1125 			/* Both conditionals must be safe */
1126 			if (pc + ftest->jt + 1 >= flen ||
1127 			    pc + ftest->jf + 1 >= flen)
1128 				return -EINVAL;
1129 			break;
1130 		case BPF_LD | BPF_W | BPF_ABS:
1131 		case BPF_LD | BPF_H | BPF_ABS:
1132 		case BPF_LD | BPF_B | BPF_ABS:
1133 			anc_found = false;
1134 			if (bpf_anc_helper(ftest) & BPF_ANC)
1135 				anc_found = true;
1136 			/* Ancillary operation unknown or unsupported */
1137 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1138 				return -EINVAL;
1139 		}
1140 	}
1141 
1142 	/* Last instruction must be a RET code */
1143 	switch (filter[flen - 1].code) {
1144 	case BPF_RET | BPF_K:
1145 	case BPF_RET | BPF_A:
1146 		return check_load_and_stores(filter, flen);
1147 	}
1148 
1149 	return -EINVAL;
1150 }
1151 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1152 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1153 				      const struct sock_fprog *fprog)
1154 {
1155 	unsigned int fsize = bpf_classic_proglen(fprog);
1156 	struct sock_fprog_kern *fkprog;
1157 
1158 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1159 	if (!fp->orig_prog)
1160 		return -ENOMEM;
1161 
1162 	fkprog = fp->orig_prog;
1163 	fkprog->len = fprog->len;
1164 
1165 	fkprog->filter = kmemdup(fp->insns, fsize,
1166 				 GFP_KERNEL | __GFP_NOWARN);
1167 	if (!fkprog->filter) {
1168 		kfree(fp->orig_prog);
1169 		return -ENOMEM;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
bpf_release_orig_filter(struct bpf_prog * fp)1175 static void bpf_release_orig_filter(struct bpf_prog *fp)
1176 {
1177 	struct sock_fprog_kern *fprog = fp->orig_prog;
1178 
1179 	if (fprog) {
1180 		kfree(fprog->filter);
1181 		kfree(fprog);
1182 	}
1183 }
1184 
__bpf_prog_release(struct bpf_prog * prog)1185 static void __bpf_prog_release(struct bpf_prog *prog)
1186 {
1187 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1188 		bpf_prog_put(prog);
1189 	} else {
1190 		bpf_release_orig_filter(prog);
1191 		bpf_prog_free(prog);
1192 	}
1193 }
1194 
__sk_filter_release(struct sk_filter * fp)1195 static void __sk_filter_release(struct sk_filter *fp)
1196 {
1197 	__bpf_prog_release(fp->prog);
1198 	kfree(fp);
1199 }
1200 
1201 /**
1202  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1203  *	@rcu: rcu_head that contains the sk_filter to free
1204  */
sk_filter_release_rcu(struct rcu_head * rcu)1205 static void sk_filter_release_rcu(struct rcu_head *rcu)
1206 {
1207 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1208 
1209 	__sk_filter_release(fp);
1210 }
1211 
1212 /**
1213  *	sk_filter_release - release a socket filter
1214  *	@fp: filter to remove
1215  *
1216  *	Remove a filter from a socket and release its resources.
1217  */
sk_filter_release(struct sk_filter * fp)1218 static void sk_filter_release(struct sk_filter *fp)
1219 {
1220 	if (refcount_dec_and_test(&fp->refcnt))
1221 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1222 }
1223 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1224 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1225 {
1226 	u32 filter_size = bpf_prog_size(fp->prog->len);
1227 
1228 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1229 	sk_filter_release(fp);
1230 }
1231 
1232 /* try to charge the socket memory if there is space available
1233  * return true on success
1234  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1235 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1236 {
1237 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1238 	u32 filter_size = bpf_prog_size(fp->prog->len);
1239 
1240 	/* same check as in sock_kmalloc() */
1241 	if (filter_size <= optmem_max &&
1242 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1243 		atomic_add(filter_size, &sk->sk_omem_alloc);
1244 		return true;
1245 	}
1246 	return false;
1247 }
1248 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1249 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1250 {
1251 	if (!refcount_inc_not_zero(&fp->refcnt))
1252 		return false;
1253 
1254 	if (!__sk_filter_charge(sk, fp)) {
1255 		sk_filter_release(fp);
1256 		return false;
1257 	}
1258 	return true;
1259 }
1260 
bpf_migrate_filter(struct bpf_prog * fp)1261 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1262 {
1263 	struct sock_filter *old_prog;
1264 	struct bpf_prog *old_fp;
1265 	int err, new_len, old_len = fp->len;
1266 	bool seen_ld_abs = false;
1267 
1268 	/* We are free to overwrite insns et al right here as it won't be used at
1269 	 * this point in time anymore internally after the migration to the eBPF
1270 	 * instruction representation.
1271 	 */
1272 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1273 		     sizeof(struct bpf_insn));
1274 
1275 	/* Conversion cannot happen on overlapping memory areas,
1276 	 * so we need to keep the user BPF around until the 2nd
1277 	 * pass. At this time, the user BPF is stored in fp->insns.
1278 	 */
1279 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1280 				 GFP_KERNEL | __GFP_NOWARN);
1281 	if (!old_prog) {
1282 		err = -ENOMEM;
1283 		goto out_err;
1284 	}
1285 
1286 	/* 1st pass: calculate the new program length. */
1287 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1288 				 &seen_ld_abs);
1289 	if (err)
1290 		goto out_err_free;
1291 
1292 	/* Expand fp for appending the new filter representation. */
1293 	old_fp = fp;
1294 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1295 	if (!fp) {
1296 		/* The old_fp is still around in case we couldn't
1297 		 * allocate new memory, so uncharge on that one.
1298 		 */
1299 		fp = old_fp;
1300 		err = -ENOMEM;
1301 		goto out_err_free;
1302 	}
1303 
1304 	fp->len = new_len;
1305 
1306 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1307 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1308 				 &seen_ld_abs);
1309 	if (err)
1310 		/* 2nd bpf_convert_filter() can fail only if it fails
1311 		 * to allocate memory, remapping must succeed. Note,
1312 		 * that at this time old_fp has already been released
1313 		 * by krealloc().
1314 		 */
1315 		goto out_err_free;
1316 
1317 	fp = bpf_prog_select_runtime(fp, &err);
1318 	if (err)
1319 		goto out_err_free;
1320 
1321 	kfree(old_prog);
1322 	return fp;
1323 
1324 out_err_free:
1325 	kfree(old_prog);
1326 out_err:
1327 	__bpf_prog_release(fp);
1328 	return ERR_PTR(err);
1329 }
1330 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1331 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1332 					   bpf_aux_classic_check_t trans)
1333 {
1334 	int err;
1335 
1336 	fp->bpf_func = NULL;
1337 	fp->jited = 0;
1338 
1339 	err = bpf_check_classic(fp->insns, fp->len);
1340 	if (err) {
1341 		__bpf_prog_release(fp);
1342 		return ERR_PTR(err);
1343 	}
1344 
1345 	/* There might be additional checks and transformations
1346 	 * needed on classic filters, f.e. in case of seccomp.
1347 	 */
1348 	if (trans) {
1349 		err = trans(fp->insns, fp->len);
1350 		if (err) {
1351 			__bpf_prog_release(fp);
1352 			return ERR_PTR(err);
1353 		}
1354 	}
1355 
1356 	/* Probe if we can JIT compile the filter and if so, do
1357 	 * the compilation of the filter.
1358 	 */
1359 	bpf_jit_compile(fp);
1360 
1361 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1362 	 * for the optimized interpreter.
1363 	 */
1364 	if (!fp->jited)
1365 		fp = bpf_migrate_filter(fp);
1366 
1367 	return fp;
1368 }
1369 
1370 /**
1371  *	bpf_prog_create - create an unattached filter
1372  *	@pfp: the unattached filter that is created
1373  *	@fprog: the filter program
1374  *
1375  * Create a filter independent of any socket. We first run some
1376  * sanity checks on it to make sure it does not explode on us later.
1377  * If an error occurs or there is insufficient memory for the filter
1378  * a negative errno code is returned. On success the return is zero.
1379  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1380 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1381 {
1382 	unsigned int fsize = bpf_classic_proglen(fprog);
1383 	struct bpf_prog *fp;
1384 
1385 	/* Make sure new filter is there and in the right amounts. */
1386 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1387 		return -EINVAL;
1388 
1389 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1390 	if (!fp)
1391 		return -ENOMEM;
1392 
1393 	memcpy(fp->insns, fprog->filter, fsize);
1394 
1395 	fp->len = fprog->len;
1396 	/* Since unattached filters are not copied back to user
1397 	 * space through sk_get_filter(), we do not need to hold
1398 	 * a copy here, and can spare us the work.
1399 	 */
1400 	fp->orig_prog = NULL;
1401 
1402 	/* bpf_prepare_filter() already takes care of freeing
1403 	 * memory in case something goes wrong.
1404 	 */
1405 	fp = bpf_prepare_filter(fp, NULL);
1406 	if (IS_ERR(fp))
1407 		return PTR_ERR(fp);
1408 
1409 	*pfp = fp;
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(bpf_prog_create);
1413 
1414 /**
1415  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1416  *	@pfp: the unattached filter that is created
1417  *	@fprog: the filter program
1418  *	@trans: post-classic verifier transformation handler
1419  *	@save_orig: save classic BPF program
1420  *
1421  * This function effectively does the same as bpf_prog_create(), only
1422  * that it builds up its insns buffer from user space provided buffer.
1423  * It also allows for passing a bpf_aux_classic_check_t handler.
1424  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1425 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1426 			      bpf_aux_classic_check_t trans, bool save_orig)
1427 {
1428 	unsigned int fsize = bpf_classic_proglen(fprog);
1429 	struct bpf_prog *fp;
1430 	int err;
1431 
1432 	/* Make sure new filter is there and in the right amounts. */
1433 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1434 		return -EINVAL;
1435 
1436 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1437 	if (!fp)
1438 		return -ENOMEM;
1439 
1440 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1441 		__bpf_prog_free(fp);
1442 		return -EFAULT;
1443 	}
1444 
1445 	fp->len = fprog->len;
1446 	fp->orig_prog = NULL;
1447 
1448 	if (save_orig) {
1449 		err = bpf_prog_store_orig_filter(fp, fprog);
1450 		if (err) {
1451 			__bpf_prog_free(fp);
1452 			return -ENOMEM;
1453 		}
1454 	}
1455 
1456 	/* bpf_prepare_filter() already takes care of freeing
1457 	 * memory in case something goes wrong.
1458 	 */
1459 	fp = bpf_prepare_filter(fp, trans);
1460 	if (IS_ERR(fp))
1461 		return PTR_ERR(fp);
1462 
1463 	*pfp = fp;
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1467 
bpf_prog_destroy(struct bpf_prog * fp)1468 void bpf_prog_destroy(struct bpf_prog *fp)
1469 {
1470 	__bpf_prog_release(fp);
1471 }
1472 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1473 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1474 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1475 {
1476 	struct sk_filter *fp, *old_fp;
1477 
1478 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1479 	if (!fp)
1480 		return -ENOMEM;
1481 
1482 	fp->prog = prog;
1483 
1484 	if (!__sk_filter_charge(sk, fp)) {
1485 		kfree(fp);
1486 		return -ENOMEM;
1487 	}
1488 	refcount_set(&fp->refcnt, 1);
1489 
1490 	old_fp = rcu_dereference_protected(sk->sk_filter,
1491 					   lockdep_sock_is_held(sk));
1492 	rcu_assign_pointer(sk->sk_filter, fp);
1493 
1494 	if (old_fp)
1495 		sk_filter_uncharge(sk, old_fp);
1496 
1497 	return 0;
1498 }
1499 
1500 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1501 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1502 {
1503 	unsigned int fsize = bpf_classic_proglen(fprog);
1504 	struct bpf_prog *prog;
1505 	int err;
1506 
1507 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1508 		return ERR_PTR(-EPERM);
1509 
1510 	/* Make sure new filter is there and in the right amounts. */
1511 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1512 		return ERR_PTR(-EINVAL);
1513 
1514 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1515 	if (!prog)
1516 		return ERR_PTR(-ENOMEM);
1517 
1518 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1519 		__bpf_prog_free(prog);
1520 		return ERR_PTR(-EFAULT);
1521 	}
1522 
1523 	prog->len = fprog->len;
1524 
1525 	err = bpf_prog_store_orig_filter(prog, fprog);
1526 	if (err) {
1527 		__bpf_prog_free(prog);
1528 		return ERR_PTR(-ENOMEM);
1529 	}
1530 
1531 	/* bpf_prepare_filter() already takes care of freeing
1532 	 * memory in case something goes wrong.
1533 	 */
1534 	return bpf_prepare_filter(prog, NULL);
1535 }
1536 
1537 /**
1538  *	sk_attach_filter - attach a socket filter
1539  *	@fprog: the filter program
1540  *	@sk: the socket to use
1541  *
1542  * Attach the user's filter code. We first run some sanity checks on
1543  * it to make sure it does not explode on us later. If an error
1544  * occurs or there is insufficient memory for the filter a negative
1545  * errno code is returned. On success the return is zero.
1546  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1547 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1548 {
1549 	struct bpf_prog *prog = __get_filter(fprog, sk);
1550 	int err;
1551 
1552 	if (IS_ERR(prog))
1553 		return PTR_ERR(prog);
1554 
1555 	err = __sk_attach_prog(prog, sk);
1556 	if (err < 0) {
1557 		__bpf_prog_release(prog);
1558 		return err;
1559 	}
1560 
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(sk_attach_filter);
1564 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1565 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1566 {
1567 	struct bpf_prog *prog = __get_filter(fprog, sk);
1568 	int err, optmem_max;
1569 
1570 	if (IS_ERR(prog))
1571 		return PTR_ERR(prog);
1572 
1573 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1574 	if (bpf_prog_size(prog->len) > optmem_max)
1575 		err = -ENOMEM;
1576 	else
1577 		err = reuseport_attach_prog(sk, prog);
1578 
1579 	if (err)
1580 		__bpf_prog_release(prog);
1581 
1582 	return err;
1583 }
1584 
__get_bpf(u32 ufd,struct sock * sk)1585 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1586 {
1587 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1588 		return ERR_PTR(-EPERM);
1589 
1590 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1591 }
1592 
sk_attach_bpf(u32 ufd,struct sock * sk)1593 int sk_attach_bpf(u32 ufd, struct sock *sk)
1594 {
1595 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1596 	int err;
1597 
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	err = __sk_attach_prog(prog, sk);
1602 	if (err < 0) {
1603 		bpf_prog_put(prog);
1604 		return err;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1610 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1611 {
1612 	struct bpf_prog *prog;
1613 	int err, optmem_max;
1614 
1615 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1616 		return -EPERM;
1617 
1618 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1619 	if (PTR_ERR(prog) == -EINVAL)
1620 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1621 	if (IS_ERR(prog))
1622 		return PTR_ERR(prog);
1623 
1624 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1625 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1626 		 * bpf prog (e.g. sockmap).  It depends on the
1627 		 * limitation imposed by bpf_prog_load().
1628 		 * Hence, sysctl_optmem_max is not checked.
1629 		 */
1630 		if ((sk->sk_type != SOCK_STREAM &&
1631 		     sk->sk_type != SOCK_DGRAM) ||
1632 		    (sk->sk_protocol != IPPROTO_UDP &&
1633 		     sk->sk_protocol != IPPROTO_TCP) ||
1634 		    (sk->sk_family != AF_INET &&
1635 		     sk->sk_family != AF_INET6)) {
1636 			err = -ENOTSUPP;
1637 			goto err_prog_put;
1638 		}
1639 	} else {
1640 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1641 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1642 		if (bpf_prog_size(prog->len) > optmem_max) {
1643 			err = -ENOMEM;
1644 			goto err_prog_put;
1645 		}
1646 	}
1647 
1648 	err = reuseport_attach_prog(sk, prog);
1649 err_prog_put:
1650 	if (err)
1651 		bpf_prog_put(prog);
1652 
1653 	return err;
1654 }
1655 
sk_reuseport_prog_free(struct bpf_prog * prog)1656 void sk_reuseport_prog_free(struct bpf_prog *prog)
1657 {
1658 	if (!prog)
1659 		return;
1660 
1661 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1662 		bpf_prog_put(prog);
1663 	else
1664 		bpf_prog_destroy(prog);
1665 }
1666 
1667 struct bpf_scratchpad {
1668 	union {
1669 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1670 		u8     buff[MAX_BPF_STACK];
1671 	};
1672 	local_lock_t	bh_lock;
1673 };
1674 
1675 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp) = {
1676 	.bh_lock	= INIT_LOCAL_LOCK(bh_lock),
1677 };
1678 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1679 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1680 					  unsigned int write_len)
1681 {
1682 #ifdef CONFIG_DEBUG_NET
1683 	/* Avoid a splat in pskb_may_pull_reason() */
1684 	if (write_len > INT_MAX)
1685 		return -EINVAL;
1686 #endif
1687 	return skb_ensure_writable(skb, write_len);
1688 }
1689 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1690 static inline int bpf_try_make_writable(struct sk_buff *skb,
1691 					unsigned int write_len)
1692 {
1693 	int err = __bpf_try_make_writable(skb, write_len);
1694 
1695 	bpf_compute_data_pointers(skb);
1696 	return err;
1697 }
1698 
bpf_try_make_head_writable(struct sk_buff * skb)1699 static int bpf_try_make_head_writable(struct sk_buff *skb)
1700 {
1701 	return bpf_try_make_writable(skb, skb_headlen(skb));
1702 }
1703 
bpf_push_mac_rcsum(struct sk_buff * skb)1704 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1705 {
1706 	if (skb_at_tc_ingress(skb))
1707 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1708 }
1709 
bpf_pull_mac_rcsum(struct sk_buff * skb)1710 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1711 {
1712 	if (skb_at_tc_ingress(skb))
1713 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1714 }
1715 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1716 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1717 	   const void *, from, u32, len, u64, flags)
1718 {
1719 	void *ptr;
1720 
1721 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1722 		return -EINVAL;
1723 	if (unlikely(offset > INT_MAX))
1724 		return -EFAULT;
1725 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1726 		return -EFAULT;
1727 
1728 	ptr = skb->data + offset;
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpull_rcsum(skb, ptr, len, offset);
1731 
1732 	memcpy(ptr, from, len);
1733 
1734 	if (flags & BPF_F_RECOMPUTE_CSUM)
1735 		__skb_postpush_rcsum(skb, ptr, len, offset);
1736 	if (flags & BPF_F_INVALIDATE_HASH)
1737 		skb_clear_hash(skb);
1738 
1739 	return 0;
1740 }
1741 
1742 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1743 	.func		= bpf_skb_store_bytes,
1744 	.gpl_only	= false,
1745 	.ret_type	= RET_INTEGER,
1746 	.arg1_type	= ARG_PTR_TO_CTX,
1747 	.arg2_type	= ARG_ANYTHING,
1748 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1749 	.arg4_type	= ARG_CONST_SIZE,
1750 	.arg5_type	= ARG_ANYTHING,
1751 };
1752 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1753 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1754 			  u32 len, u64 flags)
1755 {
1756 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1757 }
1758 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1759 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1760 	   void *, to, u32, len)
1761 {
1762 	void *ptr;
1763 	int handled = 0;
1764 	int err = 0;
1765 
1766 	trace_android_rvh_bpf_skb_load_bytes(skb, offset, to, len, &handled, &err);
1767 	if (handled)
1768 		return err;
1769 
1770 	if (unlikely(offset > INT_MAX))
1771 		goto err_clear;
1772 
1773 	ptr = skb_header_pointer(skb, offset, len, to);
1774 	if (unlikely(!ptr))
1775 		goto err_clear;
1776 	if (ptr != to)
1777 		memcpy(to, ptr, len);
1778 
1779 	return 0;
1780 err_clear:
1781 	memset(to, 0, len);
1782 	return -EFAULT;
1783 }
1784 
1785 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1786 	.func		= bpf_skb_load_bytes,
1787 	.gpl_only	= false,
1788 	.ret_type	= RET_INTEGER,
1789 	.arg1_type	= ARG_PTR_TO_CTX,
1790 	.arg2_type	= ARG_ANYTHING,
1791 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1792 	.arg4_type	= ARG_CONST_SIZE,
1793 };
1794 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1795 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1796 {
1797 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1798 }
1799 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1800 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1801 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1802 	   void *, to, u32, len)
1803 {
1804 	void *ptr;
1805 
1806 	if (unlikely(offset > 0xffff))
1807 		goto err_clear;
1808 
1809 	if (unlikely(!ctx->skb))
1810 		goto err_clear;
1811 
1812 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1813 	if (unlikely(!ptr))
1814 		goto err_clear;
1815 	if (ptr != to)
1816 		memcpy(to, ptr, len);
1817 
1818 	return 0;
1819 err_clear:
1820 	memset(to, 0, len);
1821 	return -EFAULT;
1822 }
1823 
1824 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1825 	.func		= bpf_flow_dissector_load_bytes,
1826 	.gpl_only	= false,
1827 	.ret_type	= RET_INTEGER,
1828 	.arg1_type	= ARG_PTR_TO_CTX,
1829 	.arg2_type	= ARG_ANYTHING,
1830 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1831 	.arg4_type	= ARG_CONST_SIZE,
1832 };
1833 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1834 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1835 	   u32, offset, void *, to, u32, len, u32, start_header)
1836 {
1837 	u8 *end = skb_tail_pointer(skb);
1838 	u8 *start, *ptr;
1839 
1840 	if (unlikely(offset > 0xffff))
1841 		goto err_clear;
1842 
1843 	switch (start_header) {
1844 	case BPF_HDR_START_MAC:
1845 		if (unlikely(!skb_mac_header_was_set(skb)))
1846 			goto err_clear;
1847 		start = skb_mac_header(skb);
1848 		break;
1849 	case BPF_HDR_START_NET:
1850 		start = skb_network_header(skb);
1851 		break;
1852 	default:
1853 		goto err_clear;
1854 	}
1855 
1856 	ptr = start + offset;
1857 
1858 	if (likely(ptr + len <= end)) {
1859 		memcpy(to, ptr, len);
1860 		return 0;
1861 	}
1862 
1863 err_clear:
1864 	memset(to, 0, len);
1865 	return -EFAULT;
1866 }
1867 
1868 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1869 	.func		= bpf_skb_load_bytes_relative,
1870 	.gpl_only	= false,
1871 	.ret_type	= RET_INTEGER,
1872 	.arg1_type	= ARG_PTR_TO_CTX,
1873 	.arg2_type	= ARG_ANYTHING,
1874 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1875 	.arg4_type	= ARG_CONST_SIZE,
1876 	.arg5_type	= ARG_ANYTHING,
1877 };
1878 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1879 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1880 {
1881 	/* Idea is the following: should the needed direct read/write
1882 	 * test fail during runtime, we can pull in more data and redo
1883 	 * again, since implicitly, we invalidate previous checks here.
1884 	 *
1885 	 * Or, since we know how much we need to make read/writeable,
1886 	 * this can be done once at the program beginning for direct
1887 	 * access case. By this we overcome limitations of only current
1888 	 * headroom being accessible.
1889 	 */
1890 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1891 }
1892 
1893 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1894 	.func		= bpf_skb_pull_data,
1895 	.gpl_only	= false,
1896 	.ret_type	= RET_INTEGER,
1897 	.arg1_type	= ARG_PTR_TO_CTX,
1898 	.arg2_type	= ARG_ANYTHING,
1899 };
1900 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1901 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1902 {
1903 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1904 }
1905 
1906 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1907 	.func		= bpf_sk_fullsock,
1908 	.gpl_only	= false,
1909 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1910 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1911 };
1912 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1913 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1914 					   unsigned int write_len)
1915 {
1916 	return __bpf_try_make_writable(skb, write_len);
1917 }
1918 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1919 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1920 {
1921 	/* Idea is the following: should the needed direct read/write
1922 	 * test fail during runtime, we can pull in more data and redo
1923 	 * again, since implicitly, we invalidate previous checks here.
1924 	 *
1925 	 * Or, since we know how much we need to make read/writeable,
1926 	 * this can be done once at the program beginning for direct
1927 	 * access case. By this we overcome limitations of only current
1928 	 * headroom being accessible.
1929 	 */
1930 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1931 }
1932 
1933 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1934 	.func		= sk_skb_pull_data,
1935 	.gpl_only	= false,
1936 	.ret_type	= RET_INTEGER,
1937 	.arg1_type	= ARG_PTR_TO_CTX,
1938 	.arg2_type	= ARG_ANYTHING,
1939 };
1940 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1941 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1942 	   u64, from, u64, to, u64, flags)
1943 {
1944 	__sum16 *ptr;
1945 
1946 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1947 		return -EINVAL;
1948 	if (unlikely(offset > 0xffff || offset & 1))
1949 		return -EFAULT;
1950 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951 		return -EFAULT;
1952 
1953 	ptr = (__sum16 *)(skb->data + offset);
1954 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1955 	case 0:
1956 		if (unlikely(from != 0))
1957 			return -EINVAL;
1958 
1959 		csum_replace_by_diff(ptr, to);
1960 		break;
1961 	case 2:
1962 		csum_replace2(ptr, from, to);
1963 		break;
1964 	case 4:
1965 		csum_replace4(ptr, from, to);
1966 		break;
1967 	default:
1968 		return -EINVAL;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1975 	.func		= bpf_l3_csum_replace,
1976 	.gpl_only	= false,
1977 	.ret_type	= RET_INTEGER,
1978 	.arg1_type	= ARG_PTR_TO_CTX,
1979 	.arg2_type	= ARG_ANYTHING,
1980 	.arg3_type	= ARG_ANYTHING,
1981 	.arg4_type	= ARG_ANYTHING,
1982 	.arg5_type	= ARG_ANYTHING,
1983 };
1984 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1985 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1986 	   u64, from, u64, to, u64, flags)
1987 {
1988 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1989 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1990 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1991 	bool is_ipv6   = flags & BPF_F_IPV6;
1992 	__sum16 *ptr;
1993 
1994 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1995 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1996 		return -EINVAL;
1997 	if (unlikely(offset > 0xffff || offset & 1))
1998 		return -EFAULT;
1999 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
2000 		return -EFAULT;
2001 
2002 	ptr = (__sum16 *)(skb->data + offset);
2003 	if (is_mmzero && !do_mforce && !*ptr)
2004 		return 0;
2005 
2006 	switch (flags & BPF_F_HDR_FIELD_MASK) {
2007 	case 0:
2008 		if (unlikely(from != 0))
2009 			return -EINVAL;
2010 
2011 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2012 		break;
2013 	case 2:
2014 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2015 		break;
2016 	case 4:
2017 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2018 		break;
2019 	default:
2020 		return -EINVAL;
2021 	}
2022 
2023 	if (is_mmzero && !*ptr)
2024 		*ptr = CSUM_MANGLED_0;
2025 	return 0;
2026 }
2027 
2028 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2029 	.func		= bpf_l4_csum_replace,
2030 	.gpl_only	= false,
2031 	.ret_type	= RET_INTEGER,
2032 	.arg1_type	= ARG_PTR_TO_CTX,
2033 	.arg2_type	= ARG_ANYTHING,
2034 	.arg3_type	= ARG_ANYTHING,
2035 	.arg4_type	= ARG_ANYTHING,
2036 	.arg5_type	= ARG_ANYTHING,
2037 };
2038 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2039 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2040 	   __be32 *, to, u32, to_size, __wsum, seed)
2041 {
2042 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2043 	u32 diff_size = from_size + to_size;
2044 	int i, j = 0;
2045 	__wsum ret;
2046 
2047 	/* This is quite flexible, some examples:
2048 	 *
2049 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2050 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2051 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2052 	 *
2053 	 * Even for diffing, from_size and to_size don't need to be equal.
2054 	 */
2055 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2056 		     diff_size > sizeof(sp->diff)))
2057 		return -EINVAL;
2058 
2059 	local_lock_nested_bh(&bpf_sp.bh_lock);
2060 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2061 		sp->diff[j] = ~from[i];
2062 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2063 		sp->diff[j] = to[i];
2064 
2065 	ret = csum_partial(sp->diff, diff_size, seed);
2066 	local_unlock_nested_bh(&bpf_sp.bh_lock);
2067 	return ret;
2068 }
2069 
2070 static const struct bpf_func_proto bpf_csum_diff_proto = {
2071 	.func		= bpf_csum_diff,
2072 	.gpl_only	= false,
2073 	.pkt_access	= true,
2074 	.ret_type	= RET_INTEGER,
2075 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2076 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2077 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2078 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2079 	.arg5_type	= ARG_ANYTHING,
2080 };
2081 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2082 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2083 {
2084 	/* The interface is to be used in combination with bpf_csum_diff()
2085 	 * for direct packet writes. csum rotation for alignment as well
2086 	 * as emulating csum_sub() can be done from the eBPF program.
2087 	 */
2088 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2089 		return (skb->csum = csum_add(skb->csum, csum));
2090 
2091 	return -ENOTSUPP;
2092 }
2093 
2094 static const struct bpf_func_proto bpf_csum_update_proto = {
2095 	.func		= bpf_csum_update,
2096 	.gpl_only	= false,
2097 	.ret_type	= RET_INTEGER,
2098 	.arg1_type	= ARG_PTR_TO_CTX,
2099 	.arg2_type	= ARG_ANYTHING,
2100 };
2101 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2102 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2103 {
2104 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2105 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2106 	 * is passed as flags, for example.
2107 	 */
2108 	switch (level) {
2109 	case BPF_CSUM_LEVEL_INC:
2110 		__skb_incr_checksum_unnecessary(skb);
2111 		break;
2112 	case BPF_CSUM_LEVEL_DEC:
2113 		__skb_decr_checksum_unnecessary(skb);
2114 		break;
2115 	case BPF_CSUM_LEVEL_RESET:
2116 		__skb_reset_checksum_unnecessary(skb);
2117 		break;
2118 	case BPF_CSUM_LEVEL_QUERY:
2119 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2120 		       skb->csum_level : -EACCES;
2121 	default:
2122 		return -EINVAL;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static const struct bpf_func_proto bpf_csum_level_proto = {
2129 	.func		= bpf_csum_level,
2130 	.gpl_only	= false,
2131 	.ret_type	= RET_INTEGER,
2132 	.arg1_type	= ARG_PTR_TO_CTX,
2133 	.arg2_type	= ARG_ANYTHING,
2134 };
2135 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2136 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2137 {
2138 	return dev_forward_skb_nomtu(dev, skb);
2139 }
2140 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2141 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2142 				      struct sk_buff *skb)
2143 {
2144 	int ret = ____dev_forward_skb(dev, skb, false);
2145 
2146 	if (likely(!ret)) {
2147 		skb->dev = dev;
2148 		ret = netif_rx(skb);
2149 	}
2150 
2151 	return ret;
2152 }
2153 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2154 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2155 {
2156 	int ret;
2157 
2158 	if (dev_xmit_recursion()) {
2159 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2160 		kfree_skb(skb);
2161 		return -ENETDOWN;
2162 	}
2163 
2164 	skb->dev = dev;
2165 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2166 	skb_clear_tstamp(skb);
2167 
2168 	dev_xmit_recursion_inc();
2169 	ret = dev_queue_xmit(skb);
2170 	dev_xmit_recursion_dec();
2171 
2172 	return ret;
2173 }
2174 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2175 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2176 				 u32 flags)
2177 {
2178 	unsigned int mlen = skb_network_offset(skb);
2179 
2180 	if (unlikely(skb->len <= mlen)) {
2181 		kfree_skb(skb);
2182 		return -ERANGE;
2183 	}
2184 
2185 	if (mlen) {
2186 		__skb_pull(skb, mlen);
2187 
2188 		/* At ingress, the mac header has already been pulled once.
2189 		 * At egress, skb_pospull_rcsum has to be done in case that
2190 		 * the skb is originated from ingress (i.e. a forwarded skb)
2191 		 * to ensure that rcsum starts at net header.
2192 		 */
2193 		if (!skb_at_tc_ingress(skb))
2194 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2195 	}
2196 	skb_pop_mac_header(skb);
2197 	skb_reset_mac_len(skb);
2198 	return flags & BPF_F_INGRESS ?
2199 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2200 }
2201 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2202 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2203 				 u32 flags)
2204 {
2205 	/* Verify that a link layer header is carried */
2206 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2207 		kfree_skb(skb);
2208 		return -ERANGE;
2209 	}
2210 
2211 	bpf_push_mac_rcsum(skb);
2212 	return flags & BPF_F_INGRESS ?
2213 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2214 }
2215 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2216 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2217 			  u32 flags)
2218 {
2219 	if (dev_is_mac_header_xmit(dev))
2220 		return __bpf_redirect_common(skb, dev, flags);
2221 	else
2222 		return __bpf_redirect_no_mac(skb, dev, flags);
2223 }
2224 
2225 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2226 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2227 			    struct net_device *dev, struct bpf_nh_params *nh)
2228 {
2229 	u32 hh_len = LL_RESERVED_SPACE(dev);
2230 	const struct in6_addr *nexthop;
2231 	struct dst_entry *dst = NULL;
2232 	struct neighbour *neigh;
2233 
2234 	if (dev_xmit_recursion()) {
2235 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2236 		goto out_drop;
2237 	}
2238 
2239 	skb->dev = dev;
2240 	skb_clear_tstamp(skb);
2241 
2242 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2243 		skb = skb_expand_head(skb, hh_len);
2244 		if (!skb)
2245 			return -ENOMEM;
2246 	}
2247 
2248 	rcu_read_lock();
2249 	if (!nh) {
2250 		dst = skb_dst(skb);
2251 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2252 				      &ipv6_hdr(skb)->daddr);
2253 	} else {
2254 		nexthop = &nh->ipv6_nh;
2255 	}
2256 	neigh = ip_neigh_gw6(dev, nexthop);
2257 	if (likely(!IS_ERR(neigh))) {
2258 		int ret;
2259 
2260 		sock_confirm_neigh(skb, neigh);
2261 		local_bh_disable();
2262 		dev_xmit_recursion_inc();
2263 		ret = neigh_output(neigh, skb, false);
2264 		dev_xmit_recursion_dec();
2265 		local_bh_enable();
2266 		rcu_read_unlock();
2267 		return ret;
2268 	}
2269 	rcu_read_unlock();
2270 	if (dst)
2271 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2272 out_drop:
2273 	kfree_skb(skb);
2274 	return -ENETDOWN;
2275 }
2276 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2277 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2278 				   struct bpf_nh_params *nh)
2279 {
2280 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2281 	struct net *net = dev_net(dev);
2282 	int err, ret = NET_XMIT_DROP;
2283 
2284 	if (!nh) {
2285 		struct dst_entry *dst;
2286 		struct flowi6 fl6 = {
2287 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2288 			.flowi6_mark  = skb->mark,
2289 			.flowlabel    = ip6_flowinfo(ip6h),
2290 			.flowi6_oif   = dev->ifindex,
2291 			.flowi6_proto = ip6h->nexthdr,
2292 			.daddr	      = ip6h->daddr,
2293 			.saddr	      = ip6h->saddr,
2294 		};
2295 
2296 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2297 		if (IS_ERR(dst))
2298 			goto out_drop;
2299 
2300 		skb_dst_set(skb, dst);
2301 	} else if (nh->nh_family != AF_INET6) {
2302 		goto out_drop;
2303 	}
2304 
2305 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2306 	if (unlikely(net_xmit_eval(err)))
2307 		DEV_STATS_INC(dev, tx_errors);
2308 	else
2309 		ret = NET_XMIT_SUCCESS;
2310 	goto out_xmit;
2311 out_drop:
2312 	DEV_STATS_INC(dev, tx_errors);
2313 	kfree_skb(skb);
2314 out_xmit:
2315 	return ret;
2316 }
2317 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2318 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2319 				   struct bpf_nh_params *nh)
2320 {
2321 	kfree_skb(skb);
2322 	return NET_XMIT_DROP;
2323 }
2324 #endif /* CONFIG_IPV6 */
2325 
2326 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2327 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2328 			    struct net_device *dev, struct bpf_nh_params *nh)
2329 {
2330 	u32 hh_len = LL_RESERVED_SPACE(dev);
2331 	struct neighbour *neigh;
2332 	bool is_v6gw = false;
2333 
2334 	if (dev_xmit_recursion()) {
2335 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2336 		goto out_drop;
2337 	}
2338 
2339 	skb->dev = dev;
2340 	skb_clear_tstamp(skb);
2341 
2342 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2343 		skb = skb_expand_head(skb, hh_len);
2344 		if (!skb)
2345 			return -ENOMEM;
2346 	}
2347 
2348 	rcu_read_lock();
2349 	if (!nh) {
2350 		struct rtable *rt = skb_rtable(skb);
2351 
2352 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2353 	} else if (nh->nh_family == AF_INET6) {
2354 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2355 		is_v6gw = true;
2356 	} else if (nh->nh_family == AF_INET) {
2357 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2358 	} else {
2359 		rcu_read_unlock();
2360 		goto out_drop;
2361 	}
2362 
2363 	if (likely(!IS_ERR(neigh))) {
2364 		int ret;
2365 
2366 		sock_confirm_neigh(skb, neigh);
2367 		local_bh_disable();
2368 		dev_xmit_recursion_inc();
2369 		ret = neigh_output(neigh, skb, is_v6gw);
2370 		dev_xmit_recursion_dec();
2371 		local_bh_enable();
2372 		rcu_read_unlock();
2373 		return ret;
2374 	}
2375 	rcu_read_unlock();
2376 out_drop:
2377 	kfree_skb(skb);
2378 	return -ENETDOWN;
2379 }
2380 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2381 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2382 				   struct bpf_nh_params *nh)
2383 {
2384 	const struct iphdr *ip4h = ip_hdr(skb);
2385 	struct net *net = dev_net(dev);
2386 	int err, ret = NET_XMIT_DROP;
2387 
2388 	if (!nh) {
2389 		struct flowi4 fl4 = {
2390 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2391 			.flowi4_mark  = skb->mark,
2392 			.flowi4_tos   = ip4h->tos & INET_DSCP_MASK,
2393 			.flowi4_oif   = dev->ifindex,
2394 			.flowi4_proto = ip4h->protocol,
2395 			.daddr	      = ip4h->daddr,
2396 			.saddr	      = ip4h->saddr,
2397 		};
2398 		struct rtable *rt;
2399 
2400 		rt = ip_route_output_flow(net, &fl4, NULL);
2401 		if (IS_ERR(rt))
2402 			goto out_drop;
2403 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2404 			ip_rt_put(rt);
2405 			goto out_drop;
2406 		}
2407 
2408 		skb_dst_set(skb, &rt->dst);
2409 	}
2410 
2411 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2412 	if (unlikely(net_xmit_eval(err)))
2413 		DEV_STATS_INC(dev, tx_errors);
2414 	else
2415 		ret = NET_XMIT_SUCCESS;
2416 	goto out_xmit;
2417 out_drop:
2418 	DEV_STATS_INC(dev, tx_errors);
2419 	kfree_skb(skb);
2420 out_xmit:
2421 	return ret;
2422 }
2423 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2424 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2425 				   struct bpf_nh_params *nh)
2426 {
2427 	kfree_skb(skb);
2428 	return NET_XMIT_DROP;
2429 }
2430 #endif /* CONFIG_INET */
2431 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2432 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2433 				struct bpf_nh_params *nh)
2434 {
2435 	struct ethhdr *ethh = eth_hdr(skb);
2436 
2437 	if (unlikely(skb->mac_header >= skb->network_header))
2438 		goto out;
2439 	bpf_push_mac_rcsum(skb);
2440 	if (is_multicast_ether_addr(ethh->h_dest))
2441 		goto out;
2442 
2443 	skb_pull(skb, sizeof(*ethh));
2444 	skb_unset_mac_header(skb);
2445 	skb_reset_network_header(skb);
2446 
2447 	if (skb->protocol == htons(ETH_P_IP))
2448 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2449 	else if (skb->protocol == htons(ETH_P_IPV6))
2450 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2451 out:
2452 	kfree_skb(skb);
2453 	return -ENOTSUPP;
2454 }
2455 
2456 /* Internal, non-exposed redirect flags. */
2457 enum {
2458 	BPF_F_NEIGH	= (1ULL << 16),
2459 	BPF_F_PEER	= (1ULL << 17),
2460 	BPF_F_NEXTHOP	= (1ULL << 18),
2461 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2462 };
2463 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2464 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2465 {
2466 	struct net_device *dev;
2467 	struct sk_buff *clone;
2468 	int ret;
2469 
2470 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2471 
2472 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2473 		return -EINVAL;
2474 
2475 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2476 	if (unlikely(!dev))
2477 		return -EINVAL;
2478 
2479 	clone = skb_clone(skb, GFP_ATOMIC);
2480 	if (unlikely(!clone))
2481 		return -ENOMEM;
2482 
2483 	/* For direct write, we need to keep the invariant that the skbs
2484 	 * we're dealing with need to be uncloned. Should uncloning fail
2485 	 * here, we need to free the just generated clone to unclone once
2486 	 * again.
2487 	 */
2488 	ret = bpf_try_make_head_writable(skb);
2489 	if (unlikely(ret)) {
2490 		kfree_skb(clone);
2491 		return -ENOMEM;
2492 	}
2493 
2494 	return __bpf_redirect(clone, dev, flags);
2495 }
2496 
2497 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2498 	.func           = bpf_clone_redirect,
2499 	.gpl_only       = false,
2500 	.ret_type       = RET_INTEGER,
2501 	.arg1_type      = ARG_PTR_TO_CTX,
2502 	.arg2_type      = ARG_ANYTHING,
2503 	.arg3_type      = ARG_ANYTHING,
2504 };
2505 
skb_get_peer_dev(struct net_device * dev)2506 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2507 {
2508 	const struct net_device_ops *ops = dev->netdev_ops;
2509 
2510 	if (likely(ops->ndo_get_peer_dev))
2511 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2512 				       netkit_peer_dev, dev);
2513 	return NULL;
2514 }
2515 
skb_do_redirect(struct sk_buff * skb)2516 int skb_do_redirect(struct sk_buff *skb)
2517 {
2518 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2519 	struct net *net = dev_net(skb->dev);
2520 	struct net_device *dev;
2521 	u32 flags = ri->flags;
2522 
2523 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2524 	ri->tgt_index = 0;
2525 	ri->flags = 0;
2526 	if (unlikely(!dev))
2527 		goto out_drop;
2528 	if (flags & BPF_F_PEER) {
2529 		if (unlikely(!skb_at_tc_ingress(skb)))
2530 			goto out_drop;
2531 		dev = skb_get_peer_dev(dev);
2532 		if (unlikely(!dev ||
2533 			     !(dev->flags & IFF_UP) ||
2534 			     net_eq(net, dev_net(dev))))
2535 			goto out_drop;
2536 		skb->dev = dev;
2537 		dev_sw_netstats_rx_add(dev, skb->len);
2538 		skb_scrub_packet(skb, false);
2539 		return -EAGAIN;
2540 	}
2541 	return flags & BPF_F_NEIGH ?
2542 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2543 				    &ri->nh : NULL) :
2544 	       __bpf_redirect(skb, dev, flags);
2545 out_drop:
2546 	kfree_skb(skb);
2547 	return -EINVAL;
2548 }
2549 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2550 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2551 {
2552 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2553 
2554 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2555 		return TC_ACT_SHOT;
2556 
2557 	ri->flags = flags;
2558 	ri->tgt_index = ifindex;
2559 
2560 	return TC_ACT_REDIRECT;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_redirect_proto = {
2564 	.func           = bpf_redirect,
2565 	.gpl_only       = false,
2566 	.ret_type       = RET_INTEGER,
2567 	.arg1_type      = ARG_ANYTHING,
2568 	.arg2_type      = ARG_ANYTHING,
2569 };
2570 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2571 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2572 {
2573 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2574 
2575 	if (unlikely(flags))
2576 		return TC_ACT_SHOT;
2577 
2578 	ri->flags = BPF_F_PEER;
2579 	ri->tgt_index = ifindex;
2580 
2581 	return TC_ACT_REDIRECT;
2582 }
2583 
2584 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2585 	.func           = bpf_redirect_peer,
2586 	.gpl_only       = false,
2587 	.ret_type       = RET_INTEGER,
2588 	.arg1_type      = ARG_ANYTHING,
2589 	.arg2_type      = ARG_ANYTHING,
2590 };
2591 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2592 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2593 	   int, plen, u64, flags)
2594 {
2595 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2596 
2597 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2598 		return TC_ACT_SHOT;
2599 
2600 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2601 	ri->tgt_index = ifindex;
2602 
2603 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2604 	if (plen)
2605 		memcpy(&ri->nh, params, sizeof(ri->nh));
2606 
2607 	return TC_ACT_REDIRECT;
2608 }
2609 
2610 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2611 	.func		= bpf_redirect_neigh,
2612 	.gpl_only	= false,
2613 	.ret_type	= RET_INTEGER,
2614 	.arg1_type	= ARG_ANYTHING,
2615 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2616 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2617 	.arg4_type	= ARG_ANYTHING,
2618 };
2619 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2620 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2621 {
2622 	msg->apply_bytes = bytes;
2623 	return 0;
2624 }
2625 
2626 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2627 	.func           = bpf_msg_apply_bytes,
2628 	.gpl_only       = false,
2629 	.ret_type       = RET_INTEGER,
2630 	.arg1_type	= ARG_PTR_TO_CTX,
2631 	.arg2_type      = ARG_ANYTHING,
2632 };
2633 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2634 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2635 {
2636 	msg->cork_bytes = bytes;
2637 	return 0;
2638 }
2639 
sk_msg_reset_curr(struct sk_msg * msg)2640 static void sk_msg_reset_curr(struct sk_msg *msg)
2641 {
2642 	if (!msg->sg.size) {
2643 		msg->sg.curr = msg->sg.start;
2644 		msg->sg.copybreak = 0;
2645 	} else {
2646 		u32 i = msg->sg.end;
2647 
2648 		sk_msg_iter_var_prev(i);
2649 		msg->sg.curr = i;
2650 		msg->sg.copybreak = msg->sg.data[i].length;
2651 	}
2652 }
2653 
2654 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2655 	.func           = bpf_msg_cork_bytes,
2656 	.gpl_only       = false,
2657 	.ret_type       = RET_INTEGER,
2658 	.arg1_type	= ARG_PTR_TO_CTX,
2659 	.arg2_type      = ARG_ANYTHING,
2660 };
2661 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2662 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2663 	   u32, end, u64, flags)
2664 {
2665 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2666 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2667 	struct scatterlist *sge;
2668 	u8 *raw, *to, *from;
2669 	struct page *page;
2670 
2671 	if (unlikely(flags || end <= start))
2672 		return -EINVAL;
2673 
2674 	/* First find the starting scatterlist element */
2675 	i = msg->sg.start;
2676 	do {
2677 		offset += len;
2678 		len = sk_msg_elem(msg, i)->length;
2679 		if (start < offset + len)
2680 			break;
2681 		sk_msg_iter_var_next(i);
2682 	} while (i != msg->sg.end);
2683 
2684 	if (unlikely(start >= offset + len))
2685 		return -EINVAL;
2686 
2687 	first_sge = i;
2688 	/* The start may point into the sg element so we need to also
2689 	 * account for the headroom.
2690 	 */
2691 	bytes_sg_total = start - offset + bytes;
2692 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2693 		goto out;
2694 
2695 	/* At this point we need to linearize multiple scatterlist
2696 	 * elements or a single shared page. Either way we need to
2697 	 * copy into a linear buffer exclusively owned by BPF. Then
2698 	 * place the buffer in the scatterlist and fixup the original
2699 	 * entries by removing the entries now in the linear buffer
2700 	 * and shifting the remaining entries. For now we do not try
2701 	 * to copy partial entries to avoid complexity of running out
2702 	 * of sg_entry slots. The downside is reading a single byte
2703 	 * will copy the entire sg entry.
2704 	 */
2705 	do {
2706 		copy += sk_msg_elem(msg, i)->length;
2707 		sk_msg_iter_var_next(i);
2708 		if (bytes_sg_total <= copy)
2709 			break;
2710 	} while (i != msg->sg.end);
2711 	last_sge = i;
2712 
2713 	if (unlikely(bytes_sg_total > copy))
2714 		return -EINVAL;
2715 
2716 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2717 			   get_order(copy));
2718 	if (unlikely(!page))
2719 		return -ENOMEM;
2720 
2721 	raw = page_address(page);
2722 	i = first_sge;
2723 	do {
2724 		sge = sk_msg_elem(msg, i);
2725 		from = sg_virt(sge);
2726 		len = sge->length;
2727 		to = raw + poffset;
2728 
2729 		memcpy(to, from, len);
2730 		poffset += len;
2731 		sge->length = 0;
2732 		put_page(sg_page(sge));
2733 
2734 		sk_msg_iter_var_next(i);
2735 	} while (i != last_sge);
2736 
2737 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2738 
2739 	/* To repair sg ring we need to shift entries. If we only
2740 	 * had a single entry though we can just replace it and
2741 	 * be done. Otherwise walk the ring and shift the entries.
2742 	 */
2743 	WARN_ON_ONCE(last_sge == first_sge);
2744 	shift = last_sge > first_sge ?
2745 		last_sge - first_sge - 1 :
2746 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2747 	if (!shift)
2748 		goto out;
2749 
2750 	i = first_sge;
2751 	sk_msg_iter_var_next(i);
2752 	do {
2753 		u32 move_from;
2754 
2755 		if (i + shift >= NR_MSG_FRAG_IDS)
2756 			move_from = i + shift - NR_MSG_FRAG_IDS;
2757 		else
2758 			move_from = i + shift;
2759 		if (move_from == msg->sg.end)
2760 			break;
2761 
2762 		msg->sg.data[i] = msg->sg.data[move_from];
2763 		msg->sg.data[move_from].length = 0;
2764 		msg->sg.data[move_from].page_link = 0;
2765 		msg->sg.data[move_from].offset = 0;
2766 		sk_msg_iter_var_next(i);
2767 	} while (1);
2768 
2769 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2770 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2771 		      msg->sg.end - shift;
2772 out:
2773 	sk_msg_reset_curr(msg);
2774 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2775 	msg->data_end = msg->data + bytes;
2776 	return 0;
2777 }
2778 
2779 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2780 	.func		= bpf_msg_pull_data,
2781 	.gpl_only	= false,
2782 	.ret_type	= RET_INTEGER,
2783 	.arg1_type	= ARG_PTR_TO_CTX,
2784 	.arg2_type	= ARG_ANYTHING,
2785 	.arg3_type	= ARG_ANYTHING,
2786 	.arg4_type	= ARG_ANYTHING,
2787 };
2788 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2789 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2790 	   u32, len, u64, flags)
2791 {
2792 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2793 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2794 	u8 *raw, *to, *from;
2795 	struct page *page;
2796 
2797 	if (unlikely(flags))
2798 		return -EINVAL;
2799 
2800 	if (unlikely(len == 0))
2801 		return 0;
2802 
2803 	/* First find the starting scatterlist element */
2804 	i = msg->sg.start;
2805 	do {
2806 		offset += l;
2807 		l = sk_msg_elem(msg, i)->length;
2808 
2809 		if (start < offset + l)
2810 			break;
2811 		sk_msg_iter_var_next(i);
2812 	} while (i != msg->sg.end);
2813 
2814 	if (start > offset + l)
2815 		return -EINVAL;
2816 
2817 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2818 
2819 	/* If no space available will fallback to copy, we need at
2820 	 * least one scatterlist elem available to push data into
2821 	 * when start aligns to the beginning of an element or two
2822 	 * when it falls inside an element. We handle the start equals
2823 	 * offset case because its the common case for inserting a
2824 	 * header.
2825 	 */
2826 	if (!space || (space == 1 && start != offset))
2827 		copy = msg->sg.data[i].length;
2828 
2829 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2830 			   get_order(copy + len));
2831 	if (unlikely(!page))
2832 		return -ENOMEM;
2833 
2834 	if (copy) {
2835 		int front, back;
2836 
2837 		raw = page_address(page);
2838 
2839 		if (i == msg->sg.end)
2840 			sk_msg_iter_var_prev(i);
2841 		psge = sk_msg_elem(msg, i);
2842 		front = start - offset;
2843 		back = psge->length - front;
2844 		from = sg_virt(psge);
2845 
2846 		if (front)
2847 			memcpy(raw, from, front);
2848 
2849 		if (back) {
2850 			from += front;
2851 			to = raw + front + len;
2852 
2853 			memcpy(to, from, back);
2854 		}
2855 
2856 		put_page(sg_page(psge));
2857 		new = i;
2858 		goto place_new;
2859 	}
2860 
2861 	if (start - offset) {
2862 		if (i == msg->sg.end)
2863 			sk_msg_iter_var_prev(i);
2864 		psge = sk_msg_elem(msg, i);
2865 		rsge = sk_msg_elem_cpy(msg, i);
2866 
2867 		psge->length = start - offset;
2868 		rsge.length -= psge->length;
2869 		rsge.offset += start;
2870 
2871 		sk_msg_iter_var_next(i);
2872 		sg_unmark_end(psge);
2873 		sg_unmark_end(&rsge);
2874 	}
2875 
2876 	/* Slot(s) to place newly allocated data */
2877 	sk_msg_iter_next(msg, end);
2878 	new = i;
2879 	sk_msg_iter_var_next(i);
2880 
2881 	if (i == msg->sg.end) {
2882 		if (!rsge.length)
2883 			goto place_new;
2884 		sk_msg_iter_next(msg, end);
2885 		goto place_new;
2886 	}
2887 
2888 	/* Shift one or two slots as needed */
2889 	sge = sk_msg_elem_cpy(msg, new);
2890 	sg_unmark_end(&sge);
2891 
2892 	nsge = sk_msg_elem_cpy(msg, i);
2893 	if (rsge.length) {
2894 		sk_msg_iter_var_next(i);
2895 		nnsge = sk_msg_elem_cpy(msg, i);
2896 		sk_msg_iter_next(msg, end);
2897 	}
2898 
2899 	while (i != msg->sg.end) {
2900 		msg->sg.data[i] = sge;
2901 		sge = nsge;
2902 		sk_msg_iter_var_next(i);
2903 		if (rsge.length) {
2904 			nsge = nnsge;
2905 			nnsge = sk_msg_elem_cpy(msg, i);
2906 		} else {
2907 			nsge = sk_msg_elem_cpy(msg, i);
2908 		}
2909 	}
2910 
2911 place_new:
2912 	/* Place newly allocated data buffer */
2913 	sk_mem_charge(msg->sk, len);
2914 	msg->sg.size += len;
2915 	__clear_bit(new, msg->sg.copy);
2916 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2917 	if (rsge.length) {
2918 		get_page(sg_page(&rsge));
2919 		sk_msg_iter_var_next(new);
2920 		msg->sg.data[new] = rsge;
2921 	}
2922 
2923 	sk_msg_reset_curr(msg);
2924 	sk_msg_compute_data_pointers(msg);
2925 	return 0;
2926 }
2927 
2928 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2929 	.func		= bpf_msg_push_data,
2930 	.gpl_only	= false,
2931 	.ret_type	= RET_INTEGER,
2932 	.arg1_type	= ARG_PTR_TO_CTX,
2933 	.arg2_type	= ARG_ANYTHING,
2934 	.arg3_type	= ARG_ANYTHING,
2935 	.arg4_type	= ARG_ANYTHING,
2936 };
2937 
sk_msg_shift_left(struct sk_msg * msg,int i)2938 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2939 {
2940 	struct scatterlist *sge = sk_msg_elem(msg, i);
2941 	int prev;
2942 
2943 	put_page(sg_page(sge));
2944 	do {
2945 		prev = i;
2946 		sk_msg_iter_var_next(i);
2947 		msg->sg.data[prev] = msg->sg.data[i];
2948 	} while (i != msg->sg.end);
2949 
2950 	sk_msg_iter_prev(msg, end);
2951 }
2952 
sk_msg_shift_right(struct sk_msg * msg,int i)2953 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2954 {
2955 	struct scatterlist tmp, sge;
2956 
2957 	sk_msg_iter_next(msg, end);
2958 	sge = sk_msg_elem_cpy(msg, i);
2959 	sk_msg_iter_var_next(i);
2960 	tmp = sk_msg_elem_cpy(msg, i);
2961 
2962 	while (i != msg->sg.end) {
2963 		msg->sg.data[i] = sge;
2964 		sk_msg_iter_var_next(i);
2965 		sge = tmp;
2966 		tmp = sk_msg_elem_cpy(msg, i);
2967 	}
2968 }
2969 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2970 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2971 	   u32, len, u64, flags)
2972 {
2973 	u32 i = 0, l = 0, space, offset = 0;
2974 	u64 last = start + len;
2975 	int pop;
2976 
2977 	if (unlikely(flags))
2978 		return -EINVAL;
2979 
2980 	if (unlikely(len == 0))
2981 		return 0;
2982 
2983 	/* First find the starting scatterlist element */
2984 	i = msg->sg.start;
2985 	do {
2986 		offset += l;
2987 		l = sk_msg_elem(msg, i)->length;
2988 
2989 		if (start < offset + l)
2990 			break;
2991 		sk_msg_iter_var_next(i);
2992 	} while (i != msg->sg.end);
2993 
2994 	/* Bounds checks: start and pop must be inside message */
2995 	if (start >= offset + l || last > msg->sg.size)
2996 		return -EINVAL;
2997 
2998 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2999 
3000 	pop = len;
3001 	/* --------------| offset
3002 	 * -| start      |-------- len -------|
3003 	 *
3004 	 *  |----- a ----|-------- pop -------|----- b ----|
3005 	 *  |______________________________________________| length
3006 	 *
3007 	 *
3008 	 * a:   region at front of scatter element to save
3009 	 * b:   region at back of scatter element to save when length > A + pop
3010 	 * pop: region to pop from element, same as input 'pop' here will be
3011 	 *      decremented below per iteration.
3012 	 *
3013 	 * Two top-level cases to handle when start != offset, first B is non
3014 	 * zero and second B is zero corresponding to when a pop includes more
3015 	 * than one element.
3016 	 *
3017 	 * Then if B is non-zero AND there is no space allocate space and
3018 	 * compact A, B regions into page. If there is space shift ring to
3019 	 * the right free'ing the next element in ring to place B, leaving
3020 	 * A untouched except to reduce length.
3021 	 */
3022 	if (start != offset) {
3023 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3024 		int a = start - offset;
3025 		int b = sge->length - pop - a;
3026 
3027 		sk_msg_iter_var_next(i);
3028 
3029 		if (b > 0) {
3030 			if (space) {
3031 				sge->length = a;
3032 				sk_msg_shift_right(msg, i);
3033 				nsge = sk_msg_elem(msg, i);
3034 				get_page(sg_page(sge));
3035 				sg_set_page(nsge,
3036 					    sg_page(sge),
3037 					    b, sge->offset + pop + a);
3038 			} else {
3039 				struct page *page, *orig;
3040 				u8 *to, *from;
3041 
3042 				page = alloc_pages(__GFP_NOWARN |
3043 						   __GFP_COMP   | GFP_ATOMIC,
3044 						   get_order(a + b));
3045 				if (unlikely(!page))
3046 					return -ENOMEM;
3047 
3048 				orig = sg_page(sge);
3049 				from = sg_virt(sge);
3050 				to = page_address(page);
3051 				memcpy(to, from, a);
3052 				memcpy(to + a, from + a + pop, b);
3053 				sg_set_page(sge, page, a + b, 0);
3054 				put_page(orig);
3055 			}
3056 			pop = 0;
3057 		} else {
3058 			pop -= (sge->length - a);
3059 			sge->length = a;
3060 		}
3061 	}
3062 
3063 	/* From above the current layout _must_ be as follows,
3064 	 *
3065 	 * -| offset
3066 	 * -| start
3067 	 *
3068 	 *  |---- pop ---|---------------- b ------------|
3069 	 *  |____________________________________________| length
3070 	 *
3071 	 * Offset and start of the current msg elem are equal because in the
3072 	 * previous case we handled offset != start and either consumed the
3073 	 * entire element and advanced to the next element OR pop == 0.
3074 	 *
3075 	 * Two cases to handle here are first pop is less than the length
3076 	 * leaving some remainder b above. Simply adjust the element's layout
3077 	 * in this case. Or pop >= length of the element so that b = 0. In this
3078 	 * case advance to next element decrementing pop.
3079 	 */
3080 	while (pop) {
3081 		struct scatterlist *sge = sk_msg_elem(msg, i);
3082 
3083 		if (pop < sge->length) {
3084 			sge->length -= pop;
3085 			sge->offset += pop;
3086 			pop = 0;
3087 		} else {
3088 			pop -= sge->length;
3089 			sk_msg_shift_left(msg, i);
3090 		}
3091 	}
3092 
3093 	sk_mem_uncharge(msg->sk, len - pop);
3094 	msg->sg.size -= (len - pop);
3095 	sk_msg_reset_curr(msg);
3096 	sk_msg_compute_data_pointers(msg);
3097 	return 0;
3098 }
3099 
3100 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3101 	.func		= bpf_msg_pop_data,
3102 	.gpl_only	= false,
3103 	.ret_type	= RET_INTEGER,
3104 	.arg1_type	= ARG_PTR_TO_CTX,
3105 	.arg2_type	= ARG_ANYTHING,
3106 	.arg3_type	= ARG_ANYTHING,
3107 	.arg4_type	= ARG_ANYTHING,
3108 };
3109 
3110 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3111 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3112 {
3113 	return __task_get_classid(current);
3114 }
3115 
3116 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3117 	.func		= bpf_get_cgroup_classid_curr,
3118 	.gpl_only	= false,
3119 	.ret_type	= RET_INTEGER,
3120 };
3121 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3122 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3123 {
3124 	struct sock *sk = skb_to_full_sk(skb);
3125 
3126 	if (!sk || !sk_fullsock(sk))
3127 		return 0;
3128 
3129 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3130 }
3131 
3132 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3133 	.func		= bpf_skb_cgroup_classid,
3134 	.gpl_only	= false,
3135 	.ret_type	= RET_INTEGER,
3136 	.arg1_type	= ARG_PTR_TO_CTX,
3137 };
3138 #endif
3139 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3140 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3141 {
3142 	return task_get_classid(skb);
3143 }
3144 
3145 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3146 	.func           = bpf_get_cgroup_classid,
3147 	.gpl_only       = false,
3148 	.ret_type       = RET_INTEGER,
3149 	.arg1_type      = ARG_PTR_TO_CTX,
3150 };
3151 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3152 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3153 {
3154 	return dst_tclassid(skb);
3155 }
3156 
3157 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3158 	.func           = bpf_get_route_realm,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 };
3163 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3164 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3165 {
3166 	/* If skb_clear_hash() was called due to mangling, we can
3167 	 * trigger SW recalculation here. Later access to hash
3168 	 * can then use the inline skb->hash via context directly
3169 	 * instead of calling this helper again.
3170 	 */
3171 	return skb_get_hash(skb);
3172 }
3173 
3174 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3175 	.func		= bpf_get_hash_recalc,
3176 	.gpl_only	= false,
3177 	.ret_type	= RET_INTEGER,
3178 	.arg1_type	= ARG_PTR_TO_CTX,
3179 };
3180 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3181 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3182 {
3183 	/* After all direct packet write, this can be used once for
3184 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3185 	 */
3186 	skb_clear_hash(skb);
3187 	return 0;
3188 }
3189 
3190 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3191 	.func		= bpf_set_hash_invalid,
3192 	.gpl_only	= false,
3193 	.ret_type	= RET_INTEGER,
3194 	.arg1_type	= ARG_PTR_TO_CTX,
3195 };
3196 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3197 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3198 {
3199 	/* Set user specified hash as L4(+), so that it gets returned
3200 	 * on skb_get_hash() call unless BPF prog later on triggers a
3201 	 * skb_clear_hash().
3202 	 */
3203 	__skb_set_sw_hash(skb, hash, true);
3204 	return 0;
3205 }
3206 
3207 static const struct bpf_func_proto bpf_set_hash_proto = {
3208 	.func		= bpf_set_hash,
3209 	.gpl_only	= false,
3210 	.ret_type	= RET_INTEGER,
3211 	.arg1_type	= ARG_PTR_TO_CTX,
3212 	.arg2_type	= ARG_ANYTHING,
3213 };
3214 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3215 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3216 	   u16, vlan_tci)
3217 {
3218 	int ret;
3219 
3220 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3221 		     vlan_proto != htons(ETH_P_8021AD)))
3222 		vlan_proto = htons(ETH_P_8021Q);
3223 
3224 	bpf_push_mac_rcsum(skb);
3225 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3226 	bpf_pull_mac_rcsum(skb);
3227 	skb_reset_mac_len(skb);
3228 
3229 	bpf_compute_data_pointers(skb);
3230 	return ret;
3231 }
3232 
3233 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3234 	.func           = bpf_skb_vlan_push,
3235 	.gpl_only       = false,
3236 	.ret_type       = RET_INTEGER,
3237 	.arg1_type      = ARG_PTR_TO_CTX,
3238 	.arg2_type      = ARG_ANYTHING,
3239 	.arg3_type      = ARG_ANYTHING,
3240 };
3241 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3242 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3243 {
3244 	int ret;
3245 
3246 	bpf_push_mac_rcsum(skb);
3247 	ret = skb_vlan_pop(skb);
3248 	bpf_pull_mac_rcsum(skb);
3249 
3250 	bpf_compute_data_pointers(skb);
3251 	return ret;
3252 }
3253 
3254 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3255 	.func           = bpf_skb_vlan_pop,
3256 	.gpl_only       = false,
3257 	.ret_type       = RET_INTEGER,
3258 	.arg1_type      = ARG_PTR_TO_CTX,
3259 };
3260 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3261 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3262 {
3263 	skb->protocol = htons(proto);
3264 	if (skb_valid_dst(skb))
3265 		skb_dst_drop(skb);
3266 }
3267 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3268 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3269 {
3270 	/* Caller already did skb_cow() with len as headroom,
3271 	 * so no need to do it here.
3272 	 */
3273 	skb_push(skb, len);
3274 	memmove(skb->data, skb->data + len, off);
3275 	memset(skb->data + off, 0, len);
3276 
3277 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3278 	 * needed here as it does not change the skb->csum
3279 	 * result for checksum complete when summing over
3280 	 * zeroed blocks.
3281 	 */
3282 	return 0;
3283 }
3284 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3285 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3286 {
3287 	void *old_data;
3288 
3289 	/* skb_ensure_writable() is not needed here, as we're
3290 	 * already working on an uncloned skb.
3291 	 */
3292 	if (unlikely(!pskb_may_pull(skb, off + len)))
3293 		return -ENOMEM;
3294 
3295 	old_data = skb->data;
3296 	__skb_pull(skb, len);
3297 	skb_postpull_rcsum(skb, old_data + off, len);
3298 	memmove(skb->data, old_data, off);
3299 
3300 	return 0;
3301 }
3302 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3303 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3304 {
3305 	bool trans_same = skb->transport_header == skb->network_header;
3306 	int ret;
3307 
3308 	/* There's no need for __skb_push()/__skb_pull() pair to
3309 	 * get to the start of the mac header as we're guaranteed
3310 	 * to always start from here under eBPF.
3311 	 */
3312 	ret = bpf_skb_generic_push(skb, off, len);
3313 	if (likely(!ret)) {
3314 		skb->mac_header -= len;
3315 		skb->network_header -= len;
3316 		if (trans_same)
3317 			skb->transport_header = skb->network_header;
3318 	}
3319 
3320 	return ret;
3321 }
3322 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3323 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3324 {
3325 	bool trans_same = skb->transport_header == skb->network_header;
3326 	int ret;
3327 
3328 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3329 	ret = bpf_skb_generic_pop(skb, off, len);
3330 	if (likely(!ret)) {
3331 		skb->mac_header += len;
3332 		skb->network_header += len;
3333 		if (trans_same)
3334 			skb->transport_header = skb->network_header;
3335 	}
3336 
3337 	return ret;
3338 }
3339 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3340 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3341 {
3342 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3343 	u32 off = skb_mac_header_len(skb);
3344 	int ret;
3345 
3346 	ret = skb_cow(skb, len_diff);
3347 	if (unlikely(ret < 0))
3348 		return ret;
3349 
3350 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3351 	if (unlikely(ret < 0))
3352 		return ret;
3353 
3354 	if (skb_is_gso(skb)) {
3355 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3356 
3357 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3358 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3359 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3360 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3361 		}
3362 	}
3363 
3364 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3365 	skb_clear_hash(skb);
3366 
3367 	return 0;
3368 }
3369 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3370 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3371 {
3372 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3373 	u32 off = skb_mac_header_len(skb);
3374 	int ret;
3375 
3376 	ret = skb_unclone(skb, GFP_ATOMIC);
3377 	if (unlikely(ret < 0))
3378 		return ret;
3379 
3380 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3381 	if (unlikely(ret < 0))
3382 		return ret;
3383 
3384 	if (skb_is_gso(skb)) {
3385 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3386 
3387 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3388 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3389 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3390 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3391 		}
3392 	}
3393 
3394 	bpf_skb_change_protocol(skb, ETH_P_IP);
3395 	skb_clear_hash(skb);
3396 
3397 	return 0;
3398 }
3399 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3400 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3401 {
3402 	__be16 from_proto = skb->protocol;
3403 
3404 	if (from_proto == htons(ETH_P_IP) &&
3405 	      to_proto == htons(ETH_P_IPV6))
3406 		return bpf_skb_proto_4_to_6(skb);
3407 
3408 	if (from_proto == htons(ETH_P_IPV6) &&
3409 	      to_proto == htons(ETH_P_IP))
3410 		return bpf_skb_proto_6_to_4(skb);
3411 
3412 	return -ENOTSUPP;
3413 }
3414 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3415 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3416 	   u64, flags)
3417 {
3418 	int ret;
3419 
3420 	if (unlikely(flags))
3421 		return -EINVAL;
3422 
3423 	/* General idea is that this helper does the basic groundwork
3424 	 * needed for changing the protocol, and eBPF program fills the
3425 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3426 	 * and other helpers, rather than passing a raw buffer here.
3427 	 *
3428 	 * The rationale is to keep this minimal and without a need to
3429 	 * deal with raw packet data. F.e. even if we would pass buffers
3430 	 * here, the program still needs to call the bpf_lX_csum_replace()
3431 	 * helpers anyway. Plus, this way we keep also separation of
3432 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3433 	 * care of stores.
3434 	 *
3435 	 * Currently, additional options and extension header space are
3436 	 * not supported, but flags register is reserved so we can adapt
3437 	 * that. For offloads, we mark packet as dodgy, so that headers
3438 	 * need to be verified first.
3439 	 */
3440 	ret = bpf_skb_proto_xlat(skb, proto);
3441 	bpf_compute_data_pointers(skb);
3442 	return ret;
3443 }
3444 
3445 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3446 	.func		= bpf_skb_change_proto,
3447 	.gpl_only	= false,
3448 	.ret_type	= RET_INTEGER,
3449 	.arg1_type	= ARG_PTR_TO_CTX,
3450 	.arg2_type	= ARG_ANYTHING,
3451 	.arg3_type	= ARG_ANYTHING,
3452 };
3453 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3454 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3455 {
3456 	/* We only allow a restricted subset to be changed for now. */
3457 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3458 		     !skb_pkt_type_ok(pkt_type)))
3459 		return -EINVAL;
3460 
3461 	skb->pkt_type = pkt_type;
3462 	return 0;
3463 }
3464 
3465 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3466 	.func		= bpf_skb_change_type,
3467 	.gpl_only	= false,
3468 	.ret_type	= RET_INTEGER,
3469 	.arg1_type	= ARG_PTR_TO_CTX,
3470 	.arg2_type	= ARG_ANYTHING,
3471 };
3472 
bpf_skb_net_base_len(const struct sk_buff * skb)3473 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3474 {
3475 	switch (skb->protocol) {
3476 	case htons(ETH_P_IP):
3477 		return sizeof(struct iphdr);
3478 	case htons(ETH_P_IPV6):
3479 		return sizeof(struct ipv6hdr);
3480 	default:
3481 		return ~0U;
3482 	}
3483 }
3484 
3485 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3486 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3487 
3488 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3489 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3490 
3491 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3492 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3493 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3494 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3495 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3496 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3497 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3498 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3499 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3500 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3501 			    u64 flags)
3502 {
3503 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3504 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3505 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3506 	unsigned int gso_type = SKB_GSO_DODGY;
3507 	int ret;
3508 
3509 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3510 		/* udp gso_size delineates datagrams, only allow if fixed */
3511 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3512 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513 			return -ENOTSUPP;
3514 	}
3515 
3516 	ret = skb_cow_head(skb, len_diff);
3517 	if (unlikely(ret < 0))
3518 		return ret;
3519 
3520 	if (encap) {
3521 		if (skb->protocol != htons(ETH_P_IP) &&
3522 		    skb->protocol != htons(ETH_P_IPV6))
3523 			return -ENOTSUPP;
3524 
3525 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3526 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3527 			return -EINVAL;
3528 
3529 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3530 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3531 			return -EINVAL;
3532 
3533 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3534 		    inner_mac_len < ETH_HLEN)
3535 			return -EINVAL;
3536 
3537 		if (skb->encapsulation)
3538 			return -EALREADY;
3539 
3540 		mac_len = skb->network_header - skb->mac_header;
3541 		inner_net = skb->network_header;
3542 		if (inner_mac_len > len_diff)
3543 			return -EINVAL;
3544 		inner_trans = skb->transport_header;
3545 	}
3546 
3547 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3548 	if (unlikely(ret < 0))
3549 		return ret;
3550 
3551 	if (encap) {
3552 		skb->inner_mac_header = inner_net - inner_mac_len;
3553 		skb->inner_network_header = inner_net;
3554 		skb->inner_transport_header = inner_trans;
3555 
3556 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3557 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3558 		else
3559 			skb_set_inner_protocol(skb, skb->protocol);
3560 
3561 		skb->encapsulation = 1;
3562 		skb_set_network_header(skb, mac_len);
3563 
3564 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3565 			gso_type |= SKB_GSO_UDP_TUNNEL;
3566 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3567 			gso_type |= SKB_GSO_GRE;
3568 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3569 			gso_type |= SKB_GSO_IPXIP6;
3570 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3571 			gso_type |= SKB_GSO_IPXIP4;
3572 
3573 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3574 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3575 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3576 					sizeof(struct ipv6hdr) :
3577 					sizeof(struct iphdr);
3578 
3579 			skb_set_transport_header(skb, mac_len + nh_len);
3580 		}
3581 
3582 		/* Match skb->protocol to new outer l3 protocol */
3583 		if (skb->protocol == htons(ETH_P_IP) &&
3584 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3585 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3586 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3587 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3588 			bpf_skb_change_protocol(skb, ETH_P_IP);
3589 	}
3590 
3591 	if (skb_is_gso(skb)) {
3592 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3593 
3594 		/* Header must be checked, and gso_segs recomputed. */
3595 		shinfo->gso_type |= gso_type;
3596 		shinfo->gso_segs = 0;
3597 
3598 		/* Due to header growth, MSS needs to be downgraded.
3599 		 * There is a BUG_ON() when segmenting the frag_list with
3600 		 * head_frag true, so linearize the skb after downgrading
3601 		 * the MSS.
3602 		 */
3603 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3604 			skb_decrease_gso_size(shinfo, len_diff);
3605 			if (shinfo->frag_list)
3606 				return skb_linearize(skb);
3607 		}
3608 	}
3609 
3610 	return 0;
3611 }
3612 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3613 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3614 			      u64 flags)
3615 {
3616 	int ret;
3617 
3618 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3619 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3620 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3621 		return -EINVAL;
3622 
3623 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3624 		/* udp gso_size delineates datagrams, only allow if fixed */
3625 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3626 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3627 			return -ENOTSUPP;
3628 	}
3629 
3630 	ret = skb_unclone(skb, GFP_ATOMIC);
3631 	if (unlikely(ret < 0))
3632 		return ret;
3633 
3634 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3635 	if (unlikely(ret < 0))
3636 		return ret;
3637 
3638 	/* Match skb->protocol to new outer l3 protocol */
3639 	if (skb->protocol == htons(ETH_P_IP) &&
3640 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3641 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3642 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3643 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3644 		bpf_skb_change_protocol(skb, ETH_P_IP);
3645 
3646 	if (skb_is_gso(skb)) {
3647 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3648 
3649 		/* Due to header shrink, MSS can be upgraded. */
3650 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3651 			skb_increase_gso_size(shinfo, len_diff);
3652 
3653 		/* Header must be checked, and gso_segs recomputed. */
3654 		shinfo->gso_type |= SKB_GSO_DODGY;
3655 		shinfo->gso_segs = 0;
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3662 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3663 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3664 	   u32, mode, u64, flags)
3665 {
3666 	u32 len_diff_abs = abs(len_diff);
3667 	bool shrink = len_diff < 0;
3668 	int ret = 0;
3669 
3670 	if (unlikely(flags || mode))
3671 		return -EINVAL;
3672 	if (unlikely(len_diff_abs > 0xfffU))
3673 		return -EFAULT;
3674 
3675 	if (!shrink) {
3676 		ret = skb_cow(skb, len_diff);
3677 		if (unlikely(ret < 0))
3678 			return ret;
3679 		__skb_push(skb, len_diff_abs);
3680 		memset(skb->data, 0, len_diff_abs);
3681 	} else {
3682 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3683 			return -ENOMEM;
3684 		__skb_pull(skb, len_diff_abs);
3685 	}
3686 	if (tls_sw_has_ctx_rx(skb->sk)) {
3687 		struct strp_msg *rxm = strp_msg(skb);
3688 
3689 		rxm->full_len += len_diff;
3690 	}
3691 	return ret;
3692 }
3693 
3694 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3695 	.func		= sk_skb_adjust_room,
3696 	.gpl_only	= false,
3697 	.ret_type	= RET_INTEGER,
3698 	.arg1_type	= ARG_PTR_TO_CTX,
3699 	.arg2_type	= ARG_ANYTHING,
3700 	.arg3_type	= ARG_ANYTHING,
3701 	.arg4_type	= ARG_ANYTHING,
3702 };
3703 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3704 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3705 	   u32, mode, u64, flags)
3706 {
3707 	u32 len_cur, len_diff_abs = abs(len_diff);
3708 	u32 len_min = bpf_skb_net_base_len(skb);
3709 	u32 len_max = BPF_SKB_MAX_LEN;
3710 	__be16 proto = skb->protocol;
3711 	bool shrink = len_diff < 0;
3712 	u32 off;
3713 	int ret;
3714 
3715 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3716 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3717 		return -EINVAL;
3718 	if (unlikely(len_diff_abs > 0xfffU))
3719 		return -EFAULT;
3720 	if (unlikely(proto != htons(ETH_P_IP) &&
3721 		     proto != htons(ETH_P_IPV6)))
3722 		return -ENOTSUPP;
3723 
3724 	off = skb_mac_header_len(skb);
3725 	switch (mode) {
3726 	case BPF_ADJ_ROOM_NET:
3727 		off += bpf_skb_net_base_len(skb);
3728 		break;
3729 	case BPF_ADJ_ROOM_MAC:
3730 		break;
3731 	default:
3732 		return -ENOTSUPP;
3733 	}
3734 
3735 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3736 		if (!shrink)
3737 			return -EINVAL;
3738 
3739 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3740 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3741 			len_min = sizeof(struct iphdr);
3742 			break;
3743 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3744 			len_min = sizeof(struct ipv6hdr);
3745 			break;
3746 		default:
3747 			return -EINVAL;
3748 		}
3749 	}
3750 
3751 	len_cur = skb->len - skb_network_offset(skb);
3752 	if ((shrink && (len_diff_abs >= len_cur ||
3753 			len_cur - len_diff_abs < len_min)) ||
3754 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3755 			 !skb_is_gso(skb))))
3756 		return -ENOTSUPP;
3757 
3758 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3759 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3760 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3761 		__skb_reset_checksum_unnecessary(skb);
3762 
3763 	bpf_compute_data_pointers(skb);
3764 	return ret;
3765 }
3766 
3767 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3768 	.func		= bpf_skb_adjust_room,
3769 	.gpl_only	= false,
3770 	.ret_type	= RET_INTEGER,
3771 	.arg1_type	= ARG_PTR_TO_CTX,
3772 	.arg2_type	= ARG_ANYTHING,
3773 	.arg3_type	= ARG_ANYTHING,
3774 	.arg4_type	= ARG_ANYTHING,
3775 };
3776 
__bpf_skb_min_len(const struct sk_buff * skb)3777 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3778 {
3779 	int offset = skb_network_offset(skb);
3780 	u32 min_len = 0;
3781 
3782 	if (offset > 0)
3783 		min_len = offset;
3784 	if (skb_transport_header_was_set(skb)) {
3785 		offset = skb_transport_offset(skb);
3786 		if (offset > 0)
3787 			min_len = offset;
3788 	}
3789 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3790 		offset = skb_checksum_start_offset(skb) +
3791 			 skb->csum_offset + sizeof(__sum16);
3792 		if (offset > 0)
3793 			min_len = offset;
3794 	}
3795 	return min_len;
3796 }
3797 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3798 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3799 {
3800 	unsigned int old_len = skb->len;
3801 	int ret;
3802 
3803 	ret = __skb_grow_rcsum(skb, new_len);
3804 	if (!ret)
3805 		memset(skb->data + old_len, 0, new_len - old_len);
3806 	return ret;
3807 }
3808 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3809 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3810 {
3811 	return __skb_trim_rcsum(skb, new_len);
3812 }
3813 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3814 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3815 					u64 flags)
3816 {
3817 	u32 max_len = BPF_SKB_MAX_LEN;
3818 	u32 min_len = __bpf_skb_min_len(skb);
3819 	int ret;
3820 
3821 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3822 		return -EINVAL;
3823 	if (skb->encapsulation)
3824 		return -ENOTSUPP;
3825 
3826 	/* The basic idea of this helper is that it's performing the
3827 	 * needed work to either grow or trim an skb, and eBPF program
3828 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3829 	 * bpf_lX_csum_replace() and others rather than passing a raw
3830 	 * buffer here. This one is a slow path helper and intended
3831 	 * for replies with control messages.
3832 	 *
3833 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3834 	 * minimal and without protocol specifics so that we are able
3835 	 * to separate concerns as in bpf_skb_store_bytes() should only
3836 	 * be the one responsible for writing buffers.
3837 	 *
3838 	 * It's really expected to be a slow path operation here for
3839 	 * control message replies, so we're implicitly linearizing,
3840 	 * uncloning and drop offloads from the skb by this.
3841 	 */
3842 	ret = __bpf_try_make_writable(skb, skb->len);
3843 	if (!ret) {
3844 		if (new_len > skb->len)
3845 			ret = bpf_skb_grow_rcsum(skb, new_len);
3846 		else if (new_len < skb->len)
3847 			ret = bpf_skb_trim_rcsum(skb, new_len);
3848 		if (!ret && skb_is_gso(skb))
3849 			skb_gso_reset(skb);
3850 	}
3851 	return ret;
3852 }
3853 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3854 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3855 	   u64, flags)
3856 {
3857 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3858 
3859 	bpf_compute_data_pointers(skb);
3860 	return ret;
3861 }
3862 
3863 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3864 	.func		= bpf_skb_change_tail,
3865 	.gpl_only	= false,
3866 	.ret_type	= RET_INTEGER,
3867 	.arg1_type	= ARG_PTR_TO_CTX,
3868 	.arg2_type	= ARG_ANYTHING,
3869 	.arg3_type	= ARG_ANYTHING,
3870 };
3871 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3872 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3873 	   u64, flags)
3874 {
3875 	return __bpf_skb_change_tail(skb, new_len, flags);
3876 }
3877 
3878 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3879 	.func		= sk_skb_change_tail,
3880 	.gpl_only	= false,
3881 	.ret_type	= RET_INTEGER,
3882 	.arg1_type	= ARG_PTR_TO_CTX,
3883 	.arg2_type	= ARG_ANYTHING,
3884 	.arg3_type	= ARG_ANYTHING,
3885 };
3886 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3887 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3888 					u64 flags)
3889 {
3890 	u32 max_len = BPF_SKB_MAX_LEN;
3891 	u32 new_len = skb->len + head_room;
3892 	int ret;
3893 
3894 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3895 		     new_len < skb->len))
3896 		return -EINVAL;
3897 
3898 	ret = skb_cow(skb, head_room);
3899 	if (likely(!ret)) {
3900 		/* Idea for this helper is that we currently only
3901 		 * allow to expand on mac header. This means that
3902 		 * skb->protocol network header, etc, stay as is.
3903 		 * Compared to bpf_skb_change_tail(), we're more
3904 		 * flexible due to not needing to linearize or
3905 		 * reset GSO. Intention for this helper is to be
3906 		 * used by an L3 skb that needs to push mac header
3907 		 * for redirection into L2 device.
3908 		 */
3909 		__skb_push(skb, head_room);
3910 		memset(skb->data, 0, head_room);
3911 		skb_reset_mac_header(skb);
3912 		skb_reset_mac_len(skb);
3913 	}
3914 
3915 	return ret;
3916 }
3917 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3918 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3919 	   u64, flags)
3920 {
3921 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3922 
3923 	bpf_compute_data_pointers(skb);
3924 	return ret;
3925 }
3926 
3927 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3928 	.func		= bpf_skb_change_head,
3929 	.gpl_only	= false,
3930 	.ret_type	= RET_INTEGER,
3931 	.arg1_type	= ARG_PTR_TO_CTX,
3932 	.arg2_type	= ARG_ANYTHING,
3933 	.arg3_type	= ARG_ANYTHING,
3934 };
3935 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3936 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3937 	   u64, flags)
3938 {
3939 	return __bpf_skb_change_head(skb, head_room, flags);
3940 }
3941 
3942 static const struct bpf_func_proto sk_skb_change_head_proto = {
3943 	.func		= sk_skb_change_head,
3944 	.gpl_only	= false,
3945 	.ret_type	= RET_INTEGER,
3946 	.arg1_type	= ARG_PTR_TO_CTX,
3947 	.arg2_type	= ARG_ANYTHING,
3948 	.arg3_type	= ARG_ANYTHING,
3949 };
3950 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3951 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3952 {
3953 	return xdp_get_buff_len(xdp);
3954 }
3955 
3956 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3957 	.func		= bpf_xdp_get_buff_len,
3958 	.gpl_only	= false,
3959 	.ret_type	= RET_INTEGER,
3960 	.arg1_type	= ARG_PTR_TO_CTX,
3961 };
3962 
3963 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3964 
3965 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3966 	.func		= bpf_xdp_get_buff_len,
3967 	.gpl_only	= false,
3968 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3969 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3970 };
3971 
xdp_get_metalen(const struct xdp_buff * xdp)3972 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3973 {
3974 	return xdp_data_meta_unsupported(xdp) ? 0 :
3975 	       xdp->data - xdp->data_meta;
3976 }
3977 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3978 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3979 {
3980 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3981 	unsigned long metalen = xdp_get_metalen(xdp);
3982 	void *data_start = xdp_frame_end + metalen;
3983 	void *data = xdp->data + offset;
3984 
3985 	if (unlikely(data < data_start ||
3986 		     data > xdp->data_end - ETH_HLEN))
3987 		return -EINVAL;
3988 
3989 	if (metalen)
3990 		memmove(xdp->data_meta + offset,
3991 			xdp->data_meta, metalen);
3992 	xdp->data_meta += offset;
3993 	xdp->data = data;
3994 
3995 	return 0;
3996 }
3997 
3998 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3999 	.func		= bpf_xdp_adjust_head,
4000 	.gpl_only	= false,
4001 	.ret_type	= RET_INTEGER,
4002 	.arg1_type	= ARG_PTR_TO_CTX,
4003 	.arg2_type	= ARG_ANYTHING,
4004 };
4005 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)4006 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
4007 		      void *buf, unsigned long len, bool flush)
4008 {
4009 	unsigned long ptr_len, ptr_off = 0;
4010 	skb_frag_t *next_frag, *end_frag;
4011 	struct skb_shared_info *sinfo;
4012 	void *src, *dst;
4013 	u8 *ptr_buf;
4014 
4015 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4016 		src = flush ? buf : xdp->data + off;
4017 		dst = flush ? xdp->data + off : buf;
4018 		memcpy(dst, src, len);
4019 		return;
4020 	}
4021 
4022 	sinfo = xdp_get_shared_info_from_buff(xdp);
4023 	end_frag = &sinfo->frags[sinfo->nr_frags];
4024 	next_frag = &sinfo->frags[0];
4025 
4026 	ptr_len = xdp->data_end - xdp->data;
4027 	ptr_buf = xdp->data;
4028 
4029 	while (true) {
4030 		if (off < ptr_off + ptr_len) {
4031 			unsigned long copy_off = off - ptr_off;
4032 			unsigned long copy_len = min(len, ptr_len - copy_off);
4033 
4034 			src = flush ? buf : ptr_buf + copy_off;
4035 			dst = flush ? ptr_buf + copy_off : buf;
4036 			memcpy(dst, src, copy_len);
4037 
4038 			off += copy_len;
4039 			len -= copy_len;
4040 			buf += copy_len;
4041 		}
4042 
4043 		if (!len || next_frag == end_frag)
4044 			break;
4045 
4046 		ptr_off += ptr_len;
4047 		ptr_buf = skb_frag_address(next_frag);
4048 		ptr_len = skb_frag_size(next_frag);
4049 		next_frag++;
4050 	}
4051 }
4052 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4053 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4054 {
4055 	u32 size = xdp->data_end - xdp->data;
4056 	struct skb_shared_info *sinfo;
4057 	void *addr = xdp->data;
4058 	int i;
4059 
4060 	if (unlikely(offset > 0xffff || len > 0xffff))
4061 		return ERR_PTR(-EFAULT);
4062 
4063 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4064 		return ERR_PTR(-EINVAL);
4065 
4066 	if (likely(offset < size)) /* linear area */
4067 		goto out;
4068 
4069 	sinfo = xdp_get_shared_info_from_buff(xdp);
4070 	offset -= size;
4071 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4072 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4073 
4074 		if  (offset < frag_size) {
4075 			addr = skb_frag_address(&sinfo->frags[i]);
4076 			size = frag_size;
4077 			break;
4078 		}
4079 		offset -= frag_size;
4080 	}
4081 out:
4082 	return offset + len <= size ? addr + offset : NULL;
4083 }
4084 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4085 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4086 	   void *, buf, u32, len)
4087 {
4088 	void *ptr;
4089 
4090 	ptr = bpf_xdp_pointer(xdp, offset, len);
4091 	if (IS_ERR(ptr))
4092 		return PTR_ERR(ptr);
4093 
4094 	if (!ptr)
4095 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4096 	else
4097 		memcpy(buf, ptr, len);
4098 
4099 	return 0;
4100 }
4101 
4102 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4103 	.func		= bpf_xdp_load_bytes,
4104 	.gpl_only	= false,
4105 	.ret_type	= RET_INTEGER,
4106 	.arg1_type	= ARG_PTR_TO_CTX,
4107 	.arg2_type	= ARG_ANYTHING,
4108 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4109 	.arg4_type	= ARG_CONST_SIZE,
4110 };
4111 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4112 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4113 {
4114 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4115 }
4116 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4117 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4118 	   void *, buf, u32, len)
4119 {
4120 	void *ptr;
4121 
4122 	ptr = bpf_xdp_pointer(xdp, offset, len);
4123 	if (IS_ERR(ptr))
4124 		return PTR_ERR(ptr);
4125 
4126 	if (!ptr)
4127 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4128 	else
4129 		memcpy(ptr, buf, len);
4130 
4131 	return 0;
4132 }
4133 
4134 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4135 	.func		= bpf_xdp_store_bytes,
4136 	.gpl_only	= false,
4137 	.ret_type	= RET_INTEGER,
4138 	.arg1_type	= ARG_PTR_TO_CTX,
4139 	.arg2_type	= ARG_ANYTHING,
4140 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4141 	.arg4_type	= ARG_CONST_SIZE,
4142 };
4143 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4144 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4145 {
4146 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4147 }
4148 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4149 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4150 {
4151 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4152 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4153 	struct xdp_rxq_info *rxq = xdp->rxq;
4154 	unsigned int tailroom;
4155 
4156 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4157 		return -EOPNOTSUPP;
4158 
4159 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4160 	if (unlikely(offset > tailroom))
4161 		return -EINVAL;
4162 
4163 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4164 	skb_frag_size_add(frag, offset);
4165 	sinfo->xdp_frags_size += offset;
4166 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4167 		xsk_buff_get_tail(xdp)->data_end += offset;
4168 
4169 	return 0;
4170 }
4171 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4172 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4173 				   struct xdp_mem_info *mem_info, bool release)
4174 {
4175 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4176 
4177 	if (release) {
4178 		xsk_buff_del_tail(zc_frag);
4179 		__xdp_return(NULL, mem_info, false, zc_frag);
4180 	} else {
4181 		zc_frag->data_end -= shrink;
4182 	}
4183 }
4184 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4185 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4186 				int shrink)
4187 {
4188 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4189 	bool release = skb_frag_size(frag) == shrink;
4190 
4191 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4192 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4193 		goto out;
4194 	}
4195 
4196 	if (release) {
4197 		struct page *page = skb_frag_page(frag);
4198 
4199 		__xdp_return(page_address(page), mem_info, false, NULL);
4200 	}
4201 
4202 out:
4203 	return release;
4204 }
4205 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4206 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4207 {
4208 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4209 	int i, n_frags_free = 0, len_free = 0;
4210 
4211 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4212 		return -EINVAL;
4213 
4214 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4215 		skb_frag_t *frag = &sinfo->frags[i];
4216 		int shrink = min_t(int, offset, skb_frag_size(frag));
4217 
4218 		len_free += shrink;
4219 		offset -= shrink;
4220 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4221 			n_frags_free++;
4222 		} else {
4223 			skb_frag_size_sub(frag, shrink);
4224 			break;
4225 		}
4226 	}
4227 	sinfo->nr_frags -= n_frags_free;
4228 	sinfo->xdp_frags_size -= len_free;
4229 
4230 	if (unlikely(!sinfo->nr_frags)) {
4231 		xdp_buff_clear_frags_flag(xdp);
4232 		xdp->data_end -= offset;
4233 	}
4234 
4235 	return 0;
4236 }
4237 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4238 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4239 {
4240 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4241 	void *data_end = xdp->data_end + offset;
4242 
4243 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4244 		if (offset < 0)
4245 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4246 
4247 		return bpf_xdp_frags_increase_tail(xdp, offset);
4248 	}
4249 
4250 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4251 	if (unlikely(data_end > data_hard_end))
4252 		return -EINVAL;
4253 
4254 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4255 		return -EINVAL;
4256 
4257 	/* Clear memory area on grow, can contain uninit kernel memory */
4258 	if (offset > 0)
4259 		memset(xdp->data_end, 0, offset);
4260 
4261 	xdp->data_end = data_end;
4262 
4263 	return 0;
4264 }
4265 
4266 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4267 	.func		= bpf_xdp_adjust_tail,
4268 	.gpl_only	= false,
4269 	.ret_type	= RET_INTEGER,
4270 	.arg1_type	= ARG_PTR_TO_CTX,
4271 	.arg2_type	= ARG_ANYTHING,
4272 };
4273 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4274 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4275 {
4276 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4277 	void *meta = xdp->data_meta + offset;
4278 	unsigned long metalen = xdp->data - meta;
4279 
4280 	if (xdp_data_meta_unsupported(xdp))
4281 		return -ENOTSUPP;
4282 	if (unlikely(meta < xdp_frame_end ||
4283 		     meta > xdp->data))
4284 		return -EINVAL;
4285 	if (unlikely(xdp_metalen_invalid(metalen)))
4286 		return -EACCES;
4287 
4288 	xdp->data_meta = meta;
4289 
4290 	return 0;
4291 }
4292 
4293 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4294 	.func		= bpf_xdp_adjust_meta,
4295 	.gpl_only	= false,
4296 	.ret_type	= RET_INTEGER,
4297 	.arg1_type	= ARG_PTR_TO_CTX,
4298 	.arg2_type	= ARG_ANYTHING,
4299 };
4300 
4301 /**
4302  * DOC: xdp redirect
4303  *
4304  * XDP_REDIRECT works by a three-step process, implemented in the functions
4305  * below:
4306  *
4307  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4308  *    of the redirect and store it (along with some other metadata) in a per-CPU
4309  *    struct bpf_redirect_info.
4310  *
4311  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4312  *    call xdp_do_redirect() which will use the information in struct
4313  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4314  *    bulk queue structure.
4315  *
4316  * 3. Before exiting its NAPI poll loop, the driver will call
4317  *    xdp_do_flush(), which will flush all the different bulk queues,
4318  *    thus completing the redirect. Note that xdp_do_flush() must be
4319  *    called before napi_complete_done() in the driver, as the
4320  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4321  *    through to the xdp_do_flush() call for RCU protection of all
4322  *    in-kernel data structures.
4323  */
4324 /*
4325  * Pointers to the map entries will be kept around for this whole sequence of
4326  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4327  * the core code; instead, the RCU protection relies on everything happening
4328  * inside a single NAPI poll sequence, which means it's between a pair of calls
4329  * to local_bh_disable()/local_bh_enable().
4330  *
4331  * The map entries are marked as __rcu and the map code makes sure to
4332  * dereference those pointers with rcu_dereference_check() in a way that works
4333  * for both sections that to hold an rcu_read_lock() and sections that are
4334  * called from NAPI without a separate rcu_read_lock(). The code below does not
4335  * use RCU annotations, but relies on those in the map code.
4336  */
xdp_do_flush(void)4337 void xdp_do_flush(void)
4338 {
4339 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4340 
4341 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4342 	if (lh_dev)
4343 		__dev_flush(lh_dev);
4344 	if (lh_map)
4345 		__cpu_map_flush(lh_map);
4346 	if (lh_xsk)
4347 		__xsk_map_flush(lh_xsk);
4348 }
4349 EXPORT_SYMBOL_GPL(xdp_do_flush);
4350 
4351 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4352 void xdp_do_check_flushed(struct napi_struct *napi)
4353 {
4354 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4355 	bool missed = false;
4356 
4357 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4358 	if (lh_dev) {
4359 		__dev_flush(lh_dev);
4360 		missed = true;
4361 	}
4362 	if (lh_map) {
4363 		__cpu_map_flush(lh_map);
4364 		missed = true;
4365 	}
4366 	if (lh_xsk) {
4367 		__xsk_map_flush(lh_xsk);
4368 		missed = true;
4369 	}
4370 
4371 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4372 		  napi->poll);
4373 }
4374 #endif
4375 
4376 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4377 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4378 
xdp_master_redirect(struct xdp_buff * xdp)4379 u32 xdp_master_redirect(struct xdp_buff *xdp)
4380 {
4381 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4382 	struct net_device *master, *slave;
4383 
4384 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4385 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4386 	if (slave && slave != xdp->rxq->dev) {
4387 		/* The target device is different from the receiving device, so
4388 		 * redirect it to the new device.
4389 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4390 		 * drivers to unmap the packet from their rx ring.
4391 		 */
4392 		ri->tgt_index = slave->ifindex;
4393 		ri->map_id = INT_MAX;
4394 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4395 		return XDP_REDIRECT;
4396 	}
4397 	return XDP_TX;
4398 }
4399 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4400 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4401 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4402 					struct net_device *dev,
4403 					struct xdp_buff *xdp,
4404 					struct bpf_prog *xdp_prog)
4405 {
4406 	enum bpf_map_type map_type = ri->map_type;
4407 	void *fwd = ri->tgt_value;
4408 	u32 map_id = ri->map_id;
4409 	int err;
4410 
4411 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4412 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4413 
4414 	err = __xsk_map_redirect(fwd, xdp);
4415 	if (unlikely(err))
4416 		goto err;
4417 
4418 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4419 	return 0;
4420 err:
4421 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4422 	return err;
4423 }
4424 
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4425 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4426 						   struct net_device *dev,
4427 						   struct xdp_frame *xdpf,
4428 						   struct bpf_prog *xdp_prog)
4429 {
4430 	enum bpf_map_type map_type = ri->map_type;
4431 	void *fwd = ri->tgt_value;
4432 	u32 map_id = ri->map_id;
4433 	u32 flags = ri->flags;
4434 	struct bpf_map *map;
4435 	int err;
4436 
4437 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4438 	ri->flags = 0;
4439 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4440 
4441 	if (unlikely(!xdpf)) {
4442 		err = -EOVERFLOW;
4443 		goto err;
4444 	}
4445 
4446 	switch (map_type) {
4447 	case BPF_MAP_TYPE_DEVMAP:
4448 		fallthrough;
4449 	case BPF_MAP_TYPE_DEVMAP_HASH:
4450 		if (unlikely(flags & BPF_F_BROADCAST)) {
4451 			map = READ_ONCE(ri->map);
4452 
4453 			/* The map pointer is cleared when the map is being torn
4454 			 * down by dev_map_free()
4455 			 */
4456 			if (unlikely(!map)) {
4457 				err = -ENOENT;
4458 				break;
4459 			}
4460 
4461 			WRITE_ONCE(ri->map, NULL);
4462 			err = dev_map_enqueue_multi(xdpf, dev, map,
4463 						    flags & BPF_F_EXCLUDE_INGRESS);
4464 		} else {
4465 			err = dev_map_enqueue(fwd, xdpf, dev);
4466 		}
4467 		break;
4468 	case BPF_MAP_TYPE_CPUMAP:
4469 		err = cpu_map_enqueue(fwd, xdpf, dev);
4470 		break;
4471 	case BPF_MAP_TYPE_UNSPEC:
4472 		if (map_id == INT_MAX) {
4473 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4474 			if (unlikely(!fwd)) {
4475 				err = -EINVAL;
4476 				break;
4477 			}
4478 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4479 			break;
4480 		}
4481 		fallthrough;
4482 	default:
4483 		err = -EBADRQC;
4484 	}
4485 
4486 	if (unlikely(err))
4487 		goto err;
4488 
4489 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4490 	return 0;
4491 err:
4492 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4493 	return err;
4494 }
4495 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4496 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4497 		    struct bpf_prog *xdp_prog)
4498 {
4499 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4500 	enum bpf_map_type map_type = ri->map_type;
4501 
4502 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4503 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4504 
4505 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4506 				       xdp_prog);
4507 }
4508 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4509 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4510 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4511 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4512 {
4513 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4514 	enum bpf_map_type map_type = ri->map_type;
4515 
4516 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4517 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4518 
4519 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4520 }
4521 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4522 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4523 static int xdp_do_generic_redirect_map(struct net_device *dev,
4524 				       struct sk_buff *skb,
4525 				       struct xdp_buff *xdp,
4526 				       struct bpf_prog *xdp_prog, void *fwd,
4527 				       enum bpf_map_type map_type, u32 map_id,
4528 				       u32 flags)
4529 {
4530 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4531 	struct bpf_map *map;
4532 	int err;
4533 
4534 	switch (map_type) {
4535 	case BPF_MAP_TYPE_DEVMAP:
4536 		fallthrough;
4537 	case BPF_MAP_TYPE_DEVMAP_HASH:
4538 		if (unlikely(flags & BPF_F_BROADCAST)) {
4539 			map = READ_ONCE(ri->map);
4540 
4541 			/* The map pointer is cleared when the map is being torn
4542 			 * down by dev_map_free()
4543 			 */
4544 			if (unlikely(!map)) {
4545 				err = -ENOENT;
4546 				break;
4547 			}
4548 
4549 			WRITE_ONCE(ri->map, NULL);
4550 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4551 						     flags & BPF_F_EXCLUDE_INGRESS);
4552 		} else {
4553 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4554 		}
4555 		if (unlikely(err))
4556 			goto err;
4557 		break;
4558 	case BPF_MAP_TYPE_XSKMAP:
4559 		err = xsk_generic_rcv(fwd, xdp);
4560 		if (err)
4561 			goto err;
4562 		consume_skb(skb);
4563 		break;
4564 	case BPF_MAP_TYPE_CPUMAP:
4565 		err = cpu_map_generic_redirect(fwd, skb);
4566 		if (unlikely(err))
4567 			goto err;
4568 		break;
4569 	default:
4570 		err = -EBADRQC;
4571 		goto err;
4572 	}
4573 
4574 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4575 	return 0;
4576 err:
4577 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4578 	return err;
4579 }
4580 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4581 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4582 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4583 {
4584 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4585 	enum bpf_map_type map_type = ri->map_type;
4586 	void *fwd = ri->tgt_value;
4587 	u32 map_id = ri->map_id;
4588 	u32 flags = ri->flags;
4589 	int err;
4590 
4591 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4592 	ri->flags = 0;
4593 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4594 
4595 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4596 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4597 		if (unlikely(!fwd)) {
4598 			err = -EINVAL;
4599 			goto err;
4600 		}
4601 
4602 		err = xdp_ok_fwd_dev(fwd, skb->len);
4603 		if (unlikely(err))
4604 			goto err;
4605 
4606 		skb->dev = fwd;
4607 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4608 		generic_xdp_tx(skb, xdp_prog);
4609 		return 0;
4610 	}
4611 
4612 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4613 err:
4614 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4615 	return err;
4616 }
4617 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4618 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4619 {
4620 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4621 
4622 	if (unlikely(flags))
4623 		return XDP_ABORTED;
4624 
4625 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4626 	 * by map_idr) is used for ifindex based XDP redirect.
4627 	 */
4628 	ri->tgt_index = ifindex;
4629 	ri->map_id = INT_MAX;
4630 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4631 
4632 	return XDP_REDIRECT;
4633 }
4634 
4635 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4636 	.func           = bpf_xdp_redirect,
4637 	.gpl_only       = false,
4638 	.ret_type       = RET_INTEGER,
4639 	.arg1_type      = ARG_ANYTHING,
4640 	.arg2_type      = ARG_ANYTHING,
4641 };
4642 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4643 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4644 	   u64, flags)
4645 {
4646 	return map->ops->map_redirect(map, key, flags);
4647 }
4648 
4649 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4650 	.func           = bpf_xdp_redirect_map,
4651 	.gpl_only       = false,
4652 	.ret_type       = RET_INTEGER,
4653 	.arg1_type      = ARG_CONST_MAP_PTR,
4654 	.arg2_type      = ARG_ANYTHING,
4655 	.arg3_type      = ARG_ANYTHING,
4656 };
4657 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4658 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4659 				  unsigned long off, unsigned long len)
4660 {
4661 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4662 
4663 	if (unlikely(!ptr))
4664 		return len;
4665 	if (ptr != dst_buff)
4666 		memcpy(dst_buff, ptr, len);
4667 
4668 	return 0;
4669 }
4670 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4671 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4672 	   u64, flags, void *, meta, u64, meta_size)
4673 {
4674 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4675 
4676 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4677 		return -EINVAL;
4678 	if (unlikely(!skb || skb_size > skb->len))
4679 		return -EFAULT;
4680 
4681 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4682 				bpf_skb_copy);
4683 }
4684 
4685 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4686 	.func		= bpf_skb_event_output,
4687 	.gpl_only	= true,
4688 	.ret_type	= RET_INTEGER,
4689 	.arg1_type	= ARG_PTR_TO_CTX,
4690 	.arg2_type	= ARG_CONST_MAP_PTR,
4691 	.arg3_type	= ARG_ANYTHING,
4692 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4693 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4694 };
4695 
4696 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4697 
4698 const struct bpf_func_proto bpf_skb_output_proto = {
4699 	.func		= bpf_skb_event_output,
4700 	.gpl_only	= true,
4701 	.ret_type	= RET_INTEGER,
4702 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4703 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4704 	.arg2_type	= ARG_CONST_MAP_PTR,
4705 	.arg3_type	= ARG_ANYTHING,
4706 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4707 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4708 };
4709 
bpf_tunnel_key_af(u64 flags)4710 static unsigned short bpf_tunnel_key_af(u64 flags)
4711 {
4712 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4713 }
4714 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4715 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4716 	   u32, size, u64, flags)
4717 {
4718 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4719 	u8 compat[sizeof(struct bpf_tunnel_key)];
4720 	void *to_orig = to;
4721 	int err;
4722 
4723 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4724 					 BPF_F_TUNINFO_FLAGS)))) {
4725 		err = -EINVAL;
4726 		goto err_clear;
4727 	}
4728 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4729 		err = -EPROTO;
4730 		goto err_clear;
4731 	}
4732 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4733 		err = -EINVAL;
4734 		switch (size) {
4735 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4736 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4737 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4738 			goto set_compat;
4739 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4740 			/* Fixup deprecated structure layouts here, so we have
4741 			 * a common path later on.
4742 			 */
4743 			if (ip_tunnel_info_af(info) != AF_INET)
4744 				goto err_clear;
4745 set_compat:
4746 			to = (struct bpf_tunnel_key *)compat;
4747 			break;
4748 		default:
4749 			goto err_clear;
4750 		}
4751 	}
4752 
4753 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4754 	to->tunnel_tos = info->key.tos;
4755 	to->tunnel_ttl = info->key.ttl;
4756 	if (flags & BPF_F_TUNINFO_FLAGS)
4757 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4758 	else
4759 		to->tunnel_ext = 0;
4760 
4761 	if (flags & BPF_F_TUNINFO_IPV6) {
4762 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4763 		       sizeof(to->remote_ipv6));
4764 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4765 		       sizeof(to->local_ipv6));
4766 		to->tunnel_label = be32_to_cpu(info->key.label);
4767 	} else {
4768 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4769 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4770 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4771 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4772 		to->tunnel_label = 0;
4773 	}
4774 
4775 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4776 		memcpy(to_orig, to, size);
4777 
4778 	return 0;
4779 err_clear:
4780 	memset(to_orig, 0, size);
4781 	return err;
4782 }
4783 
4784 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4785 	.func		= bpf_skb_get_tunnel_key,
4786 	.gpl_only	= false,
4787 	.ret_type	= RET_INTEGER,
4788 	.arg1_type	= ARG_PTR_TO_CTX,
4789 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4790 	.arg3_type	= ARG_CONST_SIZE,
4791 	.arg4_type	= ARG_ANYTHING,
4792 };
4793 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4794 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4795 {
4796 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4797 	int err;
4798 
4799 	if (unlikely(!info ||
4800 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4801 		err = -ENOENT;
4802 		goto err_clear;
4803 	}
4804 	if (unlikely(size < info->options_len)) {
4805 		err = -ENOMEM;
4806 		goto err_clear;
4807 	}
4808 
4809 	ip_tunnel_info_opts_get(to, info);
4810 	if (size > info->options_len)
4811 		memset(to + info->options_len, 0, size - info->options_len);
4812 
4813 	return info->options_len;
4814 err_clear:
4815 	memset(to, 0, size);
4816 	return err;
4817 }
4818 
4819 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4820 	.func		= bpf_skb_get_tunnel_opt,
4821 	.gpl_only	= false,
4822 	.ret_type	= RET_INTEGER,
4823 	.arg1_type	= ARG_PTR_TO_CTX,
4824 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4825 	.arg3_type	= ARG_CONST_SIZE,
4826 };
4827 
4828 static struct metadata_dst __percpu *md_dst;
4829 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4830 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4831 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4832 {
4833 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4834 	u8 compat[sizeof(struct bpf_tunnel_key)];
4835 	struct ip_tunnel_info *info;
4836 
4837 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4838 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4839 			       BPF_F_NO_TUNNEL_KEY)))
4840 		return -EINVAL;
4841 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4842 		switch (size) {
4843 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4844 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4845 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4846 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4847 			/* Fixup deprecated structure layouts here, so we have
4848 			 * a common path later on.
4849 			 */
4850 			memcpy(compat, from, size);
4851 			memset(compat + size, 0, sizeof(compat) - size);
4852 			from = (const struct bpf_tunnel_key *) compat;
4853 			break;
4854 		default:
4855 			return -EINVAL;
4856 		}
4857 	}
4858 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4859 		     from->tunnel_ext))
4860 		return -EINVAL;
4861 
4862 	skb_dst_drop(skb);
4863 	dst_hold((struct dst_entry *) md);
4864 	skb_dst_set(skb, (struct dst_entry *) md);
4865 
4866 	info = &md->u.tun_info;
4867 	memset(info, 0, sizeof(*info));
4868 	info->mode = IP_TUNNEL_INFO_TX;
4869 
4870 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4871 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4872 		     flags & BPF_F_DONT_FRAGMENT);
4873 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4874 		     !(flags & BPF_F_ZERO_CSUM_TX));
4875 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4876 		     flags & BPF_F_SEQ_NUMBER);
4877 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4878 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4879 
4880 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4881 	info->key.tos = from->tunnel_tos;
4882 	info->key.ttl = from->tunnel_ttl;
4883 
4884 	if (flags & BPF_F_TUNINFO_IPV6) {
4885 		info->mode |= IP_TUNNEL_INFO_IPV6;
4886 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4887 		       sizeof(from->remote_ipv6));
4888 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4889 		       sizeof(from->local_ipv6));
4890 		info->key.label = cpu_to_be32(from->tunnel_label) &
4891 				  IPV6_FLOWLABEL_MASK;
4892 	} else {
4893 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4894 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4895 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4896 	}
4897 
4898 	return 0;
4899 }
4900 
4901 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4902 	.func		= bpf_skb_set_tunnel_key,
4903 	.gpl_only	= false,
4904 	.ret_type	= RET_INTEGER,
4905 	.arg1_type	= ARG_PTR_TO_CTX,
4906 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4907 	.arg3_type	= ARG_CONST_SIZE,
4908 	.arg4_type	= ARG_ANYTHING,
4909 };
4910 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4911 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4912 	   const u8 *, from, u32, size)
4913 {
4914 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4915 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4916 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4917 
4918 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4919 		return -EINVAL;
4920 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4921 		return -ENOMEM;
4922 
4923 	ip_tunnel_set_options_present(present);
4924 	ip_tunnel_info_opts_set(info, from, size, present);
4925 
4926 	return 0;
4927 }
4928 
4929 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4930 	.func		= bpf_skb_set_tunnel_opt,
4931 	.gpl_only	= false,
4932 	.ret_type	= RET_INTEGER,
4933 	.arg1_type	= ARG_PTR_TO_CTX,
4934 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4935 	.arg3_type	= ARG_CONST_SIZE,
4936 };
4937 
4938 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4939 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4940 {
4941 	if (!md_dst) {
4942 		struct metadata_dst __percpu *tmp;
4943 
4944 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4945 						METADATA_IP_TUNNEL,
4946 						GFP_KERNEL);
4947 		if (!tmp)
4948 			return NULL;
4949 		if (cmpxchg(&md_dst, NULL, tmp))
4950 			metadata_dst_free_percpu(tmp);
4951 	}
4952 
4953 	switch (which) {
4954 	case BPF_FUNC_skb_set_tunnel_key:
4955 		return &bpf_skb_set_tunnel_key_proto;
4956 	case BPF_FUNC_skb_set_tunnel_opt:
4957 		return &bpf_skb_set_tunnel_opt_proto;
4958 	default:
4959 		return NULL;
4960 	}
4961 }
4962 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4963 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4964 	   u32, idx)
4965 {
4966 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4967 	struct cgroup *cgrp;
4968 	struct sock *sk;
4969 
4970 	sk = skb_to_full_sk(skb);
4971 	if (!sk || !sk_fullsock(sk))
4972 		return -ENOENT;
4973 	if (unlikely(idx >= array->map.max_entries))
4974 		return -E2BIG;
4975 
4976 	cgrp = READ_ONCE(array->ptrs[idx]);
4977 	if (unlikely(!cgrp))
4978 		return -EAGAIN;
4979 
4980 	return sk_under_cgroup_hierarchy(sk, cgrp);
4981 }
4982 
4983 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4984 	.func		= bpf_skb_under_cgroup,
4985 	.gpl_only	= false,
4986 	.ret_type	= RET_INTEGER,
4987 	.arg1_type	= ARG_PTR_TO_CTX,
4988 	.arg2_type	= ARG_CONST_MAP_PTR,
4989 	.arg3_type	= ARG_ANYTHING,
4990 };
4991 
4992 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4993 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4994 {
4995 	struct cgroup *cgrp;
4996 
4997 	sk = sk_to_full_sk(sk);
4998 	if (!sk || !sk_fullsock(sk))
4999 		return 0;
5000 
5001 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5002 	return cgroup_id(cgrp);
5003 }
5004 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)5005 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
5006 {
5007 	return __bpf_sk_cgroup_id(skb->sk);
5008 }
5009 
5010 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5011 	.func           = bpf_skb_cgroup_id,
5012 	.gpl_only       = false,
5013 	.ret_type       = RET_INTEGER,
5014 	.arg1_type      = ARG_PTR_TO_CTX,
5015 };
5016 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5017 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5018 					      int ancestor_level)
5019 {
5020 	struct cgroup *ancestor;
5021 	struct cgroup *cgrp;
5022 
5023 	sk = sk_to_full_sk(sk);
5024 	if (!sk || !sk_fullsock(sk))
5025 		return 0;
5026 
5027 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5028 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5029 	if (!ancestor)
5030 		return 0;
5031 
5032 	return cgroup_id(ancestor);
5033 }
5034 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5035 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5036 	   ancestor_level)
5037 {
5038 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5039 }
5040 
5041 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5042 	.func           = bpf_skb_ancestor_cgroup_id,
5043 	.gpl_only       = false,
5044 	.ret_type       = RET_INTEGER,
5045 	.arg1_type      = ARG_PTR_TO_CTX,
5046 	.arg2_type      = ARG_ANYTHING,
5047 };
5048 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5049 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5050 {
5051 	return __bpf_sk_cgroup_id(sk);
5052 }
5053 
5054 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5055 	.func           = bpf_sk_cgroup_id,
5056 	.gpl_only       = false,
5057 	.ret_type       = RET_INTEGER,
5058 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5059 };
5060 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5061 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5062 {
5063 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5064 }
5065 
5066 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5067 	.func           = bpf_sk_ancestor_cgroup_id,
5068 	.gpl_only       = false,
5069 	.ret_type       = RET_INTEGER,
5070 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5071 	.arg2_type      = ARG_ANYTHING,
5072 };
5073 #endif
5074 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5075 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5076 				  unsigned long off, unsigned long len)
5077 {
5078 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5079 
5080 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5081 	return 0;
5082 }
5083 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5084 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5085 	   u64, flags, void *, meta, u64, meta_size)
5086 {
5087 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5088 
5089 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5090 		return -EINVAL;
5091 
5092 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5093 		return -EFAULT;
5094 
5095 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5096 				xdp_size, bpf_xdp_copy);
5097 }
5098 
5099 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5100 	.func		= bpf_xdp_event_output,
5101 	.gpl_only	= true,
5102 	.ret_type	= RET_INTEGER,
5103 	.arg1_type	= ARG_PTR_TO_CTX,
5104 	.arg2_type	= ARG_CONST_MAP_PTR,
5105 	.arg3_type	= ARG_ANYTHING,
5106 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5107 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5108 };
5109 
5110 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5111 
5112 const struct bpf_func_proto bpf_xdp_output_proto = {
5113 	.func		= bpf_xdp_event_output,
5114 	.gpl_only	= true,
5115 	.ret_type	= RET_INTEGER,
5116 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5117 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5118 	.arg2_type	= ARG_CONST_MAP_PTR,
5119 	.arg3_type	= ARG_ANYTHING,
5120 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5121 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5122 };
5123 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5124 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5125 {
5126 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5127 }
5128 
5129 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5130 	.func           = bpf_get_socket_cookie,
5131 	.gpl_only       = false,
5132 	.ret_type       = RET_INTEGER,
5133 	.arg1_type      = ARG_PTR_TO_CTX,
5134 };
5135 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5136 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5137 {
5138 	return __sock_gen_cookie(ctx->sk);
5139 }
5140 
5141 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5142 	.func		= bpf_get_socket_cookie_sock_addr,
5143 	.gpl_only	= false,
5144 	.ret_type	= RET_INTEGER,
5145 	.arg1_type	= ARG_PTR_TO_CTX,
5146 };
5147 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5148 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5149 {
5150 	return __sock_gen_cookie(ctx);
5151 }
5152 
5153 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5154 	.func		= bpf_get_socket_cookie_sock,
5155 	.gpl_only	= false,
5156 	.ret_type	= RET_INTEGER,
5157 	.arg1_type	= ARG_PTR_TO_CTX,
5158 };
5159 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5160 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5161 {
5162 	return sk ? sock_gen_cookie(sk) : 0;
5163 }
5164 
5165 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5166 	.func		= bpf_get_socket_ptr_cookie,
5167 	.gpl_only	= false,
5168 	.ret_type	= RET_INTEGER,
5169 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5170 };
5171 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5172 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5173 {
5174 	return __sock_gen_cookie(ctx->sk);
5175 }
5176 
5177 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5178 	.func		= bpf_get_socket_cookie_sock_ops,
5179 	.gpl_only	= false,
5180 	.ret_type	= RET_INTEGER,
5181 	.arg1_type	= ARG_PTR_TO_CTX,
5182 };
5183 
__bpf_get_netns_cookie(struct sock * sk)5184 static u64 __bpf_get_netns_cookie(struct sock *sk)
5185 {
5186 	const struct net *net = sk ? sock_net(sk) : &init_net;
5187 
5188 	return net->net_cookie;
5189 }
5190 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5191 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5192 {
5193 	return __bpf_get_netns_cookie(ctx);
5194 }
5195 
5196 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5197 	.func		= bpf_get_netns_cookie_sock,
5198 	.gpl_only	= false,
5199 	.ret_type	= RET_INTEGER,
5200 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5201 };
5202 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5203 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5204 {
5205 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5206 }
5207 
5208 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5209 	.func		= bpf_get_netns_cookie_sock_addr,
5210 	.gpl_only	= false,
5211 	.ret_type	= RET_INTEGER,
5212 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5213 };
5214 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5215 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5216 {
5217 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5218 }
5219 
5220 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5221 	.func		= bpf_get_netns_cookie_sock_ops,
5222 	.gpl_only	= false,
5223 	.ret_type	= RET_INTEGER,
5224 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5225 };
5226 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5227 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5228 {
5229 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5230 }
5231 
5232 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5233 	.func		= bpf_get_netns_cookie_sk_msg,
5234 	.gpl_only	= false,
5235 	.ret_type	= RET_INTEGER,
5236 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5237 };
5238 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5239 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5240 {
5241 	struct sock *sk = sk_to_full_sk(skb->sk);
5242 	kuid_t kuid;
5243 
5244 	if (!sk || !sk_fullsock(sk))
5245 		return overflowuid;
5246 	kuid = sock_net_uid(sock_net(sk), sk);
5247 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5248 }
5249 
5250 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5251 	.func           = bpf_get_socket_uid,
5252 	.gpl_only       = false,
5253 	.ret_type       = RET_INTEGER,
5254 	.arg1_type      = ARG_PTR_TO_CTX,
5255 };
5256 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5257 static int sol_socket_sockopt(struct sock *sk, int optname,
5258 			      char *optval, int *optlen,
5259 			      bool getopt)
5260 {
5261 	switch (optname) {
5262 	case SO_REUSEADDR:
5263 	case SO_SNDBUF:
5264 	case SO_RCVBUF:
5265 	case SO_KEEPALIVE:
5266 	case SO_PRIORITY:
5267 	case SO_REUSEPORT:
5268 	case SO_RCVLOWAT:
5269 	case SO_MARK:
5270 	case SO_MAX_PACING_RATE:
5271 	case SO_BINDTOIFINDEX:
5272 	case SO_TXREHASH:
5273 		if (*optlen != sizeof(int))
5274 			return -EINVAL;
5275 		break;
5276 	case SO_BINDTODEVICE:
5277 		break;
5278 	default:
5279 		return -EINVAL;
5280 	}
5281 
5282 	if (getopt) {
5283 		if (optname == SO_BINDTODEVICE)
5284 			return -EINVAL;
5285 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5286 				     KERNEL_SOCKPTR(optval),
5287 				     KERNEL_SOCKPTR(optlen));
5288 	}
5289 
5290 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5291 			     KERNEL_SOCKPTR(optval), *optlen);
5292 }
5293 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5294 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5295 				  char *optval, int optlen)
5296 {
5297 	struct tcp_sock *tp = tcp_sk(sk);
5298 	unsigned long timeout;
5299 	int val;
5300 
5301 	if (optlen != sizeof(int))
5302 		return -EINVAL;
5303 
5304 	val = *(int *)optval;
5305 
5306 	/* Only some options are supported */
5307 	switch (optname) {
5308 	case TCP_BPF_IW:
5309 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5310 			return -EINVAL;
5311 		tcp_snd_cwnd_set(tp, val);
5312 		break;
5313 	case TCP_BPF_SNDCWND_CLAMP:
5314 		if (val <= 0)
5315 			return -EINVAL;
5316 		tp->snd_cwnd_clamp = val;
5317 		tp->snd_ssthresh = val;
5318 		break;
5319 	case TCP_BPF_DELACK_MAX:
5320 		timeout = usecs_to_jiffies(val);
5321 		if (timeout > TCP_DELACK_MAX ||
5322 		    timeout < TCP_TIMEOUT_MIN)
5323 			return -EINVAL;
5324 		inet_csk(sk)->icsk_delack_max = timeout;
5325 		break;
5326 	case TCP_BPF_RTO_MIN:
5327 		timeout = usecs_to_jiffies(val);
5328 		if (timeout > TCP_RTO_MIN ||
5329 		    timeout < TCP_TIMEOUT_MIN)
5330 			return -EINVAL;
5331 		inet_csk(sk)->icsk_rto_min = timeout;
5332 		break;
5333 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5334 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5335 			return -EINVAL;
5336 		tp->bpf_sock_ops_cb_flags = val;
5337 		break;
5338 	default:
5339 		return -EINVAL;
5340 	}
5341 
5342 	return 0;
5343 }
5344 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5345 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5346 				      int *optlen, bool getopt)
5347 {
5348 	struct tcp_sock *tp;
5349 	int ret;
5350 
5351 	if (*optlen < 2)
5352 		return -EINVAL;
5353 
5354 	if (getopt) {
5355 		if (!inet_csk(sk)->icsk_ca_ops)
5356 			return -EINVAL;
5357 		/* BPF expects NULL-terminated tcp-cc string */
5358 		optval[--(*optlen)] = '\0';
5359 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5360 					 KERNEL_SOCKPTR(optval),
5361 					 KERNEL_SOCKPTR(optlen));
5362 	}
5363 
5364 	/* "cdg" is the only cc that alloc a ptr
5365 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5366 	 * overwrite this ptr after switching to cdg.
5367 	 */
5368 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5369 		return -ENOTSUPP;
5370 
5371 	/* It stops this looping
5372 	 *
5373 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5374 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5375 	 *
5376 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5377 	 * in order to break the loop when both .init
5378 	 * are the same bpf prog.
5379 	 *
5380 	 * This applies even the second bpf_setsockopt(tcp_cc)
5381 	 * does not cause a loop.  This limits only the first
5382 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5383 	 * pick a fallback cc (eg. peer does not support ECN)
5384 	 * and the second '.init' cannot fallback to
5385 	 * another.
5386 	 */
5387 	tp = tcp_sk(sk);
5388 	if (tp->bpf_chg_cc_inprogress)
5389 		return -EBUSY;
5390 
5391 	tp->bpf_chg_cc_inprogress = 1;
5392 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5393 				KERNEL_SOCKPTR(optval), *optlen);
5394 	tp->bpf_chg_cc_inprogress = 0;
5395 	return ret;
5396 }
5397 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5398 static int sol_tcp_sockopt(struct sock *sk, int optname,
5399 			   char *optval, int *optlen,
5400 			   bool getopt)
5401 {
5402 	if (sk->sk_protocol != IPPROTO_TCP)
5403 		return -EINVAL;
5404 
5405 	switch (optname) {
5406 	case TCP_NODELAY:
5407 	case TCP_MAXSEG:
5408 	case TCP_KEEPIDLE:
5409 	case TCP_KEEPINTVL:
5410 	case TCP_KEEPCNT:
5411 	case TCP_SYNCNT:
5412 	case TCP_WINDOW_CLAMP:
5413 	case TCP_THIN_LINEAR_TIMEOUTS:
5414 	case TCP_USER_TIMEOUT:
5415 	case TCP_NOTSENT_LOWAT:
5416 	case TCP_SAVE_SYN:
5417 		if (*optlen != sizeof(int))
5418 			return -EINVAL;
5419 		break;
5420 	case TCP_CONGESTION:
5421 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5422 	case TCP_SAVED_SYN:
5423 		if (*optlen < 1)
5424 			return -EINVAL;
5425 		break;
5426 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5427 		if (*optlen != sizeof(int))
5428 			return -EINVAL;
5429 		if (getopt) {
5430 			struct tcp_sock *tp = tcp_sk(sk);
5431 			int cb_flags = tp->bpf_sock_ops_cb_flags;
5432 
5433 			memcpy(optval, &cb_flags, *optlen);
5434 			return 0;
5435 		}
5436 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5437 	default:
5438 		if (getopt)
5439 			return -EINVAL;
5440 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5441 	}
5442 
5443 	if (getopt) {
5444 		if (optname == TCP_SAVED_SYN) {
5445 			struct tcp_sock *tp = tcp_sk(sk);
5446 
5447 			if (!tp->saved_syn ||
5448 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5449 				return -EINVAL;
5450 			memcpy(optval, tp->saved_syn->data, *optlen);
5451 			/* It cannot free tp->saved_syn here because it
5452 			 * does not know if the user space still needs it.
5453 			 */
5454 			return 0;
5455 		}
5456 
5457 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5458 					 KERNEL_SOCKPTR(optval),
5459 					 KERNEL_SOCKPTR(optlen));
5460 	}
5461 
5462 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5463 				 KERNEL_SOCKPTR(optval), *optlen);
5464 }
5465 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5466 static int sol_ip_sockopt(struct sock *sk, int optname,
5467 			  char *optval, int *optlen,
5468 			  bool getopt)
5469 {
5470 	if (sk->sk_family != AF_INET)
5471 		return -EINVAL;
5472 
5473 	switch (optname) {
5474 	case IP_TOS:
5475 		if (*optlen != sizeof(int))
5476 			return -EINVAL;
5477 		break;
5478 	default:
5479 		return -EINVAL;
5480 	}
5481 
5482 	if (getopt)
5483 		return do_ip_getsockopt(sk, SOL_IP, optname,
5484 					KERNEL_SOCKPTR(optval),
5485 					KERNEL_SOCKPTR(optlen));
5486 
5487 	return do_ip_setsockopt(sk, SOL_IP, optname,
5488 				KERNEL_SOCKPTR(optval), *optlen);
5489 }
5490 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5491 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5492 			    char *optval, int *optlen,
5493 			    bool getopt)
5494 {
5495 	if (sk->sk_family != AF_INET6)
5496 		return -EINVAL;
5497 
5498 	switch (optname) {
5499 	case IPV6_TCLASS:
5500 	case IPV6_AUTOFLOWLABEL:
5501 		if (*optlen != sizeof(int))
5502 			return -EINVAL;
5503 		break;
5504 	default:
5505 		return -EINVAL;
5506 	}
5507 
5508 	if (getopt)
5509 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5510 						      KERNEL_SOCKPTR(optval),
5511 						      KERNEL_SOCKPTR(optlen));
5512 
5513 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5514 					      KERNEL_SOCKPTR(optval), *optlen);
5515 }
5516 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5517 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5518 			    char *optval, int optlen)
5519 {
5520 	if (!sk_fullsock(sk))
5521 		return -EINVAL;
5522 
5523 	if (level == SOL_SOCKET)
5524 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5525 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5526 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5527 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5528 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5529 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5530 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5531 
5532 	return -EINVAL;
5533 }
5534 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5535 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5536 			   char *optval, int optlen)
5537 {
5538 	if (sk_fullsock(sk))
5539 		sock_owned_by_me(sk);
5540 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5541 }
5542 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5543 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5544 			    char *optval, int optlen)
5545 {
5546 	int err, saved_optlen = optlen;
5547 
5548 	if (!sk_fullsock(sk)) {
5549 		err = -EINVAL;
5550 		goto done;
5551 	}
5552 
5553 	if (level == SOL_SOCKET)
5554 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5555 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5556 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5557 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5558 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5559 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5560 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5561 	else
5562 		err = -EINVAL;
5563 
5564 done:
5565 	if (err)
5566 		optlen = 0;
5567 	if (optlen < saved_optlen)
5568 		memset(optval + optlen, 0, saved_optlen - optlen);
5569 	return err;
5570 }
5571 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5572 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5573 			   char *optval, int optlen)
5574 {
5575 	if (sk_fullsock(sk))
5576 		sock_owned_by_me(sk);
5577 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5578 }
5579 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5580 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5581 	   int, optname, char *, optval, int, optlen)
5582 {
5583 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5584 }
5585 
5586 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5587 	.func		= bpf_sk_setsockopt,
5588 	.gpl_only	= false,
5589 	.ret_type	= RET_INTEGER,
5590 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5591 	.arg2_type	= ARG_ANYTHING,
5592 	.arg3_type	= ARG_ANYTHING,
5593 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5594 	.arg5_type	= ARG_CONST_SIZE,
5595 };
5596 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5597 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5598 	   int, optname, char *, optval, int, optlen)
5599 {
5600 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5601 }
5602 
5603 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5604 	.func		= bpf_sk_getsockopt,
5605 	.gpl_only	= false,
5606 	.ret_type	= RET_INTEGER,
5607 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5608 	.arg2_type	= ARG_ANYTHING,
5609 	.arg3_type	= ARG_ANYTHING,
5610 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5611 	.arg5_type	= ARG_CONST_SIZE,
5612 };
5613 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5614 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5615 	   int, optname, char *, optval, int, optlen)
5616 {
5617 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5618 }
5619 
5620 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5621 	.func		= bpf_unlocked_sk_setsockopt,
5622 	.gpl_only	= false,
5623 	.ret_type	= RET_INTEGER,
5624 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5625 	.arg2_type	= ARG_ANYTHING,
5626 	.arg3_type	= ARG_ANYTHING,
5627 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5628 	.arg5_type	= ARG_CONST_SIZE,
5629 };
5630 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5631 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5632 	   int, optname, char *, optval, int, optlen)
5633 {
5634 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5635 }
5636 
5637 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5638 	.func		= bpf_unlocked_sk_getsockopt,
5639 	.gpl_only	= false,
5640 	.ret_type	= RET_INTEGER,
5641 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5642 	.arg2_type	= ARG_ANYTHING,
5643 	.arg3_type	= ARG_ANYTHING,
5644 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5645 	.arg5_type	= ARG_CONST_SIZE,
5646 };
5647 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5648 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5649 	   int, level, int, optname, char *, optval, int, optlen)
5650 {
5651 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5652 }
5653 
5654 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5655 	.func		= bpf_sock_addr_setsockopt,
5656 	.gpl_only	= false,
5657 	.ret_type	= RET_INTEGER,
5658 	.arg1_type	= ARG_PTR_TO_CTX,
5659 	.arg2_type	= ARG_ANYTHING,
5660 	.arg3_type	= ARG_ANYTHING,
5661 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5662 	.arg5_type	= ARG_CONST_SIZE,
5663 };
5664 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5665 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5666 	   int, level, int, optname, char *, optval, int, optlen)
5667 {
5668 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5669 }
5670 
5671 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5672 	.func		= bpf_sock_addr_getsockopt,
5673 	.gpl_only	= false,
5674 	.ret_type	= RET_INTEGER,
5675 	.arg1_type	= ARG_PTR_TO_CTX,
5676 	.arg2_type	= ARG_ANYTHING,
5677 	.arg3_type	= ARG_ANYTHING,
5678 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5679 	.arg5_type	= ARG_CONST_SIZE,
5680 };
5681 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5682 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5683 	   int, level, int, optname, char *, optval, int, optlen)
5684 {
5685 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5686 }
5687 
5688 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5689 	.func		= bpf_sock_ops_setsockopt,
5690 	.gpl_only	= false,
5691 	.ret_type	= RET_INTEGER,
5692 	.arg1_type	= ARG_PTR_TO_CTX,
5693 	.arg2_type	= ARG_ANYTHING,
5694 	.arg3_type	= ARG_ANYTHING,
5695 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5696 	.arg5_type	= ARG_CONST_SIZE,
5697 };
5698 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5699 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5700 				int optname, const u8 **start)
5701 {
5702 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5703 	const u8 *hdr_start;
5704 	int ret;
5705 
5706 	if (syn_skb) {
5707 		/* sk is a request_sock here */
5708 
5709 		if (optname == TCP_BPF_SYN) {
5710 			hdr_start = syn_skb->data;
5711 			ret = tcp_hdrlen(syn_skb);
5712 		} else if (optname == TCP_BPF_SYN_IP) {
5713 			hdr_start = skb_network_header(syn_skb);
5714 			ret = skb_network_header_len(syn_skb) +
5715 				tcp_hdrlen(syn_skb);
5716 		} else {
5717 			/* optname == TCP_BPF_SYN_MAC */
5718 			hdr_start = skb_mac_header(syn_skb);
5719 			ret = skb_mac_header_len(syn_skb) +
5720 				skb_network_header_len(syn_skb) +
5721 				tcp_hdrlen(syn_skb);
5722 		}
5723 	} else {
5724 		struct sock *sk = bpf_sock->sk;
5725 		struct saved_syn *saved_syn;
5726 
5727 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5728 			/* synack retransmit. bpf_sock->syn_skb will
5729 			 * not be available.  It has to resort to
5730 			 * saved_syn (if it is saved).
5731 			 */
5732 			saved_syn = inet_reqsk(sk)->saved_syn;
5733 		else
5734 			saved_syn = tcp_sk(sk)->saved_syn;
5735 
5736 		if (!saved_syn)
5737 			return -ENOENT;
5738 
5739 		if (optname == TCP_BPF_SYN) {
5740 			hdr_start = saved_syn->data +
5741 				saved_syn->mac_hdrlen +
5742 				saved_syn->network_hdrlen;
5743 			ret = saved_syn->tcp_hdrlen;
5744 		} else if (optname == TCP_BPF_SYN_IP) {
5745 			hdr_start = saved_syn->data +
5746 				saved_syn->mac_hdrlen;
5747 			ret = saved_syn->network_hdrlen +
5748 				saved_syn->tcp_hdrlen;
5749 		} else {
5750 			/* optname == TCP_BPF_SYN_MAC */
5751 
5752 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5753 			if (!saved_syn->mac_hdrlen)
5754 				return -ENOENT;
5755 
5756 			hdr_start = saved_syn->data;
5757 			ret = saved_syn->mac_hdrlen +
5758 				saved_syn->network_hdrlen +
5759 				saved_syn->tcp_hdrlen;
5760 		}
5761 	}
5762 
5763 	*start = hdr_start;
5764 	return ret;
5765 }
5766 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5767 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5768 	   int, level, int, optname, char *, optval, int, optlen)
5769 {
5770 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5771 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5772 		int ret, copy_len = 0;
5773 		const u8 *start;
5774 
5775 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5776 		if (ret > 0) {
5777 			copy_len = ret;
5778 			if (optlen < copy_len) {
5779 				copy_len = optlen;
5780 				ret = -ENOSPC;
5781 			}
5782 
5783 			memcpy(optval, start, copy_len);
5784 		}
5785 
5786 		/* Zero out unused buffer at the end */
5787 		memset(optval + copy_len, 0, optlen - copy_len);
5788 
5789 		return ret;
5790 	}
5791 
5792 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5793 }
5794 
5795 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5796 	.func		= bpf_sock_ops_getsockopt,
5797 	.gpl_only	= false,
5798 	.ret_type	= RET_INTEGER,
5799 	.arg1_type	= ARG_PTR_TO_CTX,
5800 	.arg2_type	= ARG_ANYTHING,
5801 	.arg3_type	= ARG_ANYTHING,
5802 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5803 	.arg5_type	= ARG_CONST_SIZE,
5804 };
5805 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5806 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5807 	   int, argval)
5808 {
5809 	struct sock *sk = bpf_sock->sk;
5810 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5811 
5812 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5813 		return -EINVAL;
5814 
5815 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5816 
5817 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5818 }
5819 
5820 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5821 	.func		= bpf_sock_ops_cb_flags_set,
5822 	.gpl_only	= false,
5823 	.ret_type	= RET_INTEGER,
5824 	.arg1_type	= ARG_PTR_TO_CTX,
5825 	.arg2_type	= ARG_ANYTHING,
5826 };
5827 
5828 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5829 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5830 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5831 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5832 	   int, addr_len)
5833 {
5834 #ifdef CONFIG_INET
5835 	struct sock *sk = ctx->sk;
5836 	u32 flags = BIND_FROM_BPF;
5837 	int err;
5838 
5839 	err = -EINVAL;
5840 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5841 		return err;
5842 	if (addr->sa_family == AF_INET) {
5843 		if (addr_len < sizeof(struct sockaddr_in))
5844 			return err;
5845 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5846 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5847 		return __inet_bind(sk, addr, addr_len, flags);
5848 #if IS_ENABLED(CONFIG_IPV6)
5849 	} else if (addr->sa_family == AF_INET6) {
5850 		if (addr_len < SIN6_LEN_RFC2133)
5851 			return err;
5852 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5853 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5854 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5855 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5856 		 */
5857 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5858 #endif /* CONFIG_IPV6 */
5859 	}
5860 #endif /* CONFIG_INET */
5861 
5862 	return -EAFNOSUPPORT;
5863 }
5864 
5865 static const struct bpf_func_proto bpf_bind_proto = {
5866 	.func		= bpf_bind,
5867 	.gpl_only	= false,
5868 	.ret_type	= RET_INTEGER,
5869 	.arg1_type	= ARG_PTR_TO_CTX,
5870 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5871 	.arg3_type	= ARG_CONST_SIZE,
5872 };
5873 
5874 #ifdef CONFIG_XFRM
5875 
5876 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5877     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5878 
5879 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5880 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5881 
5882 #endif
5883 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5884 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5885 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5886 {
5887 	const struct sec_path *sp = skb_sec_path(skb);
5888 	const struct xfrm_state *x;
5889 
5890 	if (!sp || unlikely(index >= sp->len || flags))
5891 		goto err_clear;
5892 
5893 	x = sp->xvec[index];
5894 
5895 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5896 		goto err_clear;
5897 
5898 	to->reqid = x->props.reqid;
5899 	to->spi = x->id.spi;
5900 	to->family = x->props.family;
5901 	to->ext = 0;
5902 
5903 	if (to->family == AF_INET6) {
5904 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5905 		       sizeof(to->remote_ipv6));
5906 	} else {
5907 		to->remote_ipv4 = x->props.saddr.a4;
5908 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5909 	}
5910 
5911 	return 0;
5912 err_clear:
5913 	memset(to, 0, size);
5914 	return -EINVAL;
5915 }
5916 
5917 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5918 	.func		= bpf_skb_get_xfrm_state,
5919 	.gpl_only	= false,
5920 	.ret_type	= RET_INTEGER,
5921 	.arg1_type	= ARG_PTR_TO_CTX,
5922 	.arg2_type	= ARG_ANYTHING,
5923 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5924 	.arg4_type	= ARG_CONST_SIZE,
5925 	.arg5_type	= ARG_ANYTHING,
5926 };
5927 #endif
5928 
5929 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5930 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5931 {
5932 	params->h_vlan_TCI = 0;
5933 	params->h_vlan_proto = 0;
5934 	if (mtu)
5935 		params->mtu_result = mtu; /* union with tot_len */
5936 
5937 	return 0;
5938 }
5939 #endif
5940 
5941 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5942 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5943 			       u32 flags, bool check_mtu)
5944 {
5945 	struct fib_nh_common *nhc;
5946 	struct in_device *in_dev;
5947 	struct neighbour *neigh;
5948 	struct net_device *dev;
5949 	struct fib_result res;
5950 	struct flowi4 fl4;
5951 	u32 mtu = 0;
5952 	int err;
5953 
5954 	dev = dev_get_by_index_rcu(net, params->ifindex);
5955 	if (unlikely(!dev))
5956 		return -ENODEV;
5957 
5958 	/* verify forwarding is enabled on this interface */
5959 	in_dev = __in_dev_get_rcu(dev);
5960 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5961 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5962 
5963 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5964 		fl4.flowi4_iif = 1;
5965 		fl4.flowi4_oif = params->ifindex;
5966 	} else {
5967 		fl4.flowi4_iif = params->ifindex;
5968 		fl4.flowi4_oif = 0;
5969 	}
5970 	fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
5971 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5972 	fl4.flowi4_flags = 0;
5973 
5974 	fl4.flowi4_proto = params->l4_protocol;
5975 	fl4.daddr = params->ipv4_dst;
5976 	fl4.saddr = params->ipv4_src;
5977 	fl4.fl4_sport = params->sport;
5978 	fl4.fl4_dport = params->dport;
5979 	fl4.flowi4_multipath_hash = 0;
5980 
5981 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5982 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5983 		struct fib_table *tb;
5984 
5985 		if (flags & BPF_FIB_LOOKUP_TBID) {
5986 			tbid = params->tbid;
5987 			/* zero out for vlan output */
5988 			params->tbid = 0;
5989 		}
5990 
5991 		tb = fib_get_table(net, tbid);
5992 		if (unlikely(!tb))
5993 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5994 
5995 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5996 	} else {
5997 		if (flags & BPF_FIB_LOOKUP_MARK)
5998 			fl4.flowi4_mark = params->mark;
5999 		else
6000 			fl4.flowi4_mark = 0;
6001 		fl4.flowi4_secid = 0;
6002 		fl4.flowi4_tun_key.tun_id = 0;
6003 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6004 
6005 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6006 	}
6007 
6008 	if (err) {
6009 		/* map fib lookup errors to RTN_ type */
6010 		if (err == -EINVAL)
6011 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6012 		if (err == -EHOSTUNREACH)
6013 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6014 		if (err == -EACCES)
6015 			return BPF_FIB_LKUP_RET_PROHIBIT;
6016 
6017 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6018 	}
6019 
6020 	if (res.type != RTN_UNICAST)
6021 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6022 
6023 	if (fib_info_num_path(res.fi) > 1)
6024 		fib_select_path(net, &res, &fl4, NULL);
6025 
6026 	if (check_mtu) {
6027 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6028 		if (params->tot_len > mtu) {
6029 			params->mtu_result = mtu; /* union with tot_len */
6030 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6031 		}
6032 	}
6033 
6034 	nhc = res.nhc;
6035 
6036 	/* do not handle lwt encaps right now */
6037 	if (nhc->nhc_lwtstate)
6038 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6039 
6040 	dev = nhc->nhc_dev;
6041 
6042 	params->rt_metric = res.fi->fib_priority;
6043 	params->ifindex = dev->ifindex;
6044 
6045 	if (flags & BPF_FIB_LOOKUP_SRC)
6046 		params->ipv4_src = fib_result_prefsrc(net, &res);
6047 
6048 	/* xdp and cls_bpf programs are run in RCU-bh so
6049 	 * rcu_read_lock_bh is not needed here
6050 	 */
6051 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6052 		if (nhc->nhc_gw_family)
6053 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6054 	} else {
6055 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6056 
6057 		params->family = AF_INET6;
6058 		*dst = nhc->nhc_gw.ipv6;
6059 	}
6060 
6061 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6062 		goto set_fwd_params;
6063 
6064 	if (likely(nhc->nhc_gw_family != AF_INET6))
6065 		neigh = __ipv4_neigh_lookup_noref(dev,
6066 						  (__force u32)params->ipv4_dst);
6067 	else
6068 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6069 
6070 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6071 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6072 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6073 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6074 
6075 set_fwd_params:
6076 	return bpf_fib_set_fwd_params(params, mtu);
6077 }
6078 #endif
6079 
6080 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6081 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6082 			       u32 flags, bool check_mtu)
6083 {
6084 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6085 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6086 	struct fib6_result res = {};
6087 	struct neighbour *neigh;
6088 	struct net_device *dev;
6089 	struct inet6_dev *idev;
6090 	struct flowi6 fl6;
6091 	int strict = 0;
6092 	int oif, err;
6093 	u32 mtu = 0;
6094 
6095 	/* link local addresses are never forwarded */
6096 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6097 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6098 
6099 	dev = dev_get_by_index_rcu(net, params->ifindex);
6100 	if (unlikely(!dev))
6101 		return -ENODEV;
6102 
6103 	idev = __in6_dev_get_safely(dev);
6104 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6105 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6106 
6107 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6108 		fl6.flowi6_iif = 1;
6109 		oif = fl6.flowi6_oif = params->ifindex;
6110 	} else {
6111 		oif = fl6.flowi6_iif = params->ifindex;
6112 		fl6.flowi6_oif = 0;
6113 		strict = RT6_LOOKUP_F_HAS_SADDR;
6114 	}
6115 	fl6.flowlabel = params->flowinfo;
6116 	fl6.flowi6_scope = 0;
6117 	fl6.flowi6_flags = 0;
6118 	fl6.mp_hash = 0;
6119 
6120 	fl6.flowi6_proto = params->l4_protocol;
6121 	fl6.daddr = *dst;
6122 	fl6.saddr = *src;
6123 	fl6.fl6_sport = params->sport;
6124 	fl6.fl6_dport = params->dport;
6125 
6126 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6127 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6128 		struct fib6_table *tb;
6129 
6130 		if (flags & BPF_FIB_LOOKUP_TBID) {
6131 			tbid = params->tbid;
6132 			/* zero out for vlan output */
6133 			params->tbid = 0;
6134 		}
6135 
6136 		tb = ipv6_stub->fib6_get_table(net, tbid);
6137 		if (unlikely(!tb))
6138 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6139 
6140 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6141 						   strict);
6142 	} else {
6143 		if (flags & BPF_FIB_LOOKUP_MARK)
6144 			fl6.flowi6_mark = params->mark;
6145 		else
6146 			fl6.flowi6_mark = 0;
6147 		fl6.flowi6_secid = 0;
6148 		fl6.flowi6_tun_key.tun_id = 0;
6149 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6150 
6151 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6152 	}
6153 
6154 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6155 		     res.f6i == net->ipv6.fib6_null_entry))
6156 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6157 
6158 	switch (res.fib6_type) {
6159 	/* only unicast is forwarded */
6160 	case RTN_UNICAST:
6161 		break;
6162 	case RTN_BLACKHOLE:
6163 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6164 	case RTN_UNREACHABLE:
6165 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6166 	case RTN_PROHIBIT:
6167 		return BPF_FIB_LKUP_RET_PROHIBIT;
6168 	default:
6169 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6170 	}
6171 
6172 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6173 				    fl6.flowi6_oif != 0, NULL, strict);
6174 
6175 	if (check_mtu) {
6176 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6177 		if (params->tot_len > mtu) {
6178 			params->mtu_result = mtu; /* union with tot_len */
6179 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6180 		}
6181 	}
6182 
6183 	if (res.nh->fib_nh_lws)
6184 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6185 
6186 	if (res.nh->fib_nh_gw_family)
6187 		*dst = res.nh->fib_nh_gw6;
6188 
6189 	dev = res.nh->fib_nh_dev;
6190 	params->rt_metric = res.f6i->fib6_metric;
6191 	params->ifindex = dev->ifindex;
6192 
6193 	if (flags & BPF_FIB_LOOKUP_SRC) {
6194 		if (res.f6i->fib6_prefsrc.plen) {
6195 			*src = res.f6i->fib6_prefsrc.addr;
6196 		} else {
6197 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6198 								&fl6.daddr, 0,
6199 								src);
6200 			if (err)
6201 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6202 		}
6203 	}
6204 
6205 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6206 		goto set_fwd_params;
6207 
6208 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6209 	 * not needed here.
6210 	 */
6211 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6212 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6213 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6214 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6215 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6216 
6217 set_fwd_params:
6218 	return bpf_fib_set_fwd_params(params, mtu);
6219 }
6220 #endif
6221 
6222 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6223 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6224 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6225 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6226 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6227 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6228 {
6229 	if (plen < sizeof(*params))
6230 		return -EINVAL;
6231 
6232 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6233 		return -EINVAL;
6234 
6235 	switch (params->family) {
6236 #if IS_ENABLED(CONFIG_INET)
6237 	case AF_INET:
6238 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6239 					   flags, true);
6240 #endif
6241 #if IS_ENABLED(CONFIG_IPV6)
6242 	case AF_INET6:
6243 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6244 					   flags, true);
6245 #endif
6246 	}
6247 	return -EAFNOSUPPORT;
6248 }
6249 
6250 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6251 	.func		= bpf_xdp_fib_lookup,
6252 	.gpl_only	= true,
6253 	.ret_type	= RET_INTEGER,
6254 	.arg1_type      = ARG_PTR_TO_CTX,
6255 	.arg2_type      = ARG_PTR_TO_MEM,
6256 	.arg3_type      = ARG_CONST_SIZE,
6257 	.arg4_type	= ARG_ANYTHING,
6258 };
6259 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6260 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6261 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6262 {
6263 	struct net *net = dev_net(skb->dev);
6264 	int rc = -EAFNOSUPPORT;
6265 	bool check_mtu = false;
6266 
6267 	if (plen < sizeof(*params))
6268 		return -EINVAL;
6269 
6270 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6271 		return -EINVAL;
6272 
6273 	if (params->tot_len)
6274 		check_mtu = true;
6275 
6276 	switch (params->family) {
6277 #if IS_ENABLED(CONFIG_INET)
6278 	case AF_INET:
6279 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6280 		break;
6281 #endif
6282 #if IS_ENABLED(CONFIG_IPV6)
6283 	case AF_INET6:
6284 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6285 		break;
6286 #endif
6287 	}
6288 
6289 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6290 		struct net_device *dev;
6291 
6292 		/* When tot_len isn't provided by user, check skb
6293 		 * against MTU of FIB lookup resulting net_device
6294 		 */
6295 		dev = dev_get_by_index_rcu(net, params->ifindex);
6296 		if (!is_skb_forwardable(dev, skb))
6297 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6298 
6299 		params->mtu_result = dev->mtu; /* union with tot_len */
6300 	}
6301 
6302 	return rc;
6303 }
6304 
6305 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6306 	.func		= bpf_skb_fib_lookup,
6307 	.gpl_only	= true,
6308 	.ret_type	= RET_INTEGER,
6309 	.arg1_type      = ARG_PTR_TO_CTX,
6310 	.arg2_type      = ARG_PTR_TO_MEM,
6311 	.arg3_type      = ARG_CONST_SIZE,
6312 	.arg4_type	= ARG_ANYTHING,
6313 };
6314 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6315 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6316 					    u32 ifindex)
6317 {
6318 	struct net *netns = dev_net(dev_curr);
6319 
6320 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6321 	if (ifindex == 0)
6322 		return dev_curr;
6323 
6324 	return dev_get_by_index_rcu(netns, ifindex);
6325 }
6326 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6327 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6328 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6329 {
6330 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6331 	struct net_device *dev = skb->dev;
6332 	int mtu, dev_len, skb_len;
6333 
6334 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6335 		return -EINVAL;
6336 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6337 		return -EINVAL;
6338 
6339 	dev = __dev_via_ifindex(dev, ifindex);
6340 	if (unlikely(!dev))
6341 		return -ENODEV;
6342 
6343 	mtu = READ_ONCE(dev->mtu);
6344 	dev_len = mtu + dev->hard_header_len;
6345 
6346 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6347 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6348 
6349 	skb_len += len_diff; /* minus result pass check */
6350 	if (skb_len <= dev_len) {
6351 		ret = BPF_MTU_CHK_RET_SUCCESS;
6352 		goto out;
6353 	}
6354 	/* At this point, skb->len exceed MTU, but as it include length of all
6355 	 * segments, it can still be below MTU.  The SKB can possibly get
6356 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6357 	 * must choose if segs are to be MTU checked.
6358 	 */
6359 	if (skb_is_gso(skb)) {
6360 		ret = BPF_MTU_CHK_RET_SUCCESS;
6361 		if (flags & BPF_MTU_CHK_SEGS &&
6362 		    !skb_gso_validate_network_len(skb, mtu))
6363 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6364 	}
6365 out:
6366 	*mtu_len = mtu;
6367 	return ret;
6368 }
6369 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6370 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6371 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6372 {
6373 	struct net_device *dev = xdp->rxq->dev;
6374 	int xdp_len = xdp->data_end - xdp->data;
6375 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6376 	int mtu, dev_len;
6377 
6378 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6379 	if (unlikely(flags))
6380 		return -EINVAL;
6381 
6382 	dev = __dev_via_ifindex(dev, ifindex);
6383 	if (unlikely(!dev))
6384 		return -ENODEV;
6385 
6386 	mtu = READ_ONCE(dev->mtu);
6387 	dev_len = mtu + dev->hard_header_len;
6388 
6389 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6390 	if (*mtu_len)
6391 		xdp_len = *mtu_len + dev->hard_header_len;
6392 
6393 	xdp_len += len_diff; /* minus result pass check */
6394 	if (xdp_len > dev_len)
6395 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6396 
6397 	*mtu_len = mtu;
6398 	return ret;
6399 }
6400 
6401 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6402 	.func		= bpf_skb_check_mtu,
6403 	.gpl_only	= true,
6404 	.ret_type	= RET_INTEGER,
6405 	.arg1_type      = ARG_PTR_TO_CTX,
6406 	.arg2_type      = ARG_ANYTHING,
6407 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6408 	.arg3_size	= sizeof(u32),
6409 	.arg4_type      = ARG_ANYTHING,
6410 	.arg5_type      = ARG_ANYTHING,
6411 };
6412 
6413 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6414 	.func		= bpf_xdp_check_mtu,
6415 	.gpl_only	= true,
6416 	.ret_type	= RET_INTEGER,
6417 	.arg1_type      = ARG_PTR_TO_CTX,
6418 	.arg2_type      = ARG_ANYTHING,
6419 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6420 	.arg3_size	= sizeof(u32),
6421 	.arg4_type      = ARG_ANYTHING,
6422 	.arg5_type      = ARG_ANYTHING,
6423 };
6424 
6425 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6426 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6427 {
6428 	int err;
6429 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6430 
6431 	if (!seg6_validate_srh(srh, len, false))
6432 		return -EINVAL;
6433 
6434 	switch (type) {
6435 	case BPF_LWT_ENCAP_SEG6_INLINE:
6436 		if (skb->protocol != htons(ETH_P_IPV6))
6437 			return -EBADMSG;
6438 
6439 		err = seg6_do_srh_inline(skb, srh);
6440 		break;
6441 	case BPF_LWT_ENCAP_SEG6:
6442 		skb_reset_inner_headers(skb);
6443 		skb->encapsulation = 1;
6444 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6445 		break;
6446 	default:
6447 		return -EINVAL;
6448 	}
6449 
6450 	bpf_compute_data_pointers(skb);
6451 	if (err)
6452 		return err;
6453 
6454 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6455 
6456 	return seg6_lookup_nexthop(skb, NULL, 0);
6457 }
6458 #endif /* CONFIG_IPV6_SEG6_BPF */
6459 
6460 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6461 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6462 			     bool ingress)
6463 {
6464 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6465 }
6466 #endif
6467 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6468 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6469 	   u32, len)
6470 {
6471 	switch (type) {
6472 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6473 	case BPF_LWT_ENCAP_SEG6:
6474 	case BPF_LWT_ENCAP_SEG6_INLINE:
6475 		return bpf_push_seg6_encap(skb, type, hdr, len);
6476 #endif
6477 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6478 	case BPF_LWT_ENCAP_IP:
6479 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6480 #endif
6481 	default:
6482 		return -EINVAL;
6483 	}
6484 }
6485 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6486 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6487 	   void *, hdr, u32, len)
6488 {
6489 	switch (type) {
6490 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6491 	case BPF_LWT_ENCAP_IP:
6492 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6493 #endif
6494 	default:
6495 		return -EINVAL;
6496 	}
6497 }
6498 
6499 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6500 	.func		= bpf_lwt_in_push_encap,
6501 	.gpl_only	= false,
6502 	.ret_type	= RET_INTEGER,
6503 	.arg1_type	= ARG_PTR_TO_CTX,
6504 	.arg2_type	= ARG_ANYTHING,
6505 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6506 	.arg4_type	= ARG_CONST_SIZE
6507 };
6508 
6509 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6510 	.func		= bpf_lwt_xmit_push_encap,
6511 	.gpl_only	= false,
6512 	.ret_type	= RET_INTEGER,
6513 	.arg1_type	= ARG_PTR_TO_CTX,
6514 	.arg2_type	= ARG_ANYTHING,
6515 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6516 	.arg4_type	= ARG_CONST_SIZE
6517 };
6518 
6519 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6520 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6521 	   const void *, from, u32, len)
6522 {
6523 	struct seg6_bpf_srh_state *srh_state =
6524 		this_cpu_ptr(&seg6_bpf_srh_states);
6525 	struct ipv6_sr_hdr *srh = srh_state->srh;
6526 	void *srh_tlvs, *srh_end, *ptr;
6527 	int srhoff = 0;
6528 
6529 	lockdep_assert_held(&srh_state->bh_lock);
6530 	if (srh == NULL)
6531 		return -EINVAL;
6532 
6533 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6534 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6535 
6536 	ptr = skb->data + offset;
6537 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6538 		srh_state->valid = false;
6539 	else if (ptr < (void *)&srh->flags ||
6540 		 ptr + len > (void *)&srh->segments)
6541 		return -EFAULT;
6542 
6543 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6544 		return -EFAULT;
6545 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6546 		return -EINVAL;
6547 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6548 
6549 	memcpy(skb->data + offset, from, len);
6550 	return 0;
6551 }
6552 
6553 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6554 	.func		= bpf_lwt_seg6_store_bytes,
6555 	.gpl_only	= false,
6556 	.ret_type	= RET_INTEGER,
6557 	.arg1_type	= ARG_PTR_TO_CTX,
6558 	.arg2_type	= ARG_ANYTHING,
6559 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6560 	.arg4_type	= ARG_CONST_SIZE
6561 };
6562 
bpf_update_srh_state(struct sk_buff * skb)6563 static void bpf_update_srh_state(struct sk_buff *skb)
6564 {
6565 	struct seg6_bpf_srh_state *srh_state =
6566 		this_cpu_ptr(&seg6_bpf_srh_states);
6567 	int srhoff = 0;
6568 
6569 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6570 		srh_state->srh = NULL;
6571 	} else {
6572 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6573 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6574 		srh_state->valid = true;
6575 	}
6576 }
6577 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6578 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6579 	   u32, action, void *, param, u32, param_len)
6580 {
6581 	struct seg6_bpf_srh_state *srh_state =
6582 		this_cpu_ptr(&seg6_bpf_srh_states);
6583 	int hdroff = 0;
6584 	int err;
6585 
6586 	lockdep_assert_held(&srh_state->bh_lock);
6587 	switch (action) {
6588 	case SEG6_LOCAL_ACTION_END_X:
6589 		if (!seg6_bpf_has_valid_srh(skb))
6590 			return -EBADMSG;
6591 		if (param_len != sizeof(struct in6_addr))
6592 			return -EINVAL;
6593 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6594 	case SEG6_LOCAL_ACTION_END_T:
6595 		if (!seg6_bpf_has_valid_srh(skb))
6596 			return -EBADMSG;
6597 		if (param_len != sizeof(int))
6598 			return -EINVAL;
6599 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6600 	case SEG6_LOCAL_ACTION_END_DT6:
6601 		if (!seg6_bpf_has_valid_srh(skb))
6602 			return -EBADMSG;
6603 		if (param_len != sizeof(int))
6604 			return -EINVAL;
6605 
6606 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6607 			return -EBADMSG;
6608 		if (!pskb_pull(skb, hdroff))
6609 			return -EBADMSG;
6610 
6611 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6612 		skb_reset_network_header(skb);
6613 		skb_reset_transport_header(skb);
6614 		skb->encapsulation = 0;
6615 
6616 		bpf_compute_data_pointers(skb);
6617 		bpf_update_srh_state(skb);
6618 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6619 	case SEG6_LOCAL_ACTION_END_B6:
6620 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6621 			return -EBADMSG;
6622 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6623 					  param, param_len);
6624 		if (!err)
6625 			bpf_update_srh_state(skb);
6626 
6627 		return err;
6628 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6629 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6630 			return -EBADMSG;
6631 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6632 					  param, param_len);
6633 		if (!err)
6634 			bpf_update_srh_state(skb);
6635 
6636 		return err;
6637 	default:
6638 		return -EINVAL;
6639 	}
6640 }
6641 
6642 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6643 	.func		= bpf_lwt_seg6_action,
6644 	.gpl_only	= false,
6645 	.ret_type	= RET_INTEGER,
6646 	.arg1_type	= ARG_PTR_TO_CTX,
6647 	.arg2_type	= ARG_ANYTHING,
6648 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6649 	.arg4_type	= ARG_CONST_SIZE
6650 };
6651 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6652 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6653 	   s32, len)
6654 {
6655 	struct seg6_bpf_srh_state *srh_state =
6656 		this_cpu_ptr(&seg6_bpf_srh_states);
6657 	struct ipv6_sr_hdr *srh = srh_state->srh;
6658 	void *srh_end, *srh_tlvs, *ptr;
6659 	struct ipv6hdr *hdr;
6660 	int srhoff = 0;
6661 	int ret;
6662 
6663 	lockdep_assert_held(&srh_state->bh_lock);
6664 	if (unlikely(srh == NULL))
6665 		return -EINVAL;
6666 
6667 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6668 			((srh->first_segment + 1) << 4));
6669 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6670 			srh_state->hdrlen);
6671 	ptr = skb->data + offset;
6672 
6673 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6674 		return -EFAULT;
6675 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6676 		return -EFAULT;
6677 
6678 	if (len > 0) {
6679 		ret = skb_cow_head(skb, len);
6680 		if (unlikely(ret < 0))
6681 			return ret;
6682 
6683 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6684 	} else {
6685 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6686 	}
6687 
6688 	bpf_compute_data_pointers(skb);
6689 	if (unlikely(ret < 0))
6690 		return ret;
6691 
6692 	hdr = (struct ipv6hdr *)skb->data;
6693 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6694 
6695 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6696 		return -EINVAL;
6697 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6698 	srh_state->hdrlen += len;
6699 	srh_state->valid = false;
6700 	return 0;
6701 }
6702 
6703 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6704 	.func		= bpf_lwt_seg6_adjust_srh,
6705 	.gpl_only	= false,
6706 	.ret_type	= RET_INTEGER,
6707 	.arg1_type	= ARG_PTR_TO_CTX,
6708 	.arg2_type	= ARG_ANYTHING,
6709 	.arg3_type	= ARG_ANYTHING,
6710 };
6711 #endif /* CONFIG_IPV6_SEG6_BPF */
6712 
6713 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6714 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6715 			      int dif, int sdif, u8 family, u8 proto)
6716 {
6717 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6718 	bool refcounted = false;
6719 	struct sock *sk = NULL;
6720 
6721 	if (family == AF_INET) {
6722 		__be32 src4 = tuple->ipv4.saddr;
6723 		__be32 dst4 = tuple->ipv4.daddr;
6724 
6725 		if (proto == IPPROTO_TCP)
6726 			sk = __inet_lookup(net, hinfo, NULL, 0,
6727 					   src4, tuple->ipv4.sport,
6728 					   dst4, tuple->ipv4.dport,
6729 					   dif, sdif, &refcounted);
6730 		else
6731 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6732 					       dst4, tuple->ipv4.dport,
6733 					       dif, sdif, net->ipv4.udp_table, NULL);
6734 #if IS_ENABLED(CONFIG_IPV6)
6735 	} else {
6736 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6737 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6738 
6739 		if (proto == IPPROTO_TCP)
6740 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6741 					    src6, tuple->ipv6.sport,
6742 					    dst6, ntohs(tuple->ipv6.dport),
6743 					    dif, sdif, &refcounted);
6744 		else if (likely(ipv6_bpf_stub))
6745 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6746 							    src6, tuple->ipv6.sport,
6747 							    dst6, tuple->ipv6.dport,
6748 							    dif, sdif,
6749 							    net->ipv4.udp_table, NULL);
6750 #endif
6751 	}
6752 
6753 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6754 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6755 		sk = NULL;
6756 	}
6757 	return sk;
6758 }
6759 
6760 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6761  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6762  */
6763 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6764 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6765 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6766 		 u64 flags, int sdif)
6767 {
6768 	struct sock *sk = NULL;
6769 	struct net *net;
6770 	u8 family;
6771 
6772 	if (len == sizeof(tuple->ipv4))
6773 		family = AF_INET;
6774 	else if (len == sizeof(tuple->ipv6))
6775 		family = AF_INET6;
6776 	else
6777 		return NULL;
6778 
6779 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6780 		goto out;
6781 
6782 	if (sdif < 0) {
6783 		if (family == AF_INET)
6784 			sdif = inet_sdif(skb);
6785 		else
6786 			sdif = inet6_sdif(skb);
6787 	}
6788 
6789 	if ((s32)netns_id < 0) {
6790 		net = caller_net;
6791 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6792 	} else {
6793 		net = get_net_ns_by_id(caller_net, netns_id);
6794 		if (unlikely(!net))
6795 			goto out;
6796 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6797 		put_net(net);
6798 	}
6799 
6800 out:
6801 	return sk;
6802 }
6803 
6804 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6805 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6806 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6807 		u64 flags, int sdif)
6808 {
6809 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6810 					   ifindex, proto, netns_id, flags,
6811 					   sdif);
6812 
6813 	if (sk) {
6814 		struct sock *sk2 = sk_to_full_sk(sk);
6815 
6816 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6817 		 * sock refcnt is decremented to prevent a request_sock leak.
6818 		 */
6819 		if (!sk_fullsock(sk2))
6820 			sk2 = NULL;
6821 		if (sk2 != sk) {
6822 			sock_gen_put(sk);
6823 			/* Ensure there is no need to bump sk2 refcnt */
6824 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6825 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6826 				return NULL;
6827 			}
6828 			sk = sk2;
6829 		}
6830 	}
6831 
6832 	return sk;
6833 }
6834 
6835 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6836 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6837 	       u8 proto, u64 netns_id, u64 flags)
6838 {
6839 	struct net *caller_net;
6840 	int ifindex;
6841 
6842 	if (skb->dev) {
6843 		caller_net = dev_net(skb->dev);
6844 		ifindex = skb->dev->ifindex;
6845 	} else {
6846 		caller_net = sock_net(skb->sk);
6847 		ifindex = 0;
6848 	}
6849 
6850 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6851 				netns_id, flags, -1);
6852 }
6853 
6854 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6855 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6856 	      u8 proto, u64 netns_id, u64 flags)
6857 {
6858 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6859 					 flags);
6860 
6861 	if (sk) {
6862 		struct sock *sk2 = sk_to_full_sk(sk);
6863 
6864 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6865 		 * sock refcnt is decremented to prevent a request_sock leak.
6866 		 */
6867 		if (!sk_fullsock(sk2))
6868 			sk2 = NULL;
6869 		if (sk2 != sk) {
6870 			sock_gen_put(sk);
6871 			/* Ensure there is no need to bump sk2 refcnt */
6872 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6873 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6874 				return NULL;
6875 			}
6876 			sk = sk2;
6877 		}
6878 	}
6879 
6880 	return sk;
6881 }
6882 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6883 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6884 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6885 {
6886 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6887 					     netns_id, flags);
6888 }
6889 
6890 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6891 	.func		= bpf_skc_lookup_tcp,
6892 	.gpl_only	= false,
6893 	.pkt_access	= true,
6894 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6895 	.arg1_type	= ARG_PTR_TO_CTX,
6896 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6897 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6898 	.arg4_type	= ARG_ANYTHING,
6899 	.arg5_type	= ARG_ANYTHING,
6900 };
6901 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6902 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6903 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6904 {
6905 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6906 					    netns_id, flags);
6907 }
6908 
6909 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6910 	.func		= bpf_sk_lookup_tcp,
6911 	.gpl_only	= false,
6912 	.pkt_access	= true,
6913 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6914 	.arg1_type	= ARG_PTR_TO_CTX,
6915 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6916 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6917 	.arg4_type	= ARG_ANYTHING,
6918 	.arg5_type	= ARG_ANYTHING,
6919 };
6920 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6921 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6922 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6923 {
6924 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6925 					    netns_id, flags);
6926 }
6927 
6928 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6929 	.func		= bpf_sk_lookup_udp,
6930 	.gpl_only	= false,
6931 	.pkt_access	= true,
6932 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6933 	.arg1_type	= ARG_PTR_TO_CTX,
6934 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6935 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6936 	.arg4_type	= ARG_ANYTHING,
6937 	.arg5_type	= ARG_ANYTHING,
6938 };
6939 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6940 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6941 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6942 {
6943 	struct net_device *dev = skb->dev;
6944 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6945 	struct net *caller_net = dev_net(dev);
6946 
6947 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6948 					       ifindex, IPPROTO_TCP, netns_id,
6949 					       flags, sdif);
6950 }
6951 
6952 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6953 	.func		= bpf_tc_skc_lookup_tcp,
6954 	.gpl_only	= false,
6955 	.pkt_access	= true,
6956 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6957 	.arg1_type	= ARG_PTR_TO_CTX,
6958 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6959 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6960 	.arg4_type	= ARG_ANYTHING,
6961 	.arg5_type	= ARG_ANYTHING,
6962 };
6963 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6964 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6965 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6966 {
6967 	struct net_device *dev = skb->dev;
6968 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6969 	struct net *caller_net = dev_net(dev);
6970 
6971 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6972 					      ifindex, IPPROTO_TCP, netns_id,
6973 					      flags, sdif);
6974 }
6975 
6976 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6977 	.func		= bpf_tc_sk_lookup_tcp,
6978 	.gpl_only	= false,
6979 	.pkt_access	= true,
6980 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6981 	.arg1_type	= ARG_PTR_TO_CTX,
6982 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6983 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6984 	.arg4_type	= ARG_ANYTHING,
6985 	.arg5_type	= ARG_ANYTHING,
6986 };
6987 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6988 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6989 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6990 {
6991 	struct net_device *dev = skb->dev;
6992 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6993 	struct net *caller_net = dev_net(dev);
6994 
6995 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6996 					      ifindex, IPPROTO_UDP, netns_id,
6997 					      flags, sdif);
6998 }
6999 
7000 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7001 	.func		= bpf_tc_sk_lookup_udp,
7002 	.gpl_only	= false,
7003 	.pkt_access	= true,
7004 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7005 	.arg1_type	= ARG_PTR_TO_CTX,
7006 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7007 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7008 	.arg4_type	= ARG_ANYTHING,
7009 	.arg5_type	= ARG_ANYTHING,
7010 };
7011 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7012 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7013 {
7014 	if (sk && sk_is_refcounted(sk))
7015 		sock_gen_put(sk);
7016 	return 0;
7017 }
7018 
7019 static const struct bpf_func_proto bpf_sk_release_proto = {
7020 	.func		= bpf_sk_release,
7021 	.gpl_only	= false,
7022 	.ret_type	= RET_INTEGER,
7023 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7024 };
7025 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7026 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7027 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7028 {
7029 	struct net_device *dev = ctx->rxq->dev;
7030 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7031 	struct net *caller_net = dev_net(dev);
7032 
7033 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7034 					      ifindex, IPPROTO_UDP, netns_id,
7035 					      flags, sdif);
7036 }
7037 
7038 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7039 	.func           = bpf_xdp_sk_lookup_udp,
7040 	.gpl_only       = false,
7041 	.pkt_access     = true,
7042 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7043 	.arg1_type      = ARG_PTR_TO_CTX,
7044 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7045 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7046 	.arg4_type      = ARG_ANYTHING,
7047 	.arg5_type      = ARG_ANYTHING,
7048 };
7049 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7050 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7051 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7052 {
7053 	struct net_device *dev = ctx->rxq->dev;
7054 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7055 	struct net *caller_net = dev_net(dev);
7056 
7057 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7058 					       ifindex, IPPROTO_TCP, netns_id,
7059 					       flags, sdif);
7060 }
7061 
7062 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7063 	.func           = bpf_xdp_skc_lookup_tcp,
7064 	.gpl_only       = false,
7065 	.pkt_access     = true,
7066 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7067 	.arg1_type      = ARG_PTR_TO_CTX,
7068 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7069 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7070 	.arg4_type      = ARG_ANYTHING,
7071 	.arg5_type      = ARG_ANYTHING,
7072 };
7073 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7074 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7075 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7076 {
7077 	struct net_device *dev = ctx->rxq->dev;
7078 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7079 	struct net *caller_net = dev_net(dev);
7080 
7081 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7082 					      ifindex, IPPROTO_TCP, netns_id,
7083 					      flags, sdif);
7084 }
7085 
7086 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7087 	.func           = bpf_xdp_sk_lookup_tcp,
7088 	.gpl_only       = false,
7089 	.pkt_access     = true,
7090 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7091 	.arg1_type      = ARG_PTR_TO_CTX,
7092 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7093 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7094 	.arg4_type      = ARG_ANYTHING,
7095 	.arg5_type      = ARG_ANYTHING,
7096 };
7097 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7098 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7099 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7100 {
7101 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7102 					       sock_net(ctx->sk), 0,
7103 					       IPPROTO_TCP, netns_id, flags,
7104 					       -1);
7105 }
7106 
7107 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7108 	.func		= bpf_sock_addr_skc_lookup_tcp,
7109 	.gpl_only	= false,
7110 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7111 	.arg1_type	= ARG_PTR_TO_CTX,
7112 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7113 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7114 	.arg4_type	= ARG_ANYTHING,
7115 	.arg5_type	= ARG_ANYTHING,
7116 };
7117 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7118 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7119 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7120 {
7121 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7122 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7123 					      netns_id, flags, -1);
7124 }
7125 
7126 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7127 	.func		= bpf_sock_addr_sk_lookup_tcp,
7128 	.gpl_only	= false,
7129 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7130 	.arg1_type	= ARG_PTR_TO_CTX,
7131 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7132 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7133 	.arg4_type	= ARG_ANYTHING,
7134 	.arg5_type	= ARG_ANYTHING,
7135 };
7136 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7137 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7138 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7139 {
7140 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7141 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7142 					      netns_id, flags, -1);
7143 }
7144 
7145 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7146 	.func		= bpf_sock_addr_sk_lookup_udp,
7147 	.gpl_only	= false,
7148 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7149 	.arg1_type	= ARG_PTR_TO_CTX,
7150 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7151 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7152 	.arg4_type	= ARG_ANYTHING,
7153 	.arg5_type	= ARG_ANYTHING,
7154 };
7155 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7156 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7157 				  struct bpf_insn_access_aux *info)
7158 {
7159 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7160 					  icsk_retransmits))
7161 		return false;
7162 
7163 	if (off % size != 0)
7164 		return false;
7165 
7166 	switch (off) {
7167 	case offsetof(struct bpf_tcp_sock, bytes_received):
7168 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7169 		return size == sizeof(__u64);
7170 	default:
7171 		return size == sizeof(__u32);
7172 	}
7173 }
7174 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7175 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7176 				    const struct bpf_insn *si,
7177 				    struct bpf_insn *insn_buf,
7178 				    struct bpf_prog *prog, u32 *target_size)
7179 {
7180 	struct bpf_insn *insn = insn_buf;
7181 
7182 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7183 	do {								\
7184 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7185 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7186 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7187 				      si->dst_reg, si->src_reg,		\
7188 				      offsetof(struct tcp_sock, FIELD)); \
7189 	} while (0)
7190 
7191 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7192 	do {								\
7193 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7194 					  FIELD) >			\
7195 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7197 					struct inet_connection_sock,	\
7198 					FIELD),				\
7199 				      si->dst_reg, si->src_reg,		\
7200 				      offsetof(				\
7201 					struct inet_connection_sock,	\
7202 					FIELD));			\
7203 	} while (0)
7204 
7205 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7206 
7207 	switch (si->off) {
7208 	case offsetof(struct bpf_tcp_sock, rtt_min):
7209 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7210 			     sizeof(struct minmax));
7211 		BUILD_BUG_ON(sizeof(struct minmax) <
7212 			     sizeof(struct minmax_sample));
7213 
7214 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7215 				      offsetof(struct tcp_sock, rtt_min) +
7216 				      offsetof(struct minmax_sample, v));
7217 		break;
7218 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7219 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7220 		break;
7221 	case offsetof(struct bpf_tcp_sock, srtt_us):
7222 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7223 		break;
7224 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7225 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7226 		break;
7227 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7228 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7229 		break;
7230 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7231 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7232 		break;
7233 	case offsetof(struct bpf_tcp_sock, snd_una):
7234 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7235 		break;
7236 	case offsetof(struct bpf_tcp_sock, mss_cache):
7237 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7238 		break;
7239 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7240 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7241 		break;
7242 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7243 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7244 		break;
7245 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7246 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7247 		break;
7248 	case offsetof(struct bpf_tcp_sock, packets_out):
7249 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7250 		break;
7251 	case offsetof(struct bpf_tcp_sock, retrans_out):
7252 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7253 		break;
7254 	case offsetof(struct bpf_tcp_sock, total_retrans):
7255 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7256 		break;
7257 	case offsetof(struct bpf_tcp_sock, segs_in):
7258 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7259 		break;
7260 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7261 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7262 		break;
7263 	case offsetof(struct bpf_tcp_sock, segs_out):
7264 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7265 		break;
7266 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7267 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7268 		break;
7269 	case offsetof(struct bpf_tcp_sock, lost_out):
7270 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7271 		break;
7272 	case offsetof(struct bpf_tcp_sock, sacked_out):
7273 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7274 		break;
7275 	case offsetof(struct bpf_tcp_sock, bytes_received):
7276 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7277 		break;
7278 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7279 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7280 		break;
7281 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7282 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7283 		break;
7284 	case offsetof(struct bpf_tcp_sock, delivered):
7285 		BPF_TCP_SOCK_GET_COMMON(delivered);
7286 		break;
7287 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7288 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7289 		break;
7290 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7291 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7292 		break;
7293 	}
7294 
7295 	return insn - insn_buf;
7296 }
7297 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7298 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7299 {
7300 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7301 		return (unsigned long)sk;
7302 
7303 	return (unsigned long)NULL;
7304 }
7305 
7306 const struct bpf_func_proto bpf_tcp_sock_proto = {
7307 	.func		= bpf_tcp_sock,
7308 	.gpl_only	= false,
7309 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7310 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7311 };
7312 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7313 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7314 {
7315 	sk = sk_to_full_sk(sk);
7316 
7317 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7318 		return (unsigned long)sk;
7319 
7320 	return (unsigned long)NULL;
7321 }
7322 
7323 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7324 	.func		= bpf_get_listener_sock,
7325 	.gpl_only	= false,
7326 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7327 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7328 };
7329 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7330 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7331 {
7332 	unsigned int iphdr_len;
7333 
7334 	switch (skb_protocol(skb, true)) {
7335 	case cpu_to_be16(ETH_P_IP):
7336 		iphdr_len = sizeof(struct iphdr);
7337 		break;
7338 	case cpu_to_be16(ETH_P_IPV6):
7339 		iphdr_len = sizeof(struct ipv6hdr);
7340 		break;
7341 	default:
7342 		return 0;
7343 	}
7344 
7345 	if (skb_headlen(skb) < iphdr_len)
7346 		return 0;
7347 
7348 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7349 		return 0;
7350 
7351 	return INET_ECN_set_ce(skb);
7352 }
7353 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7354 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7355 				  struct bpf_insn_access_aux *info)
7356 {
7357 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7358 		return false;
7359 
7360 	if (off % size != 0)
7361 		return false;
7362 
7363 	switch (off) {
7364 	default:
7365 		return size == sizeof(__u32);
7366 	}
7367 }
7368 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7369 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7370 				    const struct bpf_insn *si,
7371 				    struct bpf_insn *insn_buf,
7372 				    struct bpf_prog *prog, u32 *target_size)
7373 {
7374 	struct bpf_insn *insn = insn_buf;
7375 
7376 #define BPF_XDP_SOCK_GET(FIELD)						\
7377 	do {								\
7378 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7379 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7380 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7381 				      si->dst_reg, si->src_reg,		\
7382 				      offsetof(struct xdp_sock, FIELD)); \
7383 	} while (0)
7384 
7385 	switch (si->off) {
7386 	case offsetof(struct bpf_xdp_sock, queue_id):
7387 		BPF_XDP_SOCK_GET(queue_id);
7388 		break;
7389 	}
7390 
7391 	return insn - insn_buf;
7392 }
7393 
7394 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7395 	.func           = bpf_skb_ecn_set_ce,
7396 	.gpl_only       = false,
7397 	.ret_type       = RET_INTEGER,
7398 	.arg1_type      = ARG_PTR_TO_CTX,
7399 };
7400 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7401 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7402 	   struct tcphdr *, th, u32, th_len)
7403 {
7404 #ifdef CONFIG_SYN_COOKIES
7405 	int ret;
7406 
7407 	if (unlikely(!sk || th_len < sizeof(*th)))
7408 		return -EINVAL;
7409 
7410 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7411 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7412 		return -EINVAL;
7413 
7414 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7415 		return -EINVAL;
7416 
7417 	if (!th->ack || th->rst || th->syn)
7418 		return -ENOENT;
7419 
7420 	if (unlikely(iph_len < sizeof(struct iphdr)))
7421 		return -EINVAL;
7422 
7423 	if (tcp_synq_no_recent_overflow(sk))
7424 		return -ENOENT;
7425 
7426 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7427 	 * same offset so we can cast to the shorter header (struct iphdr).
7428 	 */
7429 	switch (((struct iphdr *)iph)->version) {
7430 	case 4:
7431 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7432 			return -EINVAL;
7433 
7434 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7435 		break;
7436 
7437 #if IS_BUILTIN(CONFIG_IPV6)
7438 	case 6:
7439 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7440 			return -EINVAL;
7441 
7442 		if (sk->sk_family != AF_INET6)
7443 			return -EINVAL;
7444 
7445 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7446 		break;
7447 #endif /* CONFIG_IPV6 */
7448 
7449 	default:
7450 		return -EPROTONOSUPPORT;
7451 	}
7452 
7453 	if (ret > 0)
7454 		return 0;
7455 
7456 	return -ENOENT;
7457 #else
7458 	return -ENOTSUPP;
7459 #endif
7460 }
7461 
7462 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7463 	.func		= bpf_tcp_check_syncookie,
7464 	.gpl_only	= true,
7465 	.pkt_access	= true,
7466 	.ret_type	= RET_INTEGER,
7467 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7468 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7469 	.arg3_type	= ARG_CONST_SIZE,
7470 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7471 	.arg5_type	= ARG_CONST_SIZE,
7472 };
7473 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7474 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7475 	   struct tcphdr *, th, u32, th_len)
7476 {
7477 #ifdef CONFIG_SYN_COOKIES
7478 	u32 cookie;
7479 	u16 mss;
7480 
7481 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7482 		return -EINVAL;
7483 
7484 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7485 		return -EINVAL;
7486 
7487 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7488 		return -ENOENT;
7489 
7490 	if (!th->syn || th->ack || th->fin || th->rst)
7491 		return -EINVAL;
7492 
7493 	if (unlikely(iph_len < sizeof(struct iphdr)))
7494 		return -EINVAL;
7495 
7496 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7497 	 * same offset so we can cast to the shorter header (struct iphdr).
7498 	 */
7499 	switch (((struct iphdr *)iph)->version) {
7500 	case 4:
7501 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7502 			return -EINVAL;
7503 
7504 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7505 		break;
7506 
7507 #if IS_BUILTIN(CONFIG_IPV6)
7508 	case 6:
7509 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7510 			return -EINVAL;
7511 
7512 		if (sk->sk_family != AF_INET6)
7513 			return -EINVAL;
7514 
7515 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7516 		break;
7517 #endif /* CONFIG_IPV6 */
7518 
7519 	default:
7520 		return -EPROTONOSUPPORT;
7521 	}
7522 	if (mss == 0)
7523 		return -ENOENT;
7524 
7525 	return cookie | ((u64)mss << 32);
7526 #else
7527 	return -EOPNOTSUPP;
7528 #endif /* CONFIG_SYN_COOKIES */
7529 }
7530 
7531 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7532 	.func		= bpf_tcp_gen_syncookie,
7533 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7534 	.pkt_access	= true,
7535 	.ret_type	= RET_INTEGER,
7536 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7537 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7538 	.arg3_type	= ARG_CONST_SIZE,
7539 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7540 	.arg5_type	= ARG_CONST_SIZE,
7541 };
7542 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7543 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7544 {
7545 	if (!sk || flags != 0)
7546 		return -EINVAL;
7547 	if (!skb_at_tc_ingress(skb))
7548 		return -EOPNOTSUPP;
7549 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7550 		return -ENETUNREACH;
7551 	if (sk_unhashed(sk))
7552 		return -EOPNOTSUPP;
7553 	if (sk_is_refcounted(sk) &&
7554 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7555 		return -ENOENT;
7556 
7557 	skb_orphan(skb);
7558 	skb->sk = sk;
7559 	skb->destructor = sock_pfree;
7560 
7561 	return 0;
7562 }
7563 
7564 static const struct bpf_func_proto bpf_sk_assign_proto = {
7565 	.func		= bpf_sk_assign,
7566 	.gpl_only	= false,
7567 	.ret_type	= RET_INTEGER,
7568 	.arg1_type      = ARG_PTR_TO_CTX,
7569 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7570 	.arg3_type	= ARG_ANYTHING,
7571 };
7572 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7573 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7574 				    u8 search_kind, const u8 *magic,
7575 				    u8 magic_len, bool *eol)
7576 {
7577 	u8 kind, kind_len;
7578 
7579 	*eol = false;
7580 
7581 	while (op < opend) {
7582 		kind = op[0];
7583 
7584 		if (kind == TCPOPT_EOL) {
7585 			*eol = true;
7586 			return ERR_PTR(-ENOMSG);
7587 		} else if (kind == TCPOPT_NOP) {
7588 			op++;
7589 			continue;
7590 		}
7591 
7592 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7593 			/* Something is wrong in the received header.
7594 			 * Follow the TCP stack's tcp_parse_options()
7595 			 * and just bail here.
7596 			 */
7597 			return ERR_PTR(-EFAULT);
7598 
7599 		kind_len = op[1];
7600 		if (search_kind == kind) {
7601 			if (!magic_len)
7602 				return op;
7603 
7604 			if (magic_len > kind_len - 2)
7605 				return ERR_PTR(-ENOMSG);
7606 
7607 			if (!memcmp(&op[2], magic, magic_len))
7608 				return op;
7609 		}
7610 
7611 		op += kind_len;
7612 	}
7613 
7614 	return ERR_PTR(-ENOMSG);
7615 }
7616 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7617 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7618 	   void *, search_res, u32, len, u64, flags)
7619 {
7620 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7621 	const u8 *op, *opend, *magic, *search = search_res;
7622 	u8 search_kind, search_len, copy_len, magic_len;
7623 	int ret;
7624 
7625 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7626 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7627 	 * and this helper disallow loading them also.
7628 	 */
7629 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7630 		return -EINVAL;
7631 
7632 	search_kind = search[0];
7633 	search_len = search[1];
7634 
7635 	if (search_len > len || search_kind == TCPOPT_NOP ||
7636 	    search_kind == TCPOPT_EOL)
7637 		return -EINVAL;
7638 
7639 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7640 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7641 		if (search_len != 4 && search_len != 6)
7642 			return -EINVAL;
7643 		magic = &search[2];
7644 		magic_len = search_len - 2;
7645 	} else {
7646 		if (search_len)
7647 			return -EINVAL;
7648 		magic = NULL;
7649 		magic_len = 0;
7650 	}
7651 
7652 	if (load_syn) {
7653 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7654 		if (ret < 0)
7655 			return ret;
7656 
7657 		opend = op + ret;
7658 		op += sizeof(struct tcphdr);
7659 	} else {
7660 		if (!bpf_sock->skb ||
7661 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7662 			/* This bpf_sock->op cannot call this helper */
7663 			return -EPERM;
7664 
7665 		opend = bpf_sock->skb_data_end;
7666 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7667 	}
7668 
7669 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7670 				&eol);
7671 	if (IS_ERR(op))
7672 		return PTR_ERR(op);
7673 
7674 	copy_len = op[1];
7675 	ret = copy_len;
7676 	if (copy_len > len) {
7677 		ret = -ENOSPC;
7678 		copy_len = len;
7679 	}
7680 
7681 	memcpy(search_res, op, copy_len);
7682 	return ret;
7683 }
7684 
7685 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7686 	.func		= bpf_sock_ops_load_hdr_opt,
7687 	.gpl_only	= false,
7688 	.ret_type	= RET_INTEGER,
7689 	.arg1_type	= ARG_PTR_TO_CTX,
7690 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7691 	.arg3_type	= ARG_CONST_SIZE,
7692 	.arg4_type	= ARG_ANYTHING,
7693 };
7694 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7695 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7696 	   const void *, from, u32, len, u64, flags)
7697 {
7698 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7699 	const u8 *op, *new_op, *magic = NULL;
7700 	struct sk_buff *skb;
7701 	bool eol;
7702 
7703 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7704 		return -EPERM;
7705 
7706 	if (len < 2 || flags)
7707 		return -EINVAL;
7708 
7709 	new_op = from;
7710 	new_kind = new_op[0];
7711 	new_kind_len = new_op[1];
7712 
7713 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7714 	    new_kind == TCPOPT_EOL)
7715 		return -EINVAL;
7716 
7717 	if (new_kind_len > bpf_sock->remaining_opt_len)
7718 		return -ENOSPC;
7719 
7720 	/* 253 is another experimental kind */
7721 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7722 		if (new_kind_len < 4)
7723 			return -EINVAL;
7724 		/* Match for the 2 byte magic also.
7725 		 * RFC 6994: the magic could be 2 or 4 bytes.
7726 		 * Hence, matching by 2 byte only is on the
7727 		 * conservative side but it is the right
7728 		 * thing to do for the 'search-for-duplication'
7729 		 * purpose.
7730 		 */
7731 		magic = &new_op[2];
7732 		magic_len = 2;
7733 	}
7734 
7735 	/* Check for duplication */
7736 	skb = bpf_sock->skb;
7737 	op = skb->data + sizeof(struct tcphdr);
7738 	opend = bpf_sock->skb_data_end;
7739 
7740 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7741 				&eol);
7742 	if (!IS_ERR(op))
7743 		return -EEXIST;
7744 
7745 	if (PTR_ERR(op) != -ENOMSG)
7746 		return PTR_ERR(op);
7747 
7748 	if (eol)
7749 		/* The option has been ended.  Treat it as no more
7750 		 * header option can be written.
7751 		 */
7752 		return -ENOSPC;
7753 
7754 	/* No duplication found.  Store the header option. */
7755 	memcpy(opend, from, new_kind_len);
7756 
7757 	bpf_sock->remaining_opt_len -= new_kind_len;
7758 	bpf_sock->skb_data_end += new_kind_len;
7759 
7760 	return 0;
7761 }
7762 
7763 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7764 	.func		= bpf_sock_ops_store_hdr_opt,
7765 	.gpl_only	= false,
7766 	.ret_type	= RET_INTEGER,
7767 	.arg1_type	= ARG_PTR_TO_CTX,
7768 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7769 	.arg3_type	= ARG_CONST_SIZE,
7770 	.arg4_type	= ARG_ANYTHING,
7771 };
7772 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7773 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7774 	   u32, len, u64, flags)
7775 {
7776 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7777 		return -EPERM;
7778 
7779 	if (flags || len < 2)
7780 		return -EINVAL;
7781 
7782 	if (len > bpf_sock->remaining_opt_len)
7783 		return -ENOSPC;
7784 
7785 	bpf_sock->remaining_opt_len -= len;
7786 
7787 	return 0;
7788 }
7789 
7790 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7791 	.func		= bpf_sock_ops_reserve_hdr_opt,
7792 	.gpl_only	= false,
7793 	.ret_type	= RET_INTEGER,
7794 	.arg1_type	= ARG_PTR_TO_CTX,
7795 	.arg2_type	= ARG_ANYTHING,
7796 	.arg3_type	= ARG_ANYTHING,
7797 };
7798 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7799 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7800 	   u64, tstamp, u32, tstamp_type)
7801 {
7802 	/* skb_clear_delivery_time() is done for inet protocol */
7803 	if (skb->protocol != htons(ETH_P_IP) &&
7804 	    skb->protocol != htons(ETH_P_IPV6))
7805 		return -EOPNOTSUPP;
7806 
7807 	switch (tstamp_type) {
7808 	case BPF_SKB_CLOCK_REALTIME:
7809 		skb->tstamp = tstamp;
7810 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7811 		break;
7812 	case BPF_SKB_CLOCK_MONOTONIC:
7813 		if (!tstamp)
7814 			return -EINVAL;
7815 		skb->tstamp = tstamp;
7816 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7817 		break;
7818 	case BPF_SKB_CLOCK_TAI:
7819 		if (!tstamp)
7820 			return -EINVAL;
7821 		skb->tstamp = tstamp;
7822 		skb->tstamp_type = SKB_CLOCK_TAI;
7823 		break;
7824 	default:
7825 		return -EINVAL;
7826 	}
7827 
7828 	return 0;
7829 }
7830 
7831 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7832 	.func           = bpf_skb_set_tstamp,
7833 	.gpl_only       = false,
7834 	.ret_type       = RET_INTEGER,
7835 	.arg1_type      = ARG_PTR_TO_CTX,
7836 	.arg2_type      = ARG_ANYTHING,
7837 	.arg3_type      = ARG_ANYTHING,
7838 };
7839 
7840 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7841 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7842 	   struct tcphdr *, th, u32, th_len)
7843 {
7844 	u32 cookie;
7845 	u16 mss;
7846 
7847 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7848 		return -EINVAL;
7849 
7850 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7851 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7852 
7853 	return cookie | ((u64)mss << 32);
7854 }
7855 
7856 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7857 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7858 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7859 	.pkt_access	= true,
7860 	.ret_type	= RET_INTEGER,
7861 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7862 	.arg1_size	= sizeof(struct iphdr),
7863 	.arg2_type	= ARG_PTR_TO_MEM,
7864 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7865 };
7866 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7867 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7868 	   struct tcphdr *, th, u32, th_len)
7869 {
7870 #if IS_BUILTIN(CONFIG_IPV6)
7871 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7872 		sizeof(struct ipv6hdr);
7873 	u32 cookie;
7874 	u16 mss;
7875 
7876 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7877 		return -EINVAL;
7878 
7879 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7880 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7881 
7882 	return cookie | ((u64)mss << 32);
7883 #else
7884 	return -EPROTONOSUPPORT;
7885 #endif
7886 }
7887 
7888 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7889 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7890 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7891 	.pkt_access	= true,
7892 	.ret_type	= RET_INTEGER,
7893 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7894 	.arg1_size	= sizeof(struct ipv6hdr),
7895 	.arg2_type	= ARG_PTR_TO_MEM,
7896 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7897 };
7898 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7899 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7900 	   struct tcphdr *, th)
7901 {
7902 	if (__cookie_v4_check(iph, th) > 0)
7903 		return 0;
7904 
7905 	return -EACCES;
7906 }
7907 
7908 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7909 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7910 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7911 	.pkt_access	= true,
7912 	.ret_type	= RET_INTEGER,
7913 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7914 	.arg1_size	= sizeof(struct iphdr),
7915 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7916 	.arg2_size	= sizeof(struct tcphdr),
7917 };
7918 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7919 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7920 	   struct tcphdr *, th)
7921 {
7922 #if IS_BUILTIN(CONFIG_IPV6)
7923 	if (__cookie_v6_check(iph, th) > 0)
7924 		return 0;
7925 
7926 	return -EACCES;
7927 #else
7928 	return -EPROTONOSUPPORT;
7929 #endif
7930 }
7931 
7932 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7933 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7934 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7935 	.pkt_access	= true,
7936 	.ret_type	= RET_INTEGER,
7937 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7938 	.arg1_size	= sizeof(struct ipv6hdr),
7939 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7940 	.arg2_size	= sizeof(struct tcphdr),
7941 };
7942 #endif /* CONFIG_SYN_COOKIES */
7943 
7944 #endif /* CONFIG_INET */
7945 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7946 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7947 {
7948 	switch (func_id) {
7949 	case BPF_FUNC_clone_redirect:
7950 	case BPF_FUNC_l3_csum_replace:
7951 	case BPF_FUNC_l4_csum_replace:
7952 	case BPF_FUNC_lwt_push_encap:
7953 	case BPF_FUNC_lwt_seg6_action:
7954 	case BPF_FUNC_lwt_seg6_adjust_srh:
7955 	case BPF_FUNC_lwt_seg6_store_bytes:
7956 	case BPF_FUNC_msg_pop_data:
7957 	case BPF_FUNC_msg_pull_data:
7958 	case BPF_FUNC_msg_push_data:
7959 	case BPF_FUNC_skb_adjust_room:
7960 	case BPF_FUNC_skb_change_head:
7961 	case BPF_FUNC_skb_change_proto:
7962 	case BPF_FUNC_skb_change_tail:
7963 	case BPF_FUNC_skb_pull_data:
7964 	case BPF_FUNC_skb_store_bytes:
7965 	case BPF_FUNC_skb_vlan_pop:
7966 	case BPF_FUNC_skb_vlan_push:
7967 	case BPF_FUNC_store_hdr_opt:
7968 	case BPF_FUNC_xdp_adjust_head:
7969 	case BPF_FUNC_xdp_adjust_meta:
7970 	case BPF_FUNC_xdp_adjust_tail:
7971 	/* tail-called program could call any of the above */
7972 	case BPF_FUNC_tail_call:
7973 		return true;
7974 	default:
7975 		return false;
7976 	}
7977 }
7978 
7979 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7980 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7981 
7982 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7983 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7984 {
7985 	const struct bpf_func_proto *func_proto;
7986 
7987 	func_proto = cgroup_common_func_proto(func_id, prog);
7988 	if (func_proto)
7989 		return func_proto;
7990 
7991 	func_proto = cgroup_current_func_proto(func_id, prog);
7992 	if (func_proto)
7993 		return func_proto;
7994 
7995 	switch (func_id) {
7996 	case BPF_FUNC_get_socket_cookie:
7997 		return &bpf_get_socket_cookie_sock_proto;
7998 	case BPF_FUNC_get_netns_cookie:
7999 		return &bpf_get_netns_cookie_sock_proto;
8000 	case BPF_FUNC_perf_event_output:
8001 		return &bpf_event_output_data_proto;
8002 	case BPF_FUNC_sk_storage_get:
8003 		return &bpf_sk_storage_get_cg_sock_proto;
8004 	case BPF_FUNC_ktime_get_coarse_ns:
8005 		return &bpf_ktime_get_coarse_ns_proto;
8006 	default:
8007 		return bpf_base_func_proto(func_id, prog);
8008 	}
8009 }
8010 
8011 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8012 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8013 {
8014 	const struct bpf_func_proto *func_proto;
8015 
8016 	func_proto = cgroup_common_func_proto(func_id, prog);
8017 	if (func_proto)
8018 		return func_proto;
8019 
8020 	func_proto = cgroup_current_func_proto(func_id, prog);
8021 	if (func_proto)
8022 		return func_proto;
8023 
8024 	switch (func_id) {
8025 	case BPF_FUNC_bind:
8026 		switch (prog->expected_attach_type) {
8027 		case BPF_CGROUP_INET4_CONNECT:
8028 		case BPF_CGROUP_INET6_CONNECT:
8029 			return &bpf_bind_proto;
8030 		default:
8031 			return NULL;
8032 		}
8033 	case BPF_FUNC_get_socket_cookie:
8034 		return &bpf_get_socket_cookie_sock_addr_proto;
8035 	case BPF_FUNC_get_netns_cookie:
8036 		return &bpf_get_netns_cookie_sock_addr_proto;
8037 	case BPF_FUNC_perf_event_output:
8038 		return &bpf_event_output_data_proto;
8039 #ifdef CONFIG_INET
8040 	case BPF_FUNC_sk_lookup_tcp:
8041 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8042 	case BPF_FUNC_sk_lookup_udp:
8043 		return &bpf_sock_addr_sk_lookup_udp_proto;
8044 	case BPF_FUNC_sk_release:
8045 		return &bpf_sk_release_proto;
8046 	case BPF_FUNC_skc_lookup_tcp:
8047 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8048 #endif /* CONFIG_INET */
8049 	case BPF_FUNC_sk_storage_get:
8050 		return &bpf_sk_storage_get_proto;
8051 	case BPF_FUNC_sk_storage_delete:
8052 		return &bpf_sk_storage_delete_proto;
8053 	case BPF_FUNC_setsockopt:
8054 		switch (prog->expected_attach_type) {
8055 		case BPF_CGROUP_INET4_BIND:
8056 		case BPF_CGROUP_INET6_BIND:
8057 		case BPF_CGROUP_INET4_CONNECT:
8058 		case BPF_CGROUP_INET6_CONNECT:
8059 		case BPF_CGROUP_UNIX_CONNECT:
8060 		case BPF_CGROUP_UDP4_RECVMSG:
8061 		case BPF_CGROUP_UDP6_RECVMSG:
8062 		case BPF_CGROUP_UNIX_RECVMSG:
8063 		case BPF_CGROUP_UDP4_SENDMSG:
8064 		case BPF_CGROUP_UDP6_SENDMSG:
8065 		case BPF_CGROUP_UNIX_SENDMSG:
8066 		case BPF_CGROUP_INET4_GETPEERNAME:
8067 		case BPF_CGROUP_INET6_GETPEERNAME:
8068 		case BPF_CGROUP_UNIX_GETPEERNAME:
8069 		case BPF_CGROUP_INET4_GETSOCKNAME:
8070 		case BPF_CGROUP_INET6_GETSOCKNAME:
8071 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8072 			return &bpf_sock_addr_setsockopt_proto;
8073 		default:
8074 			return NULL;
8075 		}
8076 	case BPF_FUNC_getsockopt:
8077 		switch (prog->expected_attach_type) {
8078 		case BPF_CGROUP_INET4_BIND:
8079 		case BPF_CGROUP_INET6_BIND:
8080 		case BPF_CGROUP_INET4_CONNECT:
8081 		case BPF_CGROUP_INET6_CONNECT:
8082 		case BPF_CGROUP_UNIX_CONNECT:
8083 		case BPF_CGROUP_UDP4_RECVMSG:
8084 		case BPF_CGROUP_UDP6_RECVMSG:
8085 		case BPF_CGROUP_UNIX_RECVMSG:
8086 		case BPF_CGROUP_UDP4_SENDMSG:
8087 		case BPF_CGROUP_UDP6_SENDMSG:
8088 		case BPF_CGROUP_UNIX_SENDMSG:
8089 		case BPF_CGROUP_INET4_GETPEERNAME:
8090 		case BPF_CGROUP_INET6_GETPEERNAME:
8091 		case BPF_CGROUP_UNIX_GETPEERNAME:
8092 		case BPF_CGROUP_INET4_GETSOCKNAME:
8093 		case BPF_CGROUP_INET6_GETSOCKNAME:
8094 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8095 			return &bpf_sock_addr_getsockopt_proto;
8096 		default:
8097 			return NULL;
8098 		}
8099 	default:
8100 		return bpf_sk_base_func_proto(func_id, prog);
8101 	}
8102 }
8103 
8104 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8105 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8106 {
8107 	switch (func_id) {
8108 	case BPF_FUNC_skb_load_bytes:
8109 		return &bpf_skb_load_bytes_proto;
8110 	case BPF_FUNC_skb_load_bytes_relative:
8111 		return &bpf_skb_load_bytes_relative_proto;
8112 	case BPF_FUNC_get_socket_cookie:
8113 		return &bpf_get_socket_cookie_proto;
8114 	case BPF_FUNC_get_socket_uid:
8115 		return &bpf_get_socket_uid_proto;
8116 	case BPF_FUNC_perf_event_output:
8117 		return &bpf_skb_event_output_proto;
8118 	default:
8119 		return bpf_sk_base_func_proto(func_id, prog);
8120 	}
8121 }
8122 
8123 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8124 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8125 
8126 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8127 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8128 {
8129 	const struct bpf_func_proto *func_proto;
8130 
8131 	func_proto = cgroup_common_func_proto(func_id, prog);
8132 	if (func_proto)
8133 		return func_proto;
8134 
8135 	switch (func_id) {
8136 	case BPF_FUNC_sk_fullsock:
8137 		return &bpf_sk_fullsock_proto;
8138 	case BPF_FUNC_sk_storage_get:
8139 		return &bpf_sk_storage_get_proto;
8140 	case BPF_FUNC_sk_storage_delete:
8141 		return &bpf_sk_storage_delete_proto;
8142 	case BPF_FUNC_perf_event_output:
8143 		return &bpf_skb_event_output_proto;
8144 #ifdef CONFIG_SOCK_CGROUP_DATA
8145 	case BPF_FUNC_skb_cgroup_id:
8146 		return &bpf_skb_cgroup_id_proto;
8147 	case BPF_FUNC_skb_ancestor_cgroup_id:
8148 		return &bpf_skb_ancestor_cgroup_id_proto;
8149 	case BPF_FUNC_sk_cgroup_id:
8150 		return &bpf_sk_cgroup_id_proto;
8151 	case BPF_FUNC_sk_ancestor_cgroup_id:
8152 		return &bpf_sk_ancestor_cgroup_id_proto;
8153 #endif
8154 #ifdef CONFIG_INET
8155 	case BPF_FUNC_sk_lookup_tcp:
8156 		return &bpf_sk_lookup_tcp_proto;
8157 	case BPF_FUNC_sk_lookup_udp:
8158 		return &bpf_sk_lookup_udp_proto;
8159 	case BPF_FUNC_sk_release:
8160 		return &bpf_sk_release_proto;
8161 	case BPF_FUNC_skc_lookup_tcp:
8162 		return &bpf_skc_lookup_tcp_proto;
8163 	case BPF_FUNC_tcp_sock:
8164 		return &bpf_tcp_sock_proto;
8165 	case BPF_FUNC_get_listener_sock:
8166 		return &bpf_get_listener_sock_proto;
8167 	case BPF_FUNC_skb_ecn_set_ce:
8168 		return &bpf_skb_ecn_set_ce_proto;
8169 #endif
8170 	default:
8171 		return sk_filter_func_proto(func_id, prog);
8172 	}
8173 }
8174 
8175 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8176 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8177 {
8178 	switch (func_id) {
8179 	case BPF_FUNC_skb_store_bytes:
8180 		return &bpf_skb_store_bytes_proto;
8181 	case BPF_FUNC_skb_load_bytes:
8182 		return &bpf_skb_load_bytes_proto;
8183 	case BPF_FUNC_skb_load_bytes_relative:
8184 		return &bpf_skb_load_bytes_relative_proto;
8185 	case BPF_FUNC_skb_pull_data:
8186 		return &bpf_skb_pull_data_proto;
8187 	case BPF_FUNC_csum_diff:
8188 		return &bpf_csum_diff_proto;
8189 	case BPF_FUNC_csum_update:
8190 		return &bpf_csum_update_proto;
8191 	case BPF_FUNC_csum_level:
8192 		return &bpf_csum_level_proto;
8193 	case BPF_FUNC_l3_csum_replace:
8194 		return &bpf_l3_csum_replace_proto;
8195 	case BPF_FUNC_l4_csum_replace:
8196 		return &bpf_l4_csum_replace_proto;
8197 	case BPF_FUNC_clone_redirect:
8198 		return &bpf_clone_redirect_proto;
8199 	case BPF_FUNC_get_cgroup_classid:
8200 		return &bpf_get_cgroup_classid_proto;
8201 	case BPF_FUNC_skb_vlan_push:
8202 		return &bpf_skb_vlan_push_proto;
8203 	case BPF_FUNC_skb_vlan_pop:
8204 		return &bpf_skb_vlan_pop_proto;
8205 	case BPF_FUNC_skb_change_proto:
8206 		return &bpf_skb_change_proto_proto;
8207 	case BPF_FUNC_skb_change_type:
8208 		return &bpf_skb_change_type_proto;
8209 	case BPF_FUNC_skb_adjust_room:
8210 		return &bpf_skb_adjust_room_proto;
8211 	case BPF_FUNC_skb_change_tail:
8212 		return &bpf_skb_change_tail_proto;
8213 	case BPF_FUNC_skb_change_head:
8214 		return &bpf_skb_change_head_proto;
8215 	case BPF_FUNC_skb_get_tunnel_key:
8216 		return &bpf_skb_get_tunnel_key_proto;
8217 	case BPF_FUNC_skb_set_tunnel_key:
8218 		return bpf_get_skb_set_tunnel_proto(func_id);
8219 	case BPF_FUNC_skb_get_tunnel_opt:
8220 		return &bpf_skb_get_tunnel_opt_proto;
8221 	case BPF_FUNC_skb_set_tunnel_opt:
8222 		return bpf_get_skb_set_tunnel_proto(func_id);
8223 	case BPF_FUNC_redirect:
8224 		return &bpf_redirect_proto;
8225 	case BPF_FUNC_redirect_neigh:
8226 		return &bpf_redirect_neigh_proto;
8227 	case BPF_FUNC_redirect_peer:
8228 		return &bpf_redirect_peer_proto;
8229 	case BPF_FUNC_get_route_realm:
8230 		return &bpf_get_route_realm_proto;
8231 	case BPF_FUNC_get_hash_recalc:
8232 		return &bpf_get_hash_recalc_proto;
8233 	case BPF_FUNC_set_hash_invalid:
8234 		return &bpf_set_hash_invalid_proto;
8235 	case BPF_FUNC_set_hash:
8236 		return &bpf_set_hash_proto;
8237 	case BPF_FUNC_perf_event_output:
8238 		return &bpf_skb_event_output_proto;
8239 	case BPF_FUNC_get_smp_processor_id:
8240 		return &bpf_get_smp_processor_id_proto;
8241 	case BPF_FUNC_skb_under_cgroup:
8242 		return &bpf_skb_under_cgroup_proto;
8243 	case BPF_FUNC_get_socket_cookie:
8244 		return &bpf_get_socket_cookie_proto;
8245 	case BPF_FUNC_get_socket_uid:
8246 		return &bpf_get_socket_uid_proto;
8247 	case BPF_FUNC_fib_lookup:
8248 		return &bpf_skb_fib_lookup_proto;
8249 	case BPF_FUNC_check_mtu:
8250 		return &bpf_skb_check_mtu_proto;
8251 	case BPF_FUNC_sk_fullsock:
8252 		return &bpf_sk_fullsock_proto;
8253 	case BPF_FUNC_sk_storage_get:
8254 		return &bpf_sk_storage_get_proto;
8255 	case BPF_FUNC_sk_storage_delete:
8256 		return &bpf_sk_storage_delete_proto;
8257 #ifdef CONFIG_XFRM
8258 	case BPF_FUNC_skb_get_xfrm_state:
8259 		return &bpf_skb_get_xfrm_state_proto;
8260 #endif
8261 #ifdef CONFIG_CGROUP_NET_CLASSID
8262 	case BPF_FUNC_skb_cgroup_classid:
8263 		return &bpf_skb_cgroup_classid_proto;
8264 #endif
8265 #ifdef CONFIG_SOCK_CGROUP_DATA
8266 	case BPF_FUNC_skb_cgroup_id:
8267 		return &bpf_skb_cgroup_id_proto;
8268 	case BPF_FUNC_skb_ancestor_cgroup_id:
8269 		return &bpf_skb_ancestor_cgroup_id_proto;
8270 #endif
8271 #ifdef CONFIG_INET
8272 	case BPF_FUNC_sk_lookup_tcp:
8273 		return &bpf_tc_sk_lookup_tcp_proto;
8274 	case BPF_FUNC_sk_lookup_udp:
8275 		return &bpf_tc_sk_lookup_udp_proto;
8276 	case BPF_FUNC_sk_release:
8277 		return &bpf_sk_release_proto;
8278 	case BPF_FUNC_tcp_sock:
8279 		return &bpf_tcp_sock_proto;
8280 	case BPF_FUNC_get_listener_sock:
8281 		return &bpf_get_listener_sock_proto;
8282 	case BPF_FUNC_skc_lookup_tcp:
8283 		return &bpf_tc_skc_lookup_tcp_proto;
8284 	case BPF_FUNC_tcp_check_syncookie:
8285 		return &bpf_tcp_check_syncookie_proto;
8286 	case BPF_FUNC_skb_ecn_set_ce:
8287 		return &bpf_skb_ecn_set_ce_proto;
8288 	case BPF_FUNC_tcp_gen_syncookie:
8289 		return &bpf_tcp_gen_syncookie_proto;
8290 	case BPF_FUNC_sk_assign:
8291 		return &bpf_sk_assign_proto;
8292 	case BPF_FUNC_skb_set_tstamp:
8293 		return &bpf_skb_set_tstamp_proto;
8294 #ifdef CONFIG_SYN_COOKIES
8295 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8296 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8297 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8298 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8299 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8300 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8301 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8302 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8303 #endif
8304 #endif
8305 	default:
8306 		return bpf_sk_base_func_proto(func_id, prog);
8307 	}
8308 }
8309 
8310 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8311 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8312 {
8313 	switch (func_id) {
8314 	case BPF_FUNC_perf_event_output:
8315 		return &bpf_xdp_event_output_proto;
8316 	case BPF_FUNC_get_smp_processor_id:
8317 		return &bpf_get_smp_processor_id_proto;
8318 	case BPF_FUNC_csum_diff:
8319 		return &bpf_csum_diff_proto;
8320 	case BPF_FUNC_xdp_adjust_head:
8321 		return &bpf_xdp_adjust_head_proto;
8322 	case BPF_FUNC_xdp_adjust_meta:
8323 		return &bpf_xdp_adjust_meta_proto;
8324 	case BPF_FUNC_redirect:
8325 		return &bpf_xdp_redirect_proto;
8326 	case BPF_FUNC_redirect_map:
8327 		return &bpf_xdp_redirect_map_proto;
8328 	case BPF_FUNC_xdp_adjust_tail:
8329 		return &bpf_xdp_adjust_tail_proto;
8330 	case BPF_FUNC_xdp_get_buff_len:
8331 		return &bpf_xdp_get_buff_len_proto;
8332 	case BPF_FUNC_xdp_load_bytes:
8333 		return &bpf_xdp_load_bytes_proto;
8334 	case BPF_FUNC_xdp_store_bytes:
8335 		return &bpf_xdp_store_bytes_proto;
8336 	case BPF_FUNC_fib_lookup:
8337 		return &bpf_xdp_fib_lookup_proto;
8338 	case BPF_FUNC_check_mtu:
8339 		return &bpf_xdp_check_mtu_proto;
8340 #ifdef CONFIG_INET
8341 	case BPF_FUNC_sk_lookup_udp:
8342 		return &bpf_xdp_sk_lookup_udp_proto;
8343 	case BPF_FUNC_sk_lookup_tcp:
8344 		return &bpf_xdp_sk_lookup_tcp_proto;
8345 	case BPF_FUNC_sk_release:
8346 		return &bpf_sk_release_proto;
8347 	case BPF_FUNC_skc_lookup_tcp:
8348 		return &bpf_xdp_skc_lookup_tcp_proto;
8349 	case BPF_FUNC_tcp_check_syncookie:
8350 		return &bpf_tcp_check_syncookie_proto;
8351 	case BPF_FUNC_tcp_gen_syncookie:
8352 		return &bpf_tcp_gen_syncookie_proto;
8353 #ifdef CONFIG_SYN_COOKIES
8354 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8355 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8356 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8357 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8358 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8359 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8360 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8361 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8362 #endif
8363 #endif
8364 	default:
8365 		return bpf_sk_base_func_proto(func_id, prog);
8366 	}
8367 
8368 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8369 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8370 	 * kfuncs are defined in two different modules, and we want to be able
8371 	 * to use them interchangeably with the same BTF type ID. Because modules
8372 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8373 	 * referenced in the vmlinux BTF or the verifier will get confused about
8374 	 * the different types. So we add this dummy type reference which will
8375 	 * be included in vmlinux BTF, allowing both modules to refer to the
8376 	 * same type ID.
8377 	 */
8378 	BTF_TYPE_EMIT(struct nf_conn___init);
8379 #endif
8380 }
8381 
8382 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8383 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8384 
8385 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8386 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8387 {
8388 	const struct bpf_func_proto *func_proto;
8389 
8390 	func_proto = cgroup_common_func_proto(func_id, prog);
8391 	if (func_proto)
8392 		return func_proto;
8393 
8394 	switch (func_id) {
8395 	case BPF_FUNC_setsockopt:
8396 		return &bpf_sock_ops_setsockopt_proto;
8397 	case BPF_FUNC_getsockopt:
8398 		return &bpf_sock_ops_getsockopt_proto;
8399 	case BPF_FUNC_sock_ops_cb_flags_set:
8400 		return &bpf_sock_ops_cb_flags_set_proto;
8401 	case BPF_FUNC_sock_map_update:
8402 		return &bpf_sock_map_update_proto;
8403 	case BPF_FUNC_sock_hash_update:
8404 		return &bpf_sock_hash_update_proto;
8405 	case BPF_FUNC_get_socket_cookie:
8406 		return &bpf_get_socket_cookie_sock_ops_proto;
8407 	case BPF_FUNC_perf_event_output:
8408 		return &bpf_event_output_data_proto;
8409 	case BPF_FUNC_sk_storage_get:
8410 		return &bpf_sk_storage_get_proto;
8411 	case BPF_FUNC_sk_storage_delete:
8412 		return &bpf_sk_storage_delete_proto;
8413 	case BPF_FUNC_get_netns_cookie:
8414 		return &bpf_get_netns_cookie_sock_ops_proto;
8415 #ifdef CONFIG_INET
8416 	case BPF_FUNC_load_hdr_opt:
8417 		return &bpf_sock_ops_load_hdr_opt_proto;
8418 	case BPF_FUNC_store_hdr_opt:
8419 		return &bpf_sock_ops_store_hdr_opt_proto;
8420 	case BPF_FUNC_reserve_hdr_opt:
8421 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8422 	case BPF_FUNC_tcp_sock:
8423 		return &bpf_tcp_sock_proto;
8424 #endif /* CONFIG_INET */
8425 	default:
8426 		return bpf_sk_base_func_proto(func_id, prog);
8427 	}
8428 }
8429 
8430 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8431 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8432 
8433 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8434 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8435 {
8436 	switch (func_id) {
8437 	case BPF_FUNC_msg_redirect_map:
8438 		return &bpf_msg_redirect_map_proto;
8439 	case BPF_FUNC_msg_redirect_hash:
8440 		return &bpf_msg_redirect_hash_proto;
8441 	case BPF_FUNC_msg_apply_bytes:
8442 		return &bpf_msg_apply_bytes_proto;
8443 	case BPF_FUNC_msg_cork_bytes:
8444 		return &bpf_msg_cork_bytes_proto;
8445 	case BPF_FUNC_msg_pull_data:
8446 		return &bpf_msg_pull_data_proto;
8447 	case BPF_FUNC_msg_push_data:
8448 		return &bpf_msg_push_data_proto;
8449 	case BPF_FUNC_msg_pop_data:
8450 		return &bpf_msg_pop_data_proto;
8451 	case BPF_FUNC_perf_event_output:
8452 		return &bpf_event_output_data_proto;
8453 	case BPF_FUNC_get_current_uid_gid:
8454 		return &bpf_get_current_uid_gid_proto;
8455 	case BPF_FUNC_sk_storage_get:
8456 		return &bpf_sk_storage_get_proto;
8457 	case BPF_FUNC_sk_storage_delete:
8458 		return &bpf_sk_storage_delete_proto;
8459 	case BPF_FUNC_get_netns_cookie:
8460 		return &bpf_get_netns_cookie_sk_msg_proto;
8461 #ifdef CONFIG_CGROUP_NET_CLASSID
8462 	case BPF_FUNC_get_cgroup_classid:
8463 		return &bpf_get_cgroup_classid_curr_proto;
8464 #endif
8465 	default:
8466 		return bpf_sk_base_func_proto(func_id, prog);
8467 	}
8468 }
8469 
8470 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8471 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8472 
8473 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8474 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8475 {
8476 	switch (func_id) {
8477 	case BPF_FUNC_skb_store_bytes:
8478 		return &bpf_skb_store_bytes_proto;
8479 	case BPF_FUNC_skb_load_bytes:
8480 		return &bpf_skb_load_bytes_proto;
8481 	case BPF_FUNC_skb_pull_data:
8482 		return &sk_skb_pull_data_proto;
8483 	case BPF_FUNC_skb_change_tail:
8484 		return &sk_skb_change_tail_proto;
8485 	case BPF_FUNC_skb_change_head:
8486 		return &sk_skb_change_head_proto;
8487 	case BPF_FUNC_skb_adjust_room:
8488 		return &sk_skb_adjust_room_proto;
8489 	case BPF_FUNC_get_socket_cookie:
8490 		return &bpf_get_socket_cookie_proto;
8491 	case BPF_FUNC_get_socket_uid:
8492 		return &bpf_get_socket_uid_proto;
8493 	case BPF_FUNC_sk_redirect_map:
8494 		return &bpf_sk_redirect_map_proto;
8495 	case BPF_FUNC_sk_redirect_hash:
8496 		return &bpf_sk_redirect_hash_proto;
8497 	case BPF_FUNC_perf_event_output:
8498 		return &bpf_skb_event_output_proto;
8499 #ifdef CONFIG_INET
8500 	case BPF_FUNC_sk_lookup_tcp:
8501 		return &bpf_sk_lookup_tcp_proto;
8502 	case BPF_FUNC_sk_lookup_udp:
8503 		return &bpf_sk_lookup_udp_proto;
8504 	case BPF_FUNC_sk_release:
8505 		return &bpf_sk_release_proto;
8506 	case BPF_FUNC_skc_lookup_tcp:
8507 		return &bpf_skc_lookup_tcp_proto;
8508 #endif
8509 	default:
8510 		return bpf_sk_base_func_proto(func_id, prog);
8511 	}
8512 }
8513 
8514 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8515 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8516 {
8517 	switch (func_id) {
8518 	case BPF_FUNC_skb_load_bytes:
8519 		return &bpf_flow_dissector_load_bytes_proto;
8520 	default:
8521 		return bpf_sk_base_func_proto(func_id, prog);
8522 	}
8523 }
8524 
8525 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8526 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8527 {
8528 	switch (func_id) {
8529 	case BPF_FUNC_skb_load_bytes:
8530 		return &bpf_skb_load_bytes_proto;
8531 	case BPF_FUNC_skb_pull_data:
8532 		return &bpf_skb_pull_data_proto;
8533 	case BPF_FUNC_csum_diff:
8534 		return &bpf_csum_diff_proto;
8535 	case BPF_FUNC_get_cgroup_classid:
8536 		return &bpf_get_cgroup_classid_proto;
8537 	case BPF_FUNC_get_route_realm:
8538 		return &bpf_get_route_realm_proto;
8539 	case BPF_FUNC_get_hash_recalc:
8540 		return &bpf_get_hash_recalc_proto;
8541 	case BPF_FUNC_perf_event_output:
8542 		return &bpf_skb_event_output_proto;
8543 	case BPF_FUNC_get_smp_processor_id:
8544 		return &bpf_get_smp_processor_id_proto;
8545 	case BPF_FUNC_skb_under_cgroup:
8546 		return &bpf_skb_under_cgroup_proto;
8547 	default:
8548 		return bpf_sk_base_func_proto(func_id, prog);
8549 	}
8550 }
8551 
8552 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8553 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8554 {
8555 	switch (func_id) {
8556 	case BPF_FUNC_lwt_push_encap:
8557 		return &bpf_lwt_in_push_encap_proto;
8558 	default:
8559 		return lwt_out_func_proto(func_id, prog);
8560 	}
8561 }
8562 
8563 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8564 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8565 {
8566 	switch (func_id) {
8567 	case BPF_FUNC_skb_get_tunnel_key:
8568 		return &bpf_skb_get_tunnel_key_proto;
8569 	case BPF_FUNC_skb_set_tunnel_key:
8570 		return bpf_get_skb_set_tunnel_proto(func_id);
8571 	case BPF_FUNC_skb_get_tunnel_opt:
8572 		return &bpf_skb_get_tunnel_opt_proto;
8573 	case BPF_FUNC_skb_set_tunnel_opt:
8574 		return bpf_get_skb_set_tunnel_proto(func_id);
8575 	case BPF_FUNC_redirect:
8576 		return &bpf_redirect_proto;
8577 	case BPF_FUNC_clone_redirect:
8578 		return &bpf_clone_redirect_proto;
8579 	case BPF_FUNC_skb_change_tail:
8580 		return &bpf_skb_change_tail_proto;
8581 	case BPF_FUNC_skb_change_head:
8582 		return &bpf_skb_change_head_proto;
8583 	case BPF_FUNC_skb_store_bytes:
8584 		return &bpf_skb_store_bytes_proto;
8585 	case BPF_FUNC_csum_update:
8586 		return &bpf_csum_update_proto;
8587 	case BPF_FUNC_csum_level:
8588 		return &bpf_csum_level_proto;
8589 	case BPF_FUNC_l3_csum_replace:
8590 		return &bpf_l3_csum_replace_proto;
8591 	case BPF_FUNC_l4_csum_replace:
8592 		return &bpf_l4_csum_replace_proto;
8593 	case BPF_FUNC_set_hash_invalid:
8594 		return &bpf_set_hash_invalid_proto;
8595 	case BPF_FUNC_lwt_push_encap:
8596 		return &bpf_lwt_xmit_push_encap_proto;
8597 	default:
8598 		return lwt_out_func_proto(func_id, prog);
8599 	}
8600 }
8601 
8602 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8603 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8604 {
8605 	switch (func_id) {
8606 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8607 	case BPF_FUNC_lwt_seg6_store_bytes:
8608 		return &bpf_lwt_seg6_store_bytes_proto;
8609 	case BPF_FUNC_lwt_seg6_action:
8610 		return &bpf_lwt_seg6_action_proto;
8611 	case BPF_FUNC_lwt_seg6_adjust_srh:
8612 		return &bpf_lwt_seg6_adjust_srh_proto;
8613 #endif
8614 	default:
8615 		return lwt_out_func_proto(func_id, prog);
8616 	}
8617 }
8618 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8619 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8620 				    const struct bpf_prog *prog,
8621 				    struct bpf_insn_access_aux *info)
8622 {
8623 	const int size_default = sizeof(__u32);
8624 
8625 	if (off < 0 || off >= sizeof(struct __sk_buff))
8626 		return false;
8627 
8628 	/* The verifier guarantees that size > 0. */
8629 	if (off % size != 0)
8630 		return false;
8631 
8632 	switch (off) {
8633 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8634 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8635 			return false;
8636 		break;
8637 	case bpf_ctx_range(struct __sk_buff, data):
8638 	case bpf_ctx_range(struct __sk_buff, data_meta):
8639 	case bpf_ctx_range(struct __sk_buff, data_end):
8640 		if (info->is_ldsx || size != size_default)
8641 			return false;
8642 		break;
8643 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8644 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8645 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8646 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8647 		if (size != size_default)
8648 			return false;
8649 		break;
8650 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8651 		return false;
8652 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8653 		if (type == BPF_WRITE || size != sizeof(__u64))
8654 			return false;
8655 		break;
8656 	case bpf_ctx_range(struct __sk_buff, tstamp):
8657 		if (size != sizeof(__u64))
8658 			return false;
8659 		break;
8660 	case offsetof(struct __sk_buff, sk):
8661 		if (type == BPF_WRITE || size != sizeof(__u64))
8662 			return false;
8663 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8664 		break;
8665 	case offsetof(struct __sk_buff, tstamp_type):
8666 		return false;
8667 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8668 		/* Explicitly prohibit access to padding in __sk_buff. */
8669 		return false;
8670 	default:
8671 		/* Only narrow read access allowed for now. */
8672 		if (type == BPF_WRITE) {
8673 			if (size != size_default)
8674 				return false;
8675 		} else {
8676 			bpf_ctx_record_field_size(info, size_default);
8677 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8678 				return false;
8679 		}
8680 	}
8681 
8682 	return true;
8683 }
8684 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8685 static bool sk_filter_is_valid_access(int off, int size,
8686 				      enum bpf_access_type type,
8687 				      const struct bpf_prog *prog,
8688 				      struct bpf_insn_access_aux *info)
8689 {
8690 	switch (off) {
8691 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8692 	case bpf_ctx_range(struct __sk_buff, data):
8693 	case bpf_ctx_range(struct __sk_buff, data_meta):
8694 	case bpf_ctx_range(struct __sk_buff, data_end):
8695 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8696 	case bpf_ctx_range(struct __sk_buff, tstamp):
8697 	case bpf_ctx_range(struct __sk_buff, wire_len):
8698 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8699 		return false;
8700 	}
8701 
8702 	if (type == BPF_WRITE) {
8703 		switch (off) {
8704 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8705 			break;
8706 		default:
8707 			return false;
8708 		}
8709 	}
8710 
8711 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8712 }
8713 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8714 static bool cg_skb_is_valid_access(int off, int size,
8715 				   enum bpf_access_type type,
8716 				   const struct bpf_prog *prog,
8717 				   struct bpf_insn_access_aux *info)
8718 {
8719 	switch (off) {
8720 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8721 	case bpf_ctx_range(struct __sk_buff, data_meta):
8722 	case bpf_ctx_range(struct __sk_buff, wire_len):
8723 		return false;
8724 	case bpf_ctx_range(struct __sk_buff, data):
8725 	case bpf_ctx_range(struct __sk_buff, data_end):
8726 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8727 			return false;
8728 		break;
8729 	}
8730 
8731 	if (type == BPF_WRITE) {
8732 		switch (off) {
8733 		case bpf_ctx_range(struct __sk_buff, mark):
8734 		case bpf_ctx_range(struct __sk_buff, priority):
8735 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8736 			break;
8737 		case bpf_ctx_range(struct __sk_buff, tstamp):
8738 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8739 				return false;
8740 			break;
8741 		default:
8742 			return false;
8743 		}
8744 	}
8745 
8746 	switch (off) {
8747 	case bpf_ctx_range(struct __sk_buff, data):
8748 		info->reg_type = PTR_TO_PACKET;
8749 		break;
8750 	case bpf_ctx_range(struct __sk_buff, data_end):
8751 		info->reg_type = PTR_TO_PACKET_END;
8752 		break;
8753 	}
8754 
8755 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8756 }
8757 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8758 static bool lwt_is_valid_access(int off, int size,
8759 				enum bpf_access_type type,
8760 				const struct bpf_prog *prog,
8761 				struct bpf_insn_access_aux *info)
8762 {
8763 	switch (off) {
8764 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8765 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8766 	case bpf_ctx_range(struct __sk_buff, data_meta):
8767 	case bpf_ctx_range(struct __sk_buff, tstamp):
8768 	case bpf_ctx_range(struct __sk_buff, wire_len):
8769 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8770 		return false;
8771 	}
8772 
8773 	if (type == BPF_WRITE) {
8774 		switch (off) {
8775 		case bpf_ctx_range(struct __sk_buff, mark):
8776 		case bpf_ctx_range(struct __sk_buff, priority):
8777 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8778 			break;
8779 		default:
8780 			return false;
8781 		}
8782 	}
8783 
8784 	switch (off) {
8785 	case bpf_ctx_range(struct __sk_buff, data):
8786 		info->reg_type = PTR_TO_PACKET;
8787 		break;
8788 	case bpf_ctx_range(struct __sk_buff, data_end):
8789 		info->reg_type = PTR_TO_PACKET_END;
8790 		break;
8791 	}
8792 
8793 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8794 }
8795 
8796 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8797 static bool __sock_filter_check_attach_type(int off,
8798 					    enum bpf_access_type access_type,
8799 					    enum bpf_attach_type attach_type)
8800 {
8801 	switch (off) {
8802 	case offsetof(struct bpf_sock, bound_dev_if):
8803 	case offsetof(struct bpf_sock, mark):
8804 	case offsetof(struct bpf_sock, priority):
8805 		switch (attach_type) {
8806 		case BPF_CGROUP_INET_SOCK_CREATE:
8807 		case BPF_CGROUP_INET_SOCK_RELEASE:
8808 			goto full_access;
8809 		default:
8810 			return false;
8811 		}
8812 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8813 		switch (attach_type) {
8814 		case BPF_CGROUP_INET4_POST_BIND:
8815 			goto read_only;
8816 		default:
8817 			return false;
8818 		}
8819 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8820 		switch (attach_type) {
8821 		case BPF_CGROUP_INET6_POST_BIND:
8822 			goto read_only;
8823 		default:
8824 			return false;
8825 		}
8826 	case bpf_ctx_range(struct bpf_sock, src_port):
8827 		switch (attach_type) {
8828 		case BPF_CGROUP_INET4_POST_BIND:
8829 		case BPF_CGROUP_INET6_POST_BIND:
8830 			goto read_only;
8831 		default:
8832 			return false;
8833 		}
8834 	}
8835 read_only:
8836 	return access_type == BPF_READ;
8837 full_access:
8838 	return true;
8839 }
8840 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8841 bool bpf_sock_common_is_valid_access(int off, int size,
8842 				     enum bpf_access_type type,
8843 				     struct bpf_insn_access_aux *info)
8844 {
8845 	switch (off) {
8846 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8847 		return false;
8848 	default:
8849 		return bpf_sock_is_valid_access(off, size, type, info);
8850 	}
8851 }
8852 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8853 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8854 			      struct bpf_insn_access_aux *info)
8855 {
8856 	const int size_default = sizeof(__u32);
8857 	int field_size;
8858 
8859 	if (off < 0 || off >= sizeof(struct bpf_sock))
8860 		return false;
8861 	if (off % size != 0)
8862 		return false;
8863 
8864 	switch (off) {
8865 	case offsetof(struct bpf_sock, state):
8866 	case offsetof(struct bpf_sock, family):
8867 	case offsetof(struct bpf_sock, type):
8868 	case offsetof(struct bpf_sock, protocol):
8869 	case offsetof(struct bpf_sock, src_port):
8870 	case offsetof(struct bpf_sock, rx_queue_mapping):
8871 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8872 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8873 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8874 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8875 		bpf_ctx_record_field_size(info, size_default);
8876 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8877 	case bpf_ctx_range(struct bpf_sock, dst_port):
8878 		field_size = size == size_default ?
8879 			size_default : sizeof_field(struct bpf_sock, dst_port);
8880 		bpf_ctx_record_field_size(info, field_size);
8881 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8882 	case offsetofend(struct bpf_sock, dst_port) ...
8883 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8884 		return false;
8885 	}
8886 
8887 	return size == size_default;
8888 }
8889 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8890 static bool sock_filter_is_valid_access(int off, int size,
8891 					enum bpf_access_type type,
8892 					const struct bpf_prog *prog,
8893 					struct bpf_insn_access_aux *info)
8894 {
8895 	if (!bpf_sock_is_valid_access(off, size, type, info))
8896 		return false;
8897 	return __sock_filter_check_attach_type(off, type,
8898 					       prog->expected_attach_type);
8899 }
8900 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8901 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8902 			     const struct bpf_prog *prog)
8903 {
8904 	/* Neither direct read nor direct write requires any preliminary
8905 	 * action.
8906 	 */
8907 	return 0;
8908 }
8909 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8910 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8911 				const struct bpf_prog *prog, int drop_verdict)
8912 {
8913 	struct bpf_insn *insn = insn_buf;
8914 
8915 	if (!direct_write)
8916 		return 0;
8917 
8918 	/* if (!skb->cloned)
8919 	 *       goto start;
8920 	 *
8921 	 * (Fast-path, otherwise approximation that we might be
8922 	 *  a clone, do the rest in helper.)
8923 	 */
8924 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8925 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8926 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8927 
8928 	/* ret = bpf_skb_pull_data(skb, 0); */
8929 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8930 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8931 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8932 			       BPF_FUNC_skb_pull_data);
8933 	/* if (!ret)
8934 	 *      goto restore;
8935 	 * return TC_ACT_SHOT;
8936 	 */
8937 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8938 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8939 	*insn++ = BPF_EXIT_INSN();
8940 
8941 	/* restore: */
8942 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8943 	/* start: */
8944 	*insn++ = prog->insnsi[0];
8945 
8946 	return insn - insn_buf;
8947 }
8948 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8949 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8950 			  struct bpf_insn *insn_buf)
8951 {
8952 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8953 	struct bpf_insn *insn = insn_buf;
8954 
8955 	if (!indirect) {
8956 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8957 	} else {
8958 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8959 		if (orig->imm)
8960 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8961 	}
8962 	/* We're guaranteed here that CTX is in R6. */
8963 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8964 
8965 	switch (BPF_SIZE(orig->code)) {
8966 	case BPF_B:
8967 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8968 		break;
8969 	case BPF_H:
8970 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8971 		break;
8972 	case BPF_W:
8973 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8974 		break;
8975 	}
8976 
8977 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8978 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8979 	*insn++ = BPF_EXIT_INSN();
8980 
8981 	return insn - insn_buf;
8982 }
8983 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8984 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8985 			       const struct bpf_prog *prog)
8986 {
8987 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8988 }
8989 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8990 static bool tc_cls_act_is_valid_access(int off, int size,
8991 				       enum bpf_access_type type,
8992 				       const struct bpf_prog *prog,
8993 				       struct bpf_insn_access_aux *info)
8994 {
8995 	if (type == BPF_WRITE) {
8996 		switch (off) {
8997 		case bpf_ctx_range(struct __sk_buff, mark):
8998 		case bpf_ctx_range(struct __sk_buff, tc_index):
8999 		case bpf_ctx_range(struct __sk_buff, priority):
9000 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9001 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9002 		case bpf_ctx_range(struct __sk_buff, tstamp):
9003 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9004 			break;
9005 		default:
9006 			return false;
9007 		}
9008 	}
9009 
9010 	switch (off) {
9011 	case bpf_ctx_range(struct __sk_buff, data):
9012 		info->reg_type = PTR_TO_PACKET;
9013 		break;
9014 	case bpf_ctx_range(struct __sk_buff, data_meta):
9015 		info->reg_type = PTR_TO_PACKET_META;
9016 		break;
9017 	case bpf_ctx_range(struct __sk_buff, data_end):
9018 		info->reg_type = PTR_TO_PACKET_END;
9019 		break;
9020 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9021 		return false;
9022 	case offsetof(struct __sk_buff, tstamp_type):
9023 		/* The convert_ctx_access() on reading and writing
9024 		 * __sk_buff->tstamp depends on whether the bpf prog
9025 		 * has used __sk_buff->tstamp_type or not.
9026 		 * Thus, we need to set prog->tstamp_type_access
9027 		 * earlier during is_valid_access() here.
9028 		 */
9029 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9030 		return size == sizeof(__u8);
9031 	}
9032 
9033 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9034 }
9035 
9036 DEFINE_MUTEX(nf_conn_btf_access_lock);
9037 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9038 
9039 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9040 			      const struct bpf_reg_state *reg,
9041 			      int off, int size);
9042 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9043 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9044 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9045 					const struct bpf_reg_state *reg,
9046 					int off, int size)
9047 {
9048 	int ret = -EACCES;
9049 
9050 	mutex_lock(&nf_conn_btf_access_lock);
9051 	if (nfct_btf_struct_access)
9052 		ret = nfct_btf_struct_access(log, reg, off, size);
9053 	mutex_unlock(&nf_conn_btf_access_lock);
9054 
9055 	return ret;
9056 }
9057 
__is_valid_xdp_access(int off,int size)9058 static bool __is_valid_xdp_access(int off, int size)
9059 {
9060 	if (off < 0 || off >= sizeof(struct xdp_md))
9061 		return false;
9062 	if (off % size != 0)
9063 		return false;
9064 	if (size != sizeof(__u32))
9065 		return false;
9066 
9067 	return true;
9068 }
9069 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9070 static bool xdp_is_valid_access(int off, int size,
9071 				enum bpf_access_type type,
9072 				const struct bpf_prog *prog,
9073 				struct bpf_insn_access_aux *info)
9074 {
9075 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9076 		switch (off) {
9077 		case offsetof(struct xdp_md, egress_ifindex):
9078 			return false;
9079 		}
9080 	}
9081 
9082 	if (type == BPF_WRITE) {
9083 		if (bpf_prog_is_offloaded(prog->aux)) {
9084 			switch (off) {
9085 			case offsetof(struct xdp_md, rx_queue_index):
9086 				return __is_valid_xdp_access(off, size);
9087 			}
9088 		}
9089 		return false;
9090 	} else {
9091 		switch (off) {
9092 		case offsetof(struct xdp_md, data_meta):
9093 		case offsetof(struct xdp_md, data):
9094 		case offsetof(struct xdp_md, data_end):
9095 			if (info->is_ldsx)
9096 				return false;
9097 		}
9098 	}
9099 
9100 	switch (off) {
9101 	case offsetof(struct xdp_md, data):
9102 		info->reg_type = PTR_TO_PACKET;
9103 		break;
9104 	case offsetof(struct xdp_md, data_meta):
9105 		info->reg_type = PTR_TO_PACKET_META;
9106 		break;
9107 	case offsetof(struct xdp_md, data_end):
9108 		info->reg_type = PTR_TO_PACKET_END;
9109 		break;
9110 	}
9111 
9112 	return __is_valid_xdp_access(off, size);
9113 }
9114 
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)9115 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9116 {
9117 	const u32 act_max = XDP_REDIRECT;
9118 
9119 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9120 		     act > act_max ? "Illegal" : "Driver unsupported",
9121 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9122 }
9123 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9124 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9125 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9126 				 const struct bpf_reg_state *reg,
9127 				 int off, int size)
9128 {
9129 	int ret = -EACCES;
9130 
9131 	mutex_lock(&nf_conn_btf_access_lock);
9132 	if (nfct_btf_struct_access)
9133 		ret = nfct_btf_struct_access(log, reg, off, size);
9134 	mutex_unlock(&nf_conn_btf_access_lock);
9135 
9136 	return ret;
9137 }
9138 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9139 static bool sock_addr_is_valid_access(int off, int size,
9140 				      enum bpf_access_type type,
9141 				      const struct bpf_prog *prog,
9142 				      struct bpf_insn_access_aux *info)
9143 {
9144 	const int size_default = sizeof(__u32);
9145 
9146 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9147 		return false;
9148 	if (off % size != 0)
9149 		return false;
9150 
9151 	/* Disallow access to fields not belonging to the attach type's address
9152 	 * family.
9153 	 */
9154 	switch (off) {
9155 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9156 		switch (prog->expected_attach_type) {
9157 		case BPF_CGROUP_INET4_BIND:
9158 		case BPF_CGROUP_INET4_CONNECT:
9159 		case BPF_CGROUP_INET4_GETPEERNAME:
9160 		case BPF_CGROUP_INET4_GETSOCKNAME:
9161 		case BPF_CGROUP_UDP4_SENDMSG:
9162 		case BPF_CGROUP_UDP4_RECVMSG:
9163 			break;
9164 		default:
9165 			return false;
9166 		}
9167 		break;
9168 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9169 		switch (prog->expected_attach_type) {
9170 		case BPF_CGROUP_INET6_BIND:
9171 		case BPF_CGROUP_INET6_CONNECT:
9172 		case BPF_CGROUP_INET6_GETPEERNAME:
9173 		case BPF_CGROUP_INET6_GETSOCKNAME:
9174 		case BPF_CGROUP_UDP6_SENDMSG:
9175 		case BPF_CGROUP_UDP6_RECVMSG:
9176 			break;
9177 		default:
9178 			return false;
9179 		}
9180 		break;
9181 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9182 		switch (prog->expected_attach_type) {
9183 		case BPF_CGROUP_UDP4_SENDMSG:
9184 			break;
9185 		default:
9186 			return false;
9187 		}
9188 		break;
9189 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9190 				msg_src_ip6[3]):
9191 		switch (prog->expected_attach_type) {
9192 		case BPF_CGROUP_UDP6_SENDMSG:
9193 			break;
9194 		default:
9195 			return false;
9196 		}
9197 		break;
9198 	}
9199 
9200 	switch (off) {
9201 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9202 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9203 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9204 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9205 				msg_src_ip6[3]):
9206 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9207 		if (type == BPF_READ) {
9208 			bpf_ctx_record_field_size(info, size_default);
9209 
9210 			if (bpf_ctx_wide_access_ok(off, size,
9211 						   struct bpf_sock_addr,
9212 						   user_ip6))
9213 				return true;
9214 
9215 			if (bpf_ctx_wide_access_ok(off, size,
9216 						   struct bpf_sock_addr,
9217 						   msg_src_ip6))
9218 				return true;
9219 
9220 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9221 				return false;
9222 		} else {
9223 			if (bpf_ctx_wide_access_ok(off, size,
9224 						   struct bpf_sock_addr,
9225 						   user_ip6))
9226 				return true;
9227 
9228 			if (bpf_ctx_wide_access_ok(off, size,
9229 						   struct bpf_sock_addr,
9230 						   msg_src_ip6))
9231 				return true;
9232 
9233 			if (size != size_default)
9234 				return false;
9235 		}
9236 		break;
9237 	case offsetof(struct bpf_sock_addr, sk):
9238 		if (type != BPF_READ)
9239 			return false;
9240 		if (size != sizeof(__u64))
9241 			return false;
9242 		info->reg_type = PTR_TO_SOCKET;
9243 		break;
9244 	default:
9245 		if (type == BPF_READ) {
9246 			if (size != size_default)
9247 				return false;
9248 		} else {
9249 			return false;
9250 		}
9251 	}
9252 
9253 	return true;
9254 }
9255 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9256 static bool sock_ops_is_valid_access(int off, int size,
9257 				     enum bpf_access_type type,
9258 				     const struct bpf_prog *prog,
9259 				     struct bpf_insn_access_aux *info)
9260 {
9261 	const int size_default = sizeof(__u32);
9262 
9263 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9264 		return false;
9265 
9266 	/* The verifier guarantees that size > 0. */
9267 	if (off % size != 0)
9268 		return false;
9269 
9270 	if (type == BPF_WRITE) {
9271 		switch (off) {
9272 		case offsetof(struct bpf_sock_ops, reply):
9273 		case offsetof(struct bpf_sock_ops, sk_txhash):
9274 			if (size != size_default)
9275 				return false;
9276 			break;
9277 		default:
9278 			return false;
9279 		}
9280 	} else {
9281 		switch (off) {
9282 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9283 					bytes_acked):
9284 			if (size != sizeof(__u64))
9285 				return false;
9286 			break;
9287 		case offsetof(struct bpf_sock_ops, sk):
9288 			if (size != sizeof(__u64))
9289 				return false;
9290 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9291 			break;
9292 		case offsetof(struct bpf_sock_ops, skb_data):
9293 			if (size != sizeof(__u64))
9294 				return false;
9295 			info->reg_type = PTR_TO_PACKET;
9296 			break;
9297 		case offsetof(struct bpf_sock_ops, skb_data_end):
9298 			if (size != sizeof(__u64))
9299 				return false;
9300 			info->reg_type = PTR_TO_PACKET_END;
9301 			break;
9302 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9303 			bpf_ctx_record_field_size(info, size_default);
9304 			return bpf_ctx_narrow_access_ok(off, size,
9305 							size_default);
9306 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9307 			if (size != sizeof(__u64))
9308 				return false;
9309 			break;
9310 		default:
9311 			if (size != size_default)
9312 				return false;
9313 			break;
9314 		}
9315 	}
9316 
9317 	return true;
9318 }
9319 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9320 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9321 			   const struct bpf_prog *prog)
9322 {
9323 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9324 }
9325 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9326 static bool sk_skb_is_valid_access(int off, int size,
9327 				   enum bpf_access_type type,
9328 				   const struct bpf_prog *prog,
9329 				   struct bpf_insn_access_aux *info)
9330 {
9331 	switch (off) {
9332 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9333 	case bpf_ctx_range(struct __sk_buff, data_meta):
9334 	case bpf_ctx_range(struct __sk_buff, tstamp):
9335 	case bpf_ctx_range(struct __sk_buff, wire_len):
9336 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9337 		return false;
9338 	}
9339 
9340 	if (type == BPF_WRITE) {
9341 		switch (off) {
9342 		case bpf_ctx_range(struct __sk_buff, tc_index):
9343 		case bpf_ctx_range(struct __sk_buff, priority):
9344 			break;
9345 		default:
9346 			return false;
9347 		}
9348 	}
9349 
9350 	switch (off) {
9351 	case bpf_ctx_range(struct __sk_buff, mark):
9352 		return false;
9353 	case bpf_ctx_range(struct __sk_buff, data):
9354 		info->reg_type = PTR_TO_PACKET;
9355 		break;
9356 	case bpf_ctx_range(struct __sk_buff, data_end):
9357 		info->reg_type = PTR_TO_PACKET_END;
9358 		break;
9359 	}
9360 
9361 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9362 }
9363 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9364 static bool sk_msg_is_valid_access(int off, int size,
9365 				   enum bpf_access_type type,
9366 				   const struct bpf_prog *prog,
9367 				   struct bpf_insn_access_aux *info)
9368 {
9369 	if (type == BPF_WRITE)
9370 		return false;
9371 
9372 	if (off % size != 0)
9373 		return false;
9374 
9375 	switch (off) {
9376 	case offsetof(struct sk_msg_md, data):
9377 		info->reg_type = PTR_TO_PACKET;
9378 		if (size != sizeof(__u64))
9379 			return false;
9380 		break;
9381 	case offsetof(struct sk_msg_md, data_end):
9382 		info->reg_type = PTR_TO_PACKET_END;
9383 		if (size != sizeof(__u64))
9384 			return false;
9385 		break;
9386 	case offsetof(struct sk_msg_md, sk):
9387 		if (size != sizeof(__u64))
9388 			return false;
9389 		info->reg_type = PTR_TO_SOCKET;
9390 		break;
9391 	case bpf_ctx_range(struct sk_msg_md, family):
9392 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9393 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9394 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9395 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9396 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9397 	case bpf_ctx_range(struct sk_msg_md, local_port):
9398 	case bpf_ctx_range(struct sk_msg_md, size):
9399 		if (size != sizeof(__u32))
9400 			return false;
9401 		break;
9402 	default:
9403 		return false;
9404 	}
9405 	return true;
9406 }
9407 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9408 static bool flow_dissector_is_valid_access(int off, int size,
9409 					   enum bpf_access_type type,
9410 					   const struct bpf_prog *prog,
9411 					   struct bpf_insn_access_aux *info)
9412 {
9413 	const int size_default = sizeof(__u32);
9414 
9415 	if (off < 0 || off >= sizeof(struct __sk_buff))
9416 		return false;
9417 
9418 	if (off % size != 0)
9419 		return false;
9420 
9421 	if (type == BPF_WRITE)
9422 		return false;
9423 
9424 	switch (off) {
9425 	case bpf_ctx_range(struct __sk_buff, data):
9426 		if (info->is_ldsx || size != size_default)
9427 			return false;
9428 		info->reg_type = PTR_TO_PACKET;
9429 		return true;
9430 	case bpf_ctx_range(struct __sk_buff, data_end):
9431 		if (info->is_ldsx || size != size_default)
9432 			return false;
9433 		info->reg_type = PTR_TO_PACKET_END;
9434 		return true;
9435 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9436 		if (size != sizeof(__u64))
9437 			return false;
9438 		info->reg_type = PTR_TO_FLOW_KEYS;
9439 		return true;
9440 	default:
9441 		return false;
9442 	}
9443 }
9444 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9445 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9446 					     const struct bpf_insn *si,
9447 					     struct bpf_insn *insn_buf,
9448 					     struct bpf_prog *prog,
9449 					     u32 *target_size)
9450 
9451 {
9452 	struct bpf_insn *insn = insn_buf;
9453 
9454 	switch (si->off) {
9455 	case offsetof(struct __sk_buff, data):
9456 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9457 				      si->dst_reg, si->src_reg,
9458 				      offsetof(struct bpf_flow_dissector, data));
9459 		break;
9460 
9461 	case offsetof(struct __sk_buff, data_end):
9462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9463 				      si->dst_reg, si->src_reg,
9464 				      offsetof(struct bpf_flow_dissector, data_end));
9465 		break;
9466 
9467 	case offsetof(struct __sk_buff, flow_keys):
9468 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9469 				      si->dst_reg, si->src_reg,
9470 				      offsetof(struct bpf_flow_dissector, flow_keys));
9471 		break;
9472 	}
9473 
9474 	return insn - insn_buf;
9475 }
9476 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9477 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9478 						     struct bpf_insn *insn)
9479 {
9480 	__u8 value_reg = si->dst_reg;
9481 	__u8 skb_reg = si->src_reg;
9482 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9483 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9484 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9485 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9486 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9487 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9488 #ifdef __BIG_ENDIAN_BITFIELD
9489 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9490 #else
9491 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9492 #endif
9493 
9494 	return insn;
9495 }
9496 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9497 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9498 						  struct bpf_insn *insn)
9499 {
9500 	/* si->dst_reg = skb_shinfo(SKB); */
9501 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9502 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9503 			      BPF_REG_AX, skb_reg,
9504 			      offsetof(struct sk_buff, end));
9505 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9506 			      dst_reg, skb_reg,
9507 			      offsetof(struct sk_buff, head));
9508 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9509 #else
9510 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9511 			      dst_reg, skb_reg,
9512 			      offsetof(struct sk_buff, end));
9513 #endif
9514 
9515 	return insn;
9516 }
9517 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9518 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9519 						const struct bpf_insn *si,
9520 						struct bpf_insn *insn)
9521 {
9522 	__u8 value_reg = si->dst_reg;
9523 	__u8 skb_reg = si->src_reg;
9524 
9525 #ifdef CONFIG_NET_XGRESS
9526 	/* If the tstamp_type is read,
9527 	 * the bpf prog is aware the tstamp could have delivery time.
9528 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9529 	 */
9530 	if (!prog->tstamp_type_access) {
9531 		/* AX is needed because src_reg and dst_reg could be the same */
9532 		__u8 tmp_reg = BPF_REG_AX;
9533 
9534 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9535 		/* check if ingress mask bits is set */
9536 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9537 		*insn++ = BPF_JMP_A(4);
9538 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9539 		*insn++ = BPF_JMP_A(2);
9540 		/* skb->tc_at_ingress && skb->tstamp_type,
9541 		 * read 0 as the (rcv) timestamp.
9542 		 */
9543 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9544 		*insn++ = BPF_JMP_A(1);
9545 	}
9546 #endif
9547 
9548 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9549 			      offsetof(struct sk_buff, tstamp));
9550 	return insn;
9551 }
9552 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9553 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9554 						 const struct bpf_insn *si,
9555 						 struct bpf_insn *insn)
9556 {
9557 	__u8 value_reg = si->src_reg;
9558 	__u8 skb_reg = si->dst_reg;
9559 
9560 #ifdef CONFIG_NET_XGRESS
9561 	/* If the tstamp_type is read,
9562 	 * the bpf prog is aware the tstamp could have delivery time.
9563 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9564 	 * Otherwise, writing at ingress will have to clear the
9565 	 * skb->tstamp_type bit also.
9566 	 */
9567 	if (!prog->tstamp_type_access) {
9568 		__u8 tmp_reg = BPF_REG_AX;
9569 
9570 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9571 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9572 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9573 		/* goto <store> */
9574 		*insn++ = BPF_JMP_A(2);
9575 		/* <clear>: skb->tstamp_type */
9576 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9577 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9578 	}
9579 #endif
9580 
9581 	/* <store>: skb->tstamp = tstamp */
9582 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9583 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9584 	return insn;
9585 }
9586 
9587 #define BPF_EMIT_STORE(size, si, off)					\
9588 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9589 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9590 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9591 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9592 				  const struct bpf_insn *si,
9593 				  struct bpf_insn *insn_buf,
9594 				  struct bpf_prog *prog, u32 *target_size)
9595 {
9596 	struct bpf_insn *insn = insn_buf;
9597 	int off;
9598 
9599 	switch (si->off) {
9600 	case offsetof(struct __sk_buff, len):
9601 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9602 				      bpf_target_off(struct sk_buff, len, 4,
9603 						     target_size));
9604 		break;
9605 
9606 	case offsetof(struct __sk_buff, protocol):
9607 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9608 				      bpf_target_off(struct sk_buff, protocol, 2,
9609 						     target_size));
9610 		break;
9611 
9612 	case offsetof(struct __sk_buff, vlan_proto):
9613 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9614 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9615 						     target_size));
9616 		break;
9617 
9618 	case offsetof(struct __sk_buff, priority):
9619 		if (type == BPF_WRITE)
9620 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9621 						 bpf_target_off(struct sk_buff, priority, 4,
9622 								target_size));
9623 		else
9624 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9625 					      bpf_target_off(struct sk_buff, priority, 4,
9626 							     target_size));
9627 		break;
9628 
9629 	case offsetof(struct __sk_buff, ingress_ifindex):
9630 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9631 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9632 						     target_size));
9633 		break;
9634 
9635 	case offsetof(struct __sk_buff, ifindex):
9636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9637 				      si->dst_reg, si->src_reg,
9638 				      offsetof(struct sk_buff, dev));
9639 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9640 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9641 				      bpf_target_off(struct net_device, ifindex, 4,
9642 						     target_size));
9643 		break;
9644 
9645 	case offsetof(struct __sk_buff, hash):
9646 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9647 				      bpf_target_off(struct sk_buff, hash, 4,
9648 						     target_size));
9649 		break;
9650 
9651 	case offsetof(struct __sk_buff, mark):
9652 		if (type == BPF_WRITE)
9653 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9654 						 bpf_target_off(struct sk_buff, mark, 4,
9655 								target_size));
9656 		else
9657 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9658 					      bpf_target_off(struct sk_buff, mark, 4,
9659 							     target_size));
9660 		break;
9661 
9662 	case offsetof(struct __sk_buff, pkt_type):
9663 		*target_size = 1;
9664 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9665 				      PKT_TYPE_OFFSET);
9666 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9667 #ifdef __BIG_ENDIAN_BITFIELD
9668 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9669 #endif
9670 		break;
9671 
9672 	case offsetof(struct __sk_buff, queue_mapping):
9673 		if (type == BPF_WRITE) {
9674 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9675 
9676 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9677 				*insn++ = BPF_JMP_A(0); /* noop */
9678 				break;
9679 			}
9680 
9681 			if (BPF_CLASS(si->code) == BPF_STX)
9682 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9683 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9684 		} else {
9685 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9686 					      bpf_target_off(struct sk_buff,
9687 							     queue_mapping,
9688 							     2, target_size));
9689 		}
9690 		break;
9691 
9692 	case offsetof(struct __sk_buff, vlan_present):
9693 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9694 				      bpf_target_off(struct sk_buff,
9695 						     vlan_all, 4, target_size));
9696 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9697 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9698 		break;
9699 
9700 	case offsetof(struct __sk_buff, vlan_tci):
9701 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9702 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9703 						     target_size));
9704 		break;
9705 
9706 	case offsetof(struct __sk_buff, cb[0]) ...
9707 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9708 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9709 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9710 			      offsetof(struct qdisc_skb_cb, data)) %
9711 			     sizeof(__u64));
9712 
9713 		prog->cb_access = 1;
9714 		off  = si->off;
9715 		off -= offsetof(struct __sk_buff, cb[0]);
9716 		off += offsetof(struct sk_buff, cb);
9717 		off += offsetof(struct qdisc_skb_cb, data);
9718 		if (type == BPF_WRITE)
9719 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9720 		else
9721 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9722 					      si->src_reg, off);
9723 		break;
9724 
9725 	case offsetof(struct __sk_buff, tc_classid):
9726 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9727 
9728 		off  = si->off;
9729 		off -= offsetof(struct __sk_buff, tc_classid);
9730 		off += offsetof(struct sk_buff, cb);
9731 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9732 		*target_size = 2;
9733 		if (type == BPF_WRITE)
9734 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9735 		else
9736 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9737 					      si->src_reg, off);
9738 		break;
9739 
9740 	case offsetof(struct __sk_buff, data):
9741 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9742 				      si->dst_reg, si->src_reg,
9743 				      offsetof(struct sk_buff, data));
9744 		break;
9745 
9746 	case offsetof(struct __sk_buff, data_meta):
9747 		off  = si->off;
9748 		off -= offsetof(struct __sk_buff, data_meta);
9749 		off += offsetof(struct sk_buff, cb);
9750 		off += offsetof(struct bpf_skb_data_end, data_meta);
9751 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9752 				      si->src_reg, off);
9753 		break;
9754 
9755 	case offsetof(struct __sk_buff, data_end):
9756 		off  = si->off;
9757 		off -= offsetof(struct __sk_buff, data_end);
9758 		off += offsetof(struct sk_buff, cb);
9759 		off += offsetof(struct bpf_skb_data_end, data_end);
9760 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9761 				      si->src_reg, off);
9762 		break;
9763 
9764 	case offsetof(struct __sk_buff, tc_index):
9765 #ifdef CONFIG_NET_SCHED
9766 		if (type == BPF_WRITE)
9767 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9768 						 bpf_target_off(struct sk_buff, tc_index, 2,
9769 								target_size));
9770 		else
9771 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9772 					      bpf_target_off(struct sk_buff, tc_index, 2,
9773 							     target_size));
9774 #else
9775 		*target_size = 2;
9776 		if (type == BPF_WRITE)
9777 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9778 		else
9779 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9780 #endif
9781 		break;
9782 
9783 	case offsetof(struct __sk_buff, napi_id):
9784 #if defined(CONFIG_NET_RX_BUSY_POLL)
9785 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9786 				      bpf_target_off(struct sk_buff, napi_id, 4,
9787 						     target_size));
9788 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9789 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9790 #else
9791 		*target_size = 4;
9792 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9793 #endif
9794 		break;
9795 	case offsetof(struct __sk_buff, family):
9796 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9797 
9798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9799 				      si->dst_reg, si->src_reg,
9800 				      offsetof(struct sk_buff, sk));
9801 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9802 				      bpf_target_off(struct sock_common,
9803 						     skc_family,
9804 						     2, target_size));
9805 		break;
9806 	case offsetof(struct __sk_buff, remote_ip4):
9807 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9808 
9809 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9810 				      si->dst_reg, si->src_reg,
9811 				      offsetof(struct sk_buff, sk));
9812 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9813 				      bpf_target_off(struct sock_common,
9814 						     skc_daddr,
9815 						     4, target_size));
9816 		break;
9817 	case offsetof(struct __sk_buff, local_ip4):
9818 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9819 					  skc_rcv_saddr) != 4);
9820 
9821 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9822 				      si->dst_reg, si->src_reg,
9823 				      offsetof(struct sk_buff, sk));
9824 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9825 				      bpf_target_off(struct sock_common,
9826 						     skc_rcv_saddr,
9827 						     4, target_size));
9828 		break;
9829 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9830 	     offsetof(struct __sk_buff, remote_ip6[3]):
9831 #if IS_ENABLED(CONFIG_IPV6)
9832 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9833 					  skc_v6_daddr.s6_addr32[0]) != 4);
9834 
9835 		off = si->off;
9836 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9837 
9838 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9839 				      si->dst_reg, si->src_reg,
9840 				      offsetof(struct sk_buff, sk));
9841 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9842 				      offsetof(struct sock_common,
9843 					       skc_v6_daddr.s6_addr32[0]) +
9844 				      off);
9845 #else
9846 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9847 #endif
9848 		break;
9849 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9850 	     offsetof(struct __sk_buff, local_ip6[3]):
9851 #if IS_ENABLED(CONFIG_IPV6)
9852 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9853 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9854 
9855 		off = si->off;
9856 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9857 
9858 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9859 				      si->dst_reg, si->src_reg,
9860 				      offsetof(struct sk_buff, sk));
9861 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9862 				      offsetof(struct sock_common,
9863 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9864 				      off);
9865 #else
9866 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9867 #endif
9868 		break;
9869 
9870 	case offsetof(struct __sk_buff, remote_port):
9871 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9872 
9873 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9874 				      si->dst_reg, si->src_reg,
9875 				      offsetof(struct sk_buff, sk));
9876 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9877 				      bpf_target_off(struct sock_common,
9878 						     skc_dport,
9879 						     2, target_size));
9880 #ifndef __BIG_ENDIAN_BITFIELD
9881 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9882 #endif
9883 		break;
9884 
9885 	case offsetof(struct __sk_buff, local_port):
9886 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9887 
9888 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9889 				      si->dst_reg, si->src_reg,
9890 				      offsetof(struct sk_buff, sk));
9891 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9892 				      bpf_target_off(struct sock_common,
9893 						     skc_num, 2, target_size));
9894 		break;
9895 
9896 	case offsetof(struct __sk_buff, tstamp):
9897 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9898 
9899 		if (type == BPF_WRITE)
9900 			insn = bpf_convert_tstamp_write(prog, si, insn);
9901 		else
9902 			insn = bpf_convert_tstamp_read(prog, si, insn);
9903 		break;
9904 
9905 	case offsetof(struct __sk_buff, tstamp_type):
9906 		insn = bpf_convert_tstamp_type_read(si, insn);
9907 		break;
9908 
9909 	case offsetof(struct __sk_buff, gso_segs):
9910 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9911 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9912 				      si->dst_reg, si->dst_reg,
9913 				      bpf_target_off(struct skb_shared_info,
9914 						     gso_segs, 2,
9915 						     target_size));
9916 		break;
9917 	case offsetof(struct __sk_buff, gso_size):
9918 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9919 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9920 				      si->dst_reg, si->dst_reg,
9921 				      bpf_target_off(struct skb_shared_info,
9922 						     gso_size, 2,
9923 						     target_size));
9924 		break;
9925 	case offsetof(struct __sk_buff, wire_len):
9926 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9927 
9928 		off = si->off;
9929 		off -= offsetof(struct __sk_buff, wire_len);
9930 		off += offsetof(struct sk_buff, cb);
9931 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9932 		*target_size = 4;
9933 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9934 		break;
9935 
9936 	case offsetof(struct __sk_buff, sk):
9937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9938 				      si->dst_reg, si->src_reg,
9939 				      offsetof(struct sk_buff, sk));
9940 		break;
9941 	case offsetof(struct __sk_buff, hwtstamp):
9942 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9943 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9944 
9945 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9946 		*insn++ = BPF_LDX_MEM(BPF_DW,
9947 				      si->dst_reg, si->dst_reg,
9948 				      bpf_target_off(struct skb_shared_info,
9949 						     hwtstamps, 8,
9950 						     target_size));
9951 		break;
9952 	}
9953 
9954 	return insn - insn_buf;
9955 }
9956 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9957 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9958 				const struct bpf_insn *si,
9959 				struct bpf_insn *insn_buf,
9960 				struct bpf_prog *prog, u32 *target_size)
9961 {
9962 	struct bpf_insn *insn = insn_buf;
9963 	int off;
9964 
9965 	switch (si->off) {
9966 	case offsetof(struct bpf_sock, bound_dev_if):
9967 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9968 
9969 		if (type == BPF_WRITE)
9970 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9971 						 offsetof(struct sock, sk_bound_dev_if));
9972 		else
9973 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9974 				      offsetof(struct sock, sk_bound_dev_if));
9975 		break;
9976 
9977 	case offsetof(struct bpf_sock, mark):
9978 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9979 
9980 		if (type == BPF_WRITE)
9981 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9982 						 offsetof(struct sock, sk_mark));
9983 		else
9984 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9985 				      offsetof(struct sock, sk_mark));
9986 		break;
9987 
9988 	case offsetof(struct bpf_sock, priority):
9989 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9990 
9991 		if (type == BPF_WRITE)
9992 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9993 						 offsetof(struct sock, sk_priority));
9994 		else
9995 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9996 				      offsetof(struct sock, sk_priority));
9997 		break;
9998 
9999 	case offsetof(struct bpf_sock, family):
10000 		*insn++ = BPF_LDX_MEM(
10001 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10002 			si->dst_reg, si->src_reg,
10003 			bpf_target_off(struct sock_common,
10004 				       skc_family,
10005 				       sizeof_field(struct sock_common,
10006 						    skc_family),
10007 				       target_size));
10008 		break;
10009 
10010 	case offsetof(struct bpf_sock, type):
10011 		*insn++ = BPF_LDX_MEM(
10012 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10013 			si->dst_reg, si->src_reg,
10014 			bpf_target_off(struct sock, sk_type,
10015 				       sizeof_field(struct sock, sk_type),
10016 				       target_size));
10017 		break;
10018 
10019 	case offsetof(struct bpf_sock, protocol):
10020 		*insn++ = BPF_LDX_MEM(
10021 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10022 			si->dst_reg, si->src_reg,
10023 			bpf_target_off(struct sock, sk_protocol,
10024 				       sizeof_field(struct sock, sk_protocol),
10025 				       target_size));
10026 		break;
10027 
10028 	case offsetof(struct bpf_sock, src_ip4):
10029 		*insn++ = BPF_LDX_MEM(
10030 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10031 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10032 				       sizeof_field(struct sock_common,
10033 						    skc_rcv_saddr),
10034 				       target_size));
10035 		break;
10036 
10037 	case offsetof(struct bpf_sock, dst_ip4):
10038 		*insn++ = BPF_LDX_MEM(
10039 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10040 			bpf_target_off(struct sock_common, skc_daddr,
10041 				       sizeof_field(struct sock_common,
10042 						    skc_daddr),
10043 				       target_size));
10044 		break;
10045 
10046 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10047 #if IS_ENABLED(CONFIG_IPV6)
10048 		off = si->off;
10049 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10050 		*insn++ = BPF_LDX_MEM(
10051 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10052 			bpf_target_off(
10053 				struct sock_common,
10054 				skc_v6_rcv_saddr.s6_addr32[0],
10055 				sizeof_field(struct sock_common,
10056 					     skc_v6_rcv_saddr.s6_addr32[0]),
10057 				target_size) + off);
10058 #else
10059 		(void)off;
10060 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10061 #endif
10062 		break;
10063 
10064 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10065 #if IS_ENABLED(CONFIG_IPV6)
10066 		off = si->off;
10067 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10068 		*insn++ = BPF_LDX_MEM(
10069 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10070 			bpf_target_off(struct sock_common,
10071 				       skc_v6_daddr.s6_addr32[0],
10072 				       sizeof_field(struct sock_common,
10073 						    skc_v6_daddr.s6_addr32[0]),
10074 				       target_size) + off);
10075 #else
10076 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10077 		*target_size = 4;
10078 #endif
10079 		break;
10080 
10081 	case offsetof(struct bpf_sock, src_port):
10082 		*insn++ = BPF_LDX_MEM(
10083 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10084 			si->dst_reg, si->src_reg,
10085 			bpf_target_off(struct sock_common, skc_num,
10086 				       sizeof_field(struct sock_common,
10087 						    skc_num),
10088 				       target_size));
10089 		break;
10090 
10091 	case offsetof(struct bpf_sock, dst_port):
10092 		*insn++ = BPF_LDX_MEM(
10093 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10094 			si->dst_reg, si->src_reg,
10095 			bpf_target_off(struct sock_common, skc_dport,
10096 				       sizeof_field(struct sock_common,
10097 						    skc_dport),
10098 				       target_size));
10099 		break;
10100 
10101 	case offsetof(struct bpf_sock, state):
10102 		*insn++ = BPF_LDX_MEM(
10103 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10104 			si->dst_reg, si->src_reg,
10105 			bpf_target_off(struct sock_common, skc_state,
10106 				       sizeof_field(struct sock_common,
10107 						    skc_state),
10108 				       target_size));
10109 		break;
10110 	case offsetof(struct bpf_sock, rx_queue_mapping):
10111 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10112 		*insn++ = BPF_LDX_MEM(
10113 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10114 			si->dst_reg, si->src_reg,
10115 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10116 				       sizeof_field(struct sock,
10117 						    sk_rx_queue_mapping),
10118 				       target_size));
10119 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10120 				      1);
10121 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10122 #else
10123 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10124 		*target_size = 2;
10125 #endif
10126 		break;
10127 	}
10128 
10129 	return insn - insn_buf;
10130 }
10131 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10132 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10133 					 const struct bpf_insn *si,
10134 					 struct bpf_insn *insn_buf,
10135 					 struct bpf_prog *prog, u32 *target_size)
10136 {
10137 	struct bpf_insn *insn = insn_buf;
10138 
10139 	switch (si->off) {
10140 	case offsetof(struct __sk_buff, ifindex):
10141 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10142 				      si->dst_reg, si->src_reg,
10143 				      offsetof(struct sk_buff, dev));
10144 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10145 				      bpf_target_off(struct net_device, ifindex, 4,
10146 						     target_size));
10147 		break;
10148 	default:
10149 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10150 					      target_size);
10151 	}
10152 
10153 	return insn - insn_buf;
10154 }
10155 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10156 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10157 				  const struct bpf_insn *si,
10158 				  struct bpf_insn *insn_buf,
10159 				  struct bpf_prog *prog, u32 *target_size)
10160 {
10161 	struct bpf_insn *insn = insn_buf;
10162 
10163 	switch (si->off) {
10164 	case offsetof(struct xdp_md, data):
10165 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10166 				      si->dst_reg, si->src_reg,
10167 				      offsetof(struct xdp_buff, data));
10168 		break;
10169 	case offsetof(struct xdp_md, data_meta):
10170 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10171 				      si->dst_reg, si->src_reg,
10172 				      offsetof(struct xdp_buff, data_meta));
10173 		break;
10174 	case offsetof(struct xdp_md, data_end):
10175 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10176 				      si->dst_reg, si->src_reg,
10177 				      offsetof(struct xdp_buff, data_end));
10178 		break;
10179 	case offsetof(struct xdp_md, ingress_ifindex):
10180 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10181 				      si->dst_reg, si->src_reg,
10182 				      offsetof(struct xdp_buff, rxq));
10183 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10184 				      si->dst_reg, si->dst_reg,
10185 				      offsetof(struct xdp_rxq_info, dev));
10186 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10187 				      offsetof(struct net_device, ifindex));
10188 		break;
10189 	case offsetof(struct xdp_md, rx_queue_index):
10190 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10191 				      si->dst_reg, si->src_reg,
10192 				      offsetof(struct xdp_buff, rxq));
10193 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10194 				      offsetof(struct xdp_rxq_info,
10195 					       queue_index));
10196 		break;
10197 	case offsetof(struct xdp_md, egress_ifindex):
10198 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10199 				      si->dst_reg, si->src_reg,
10200 				      offsetof(struct xdp_buff, txq));
10201 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10202 				      si->dst_reg, si->dst_reg,
10203 				      offsetof(struct xdp_txq_info, dev));
10204 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10205 				      offsetof(struct net_device, ifindex));
10206 		break;
10207 	}
10208 
10209 	return insn - insn_buf;
10210 }
10211 
10212 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10213  * context Structure, F is Field in context structure that contains a pointer
10214  * to Nested Structure of type NS that has the field NF.
10215  *
10216  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10217  * sure that SIZE is not greater than actual size of S.F.NF.
10218  *
10219  * If offset OFF is provided, the load happens from that offset relative to
10220  * offset of NF.
10221  */
10222 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10223 	do {								       \
10224 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10225 				      si->src_reg, offsetof(S, F));	       \
10226 		*insn++ = BPF_LDX_MEM(					       \
10227 			SIZE, si->dst_reg, si->dst_reg,			       \
10228 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10229 				       target_size)			       \
10230 				+ OFF);					       \
10231 	} while (0)
10232 
10233 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10234 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10235 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10236 
10237 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10238  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10239  *
10240  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10241  * "register" since two registers available in convert_ctx_access are not
10242  * enough: we can't override neither SRC, since it contains value to store, nor
10243  * DST since it contains pointer to context that may be used by later
10244  * instructions. But we need a temporary place to save pointer to nested
10245  * structure whose field we want to store to.
10246  */
10247 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10248 	do {								       \
10249 		int tmp_reg = BPF_REG_9;				       \
10250 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10251 			--tmp_reg;					       \
10252 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10253 			--tmp_reg;					       \
10254 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10255 				      offsetof(S, TF));			       \
10256 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10257 				      si->dst_reg, offsetof(S, F));	       \
10258 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10259 				       tmp_reg, si->src_reg,		       \
10260 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10261 				       target_size)			       \
10262 				       + OFF,				       \
10263 				       si->imm);			       \
10264 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10265 				      offsetof(S, TF));			       \
10266 	} while (0)
10267 
10268 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10269 						      TF)		       \
10270 	do {								       \
10271 		if (type == BPF_WRITE) {				       \
10272 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10273 							 OFF, TF);	       \
10274 		} else {						       \
10275 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10276 				S, NS, F, NF, SIZE, OFF);  \
10277 		}							       \
10278 	} while (0)
10279 
10280 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10281 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10282 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10283 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10284 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10285 					const struct bpf_insn *si,
10286 					struct bpf_insn *insn_buf,
10287 					struct bpf_prog *prog, u32 *target_size)
10288 {
10289 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10290 	struct bpf_insn *insn = insn_buf;
10291 
10292 	switch (si->off) {
10293 	case offsetof(struct bpf_sock_addr, user_family):
10294 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10295 					    struct sockaddr, uaddr, sa_family);
10296 		break;
10297 
10298 	case offsetof(struct bpf_sock_addr, user_ip4):
10299 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10300 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10301 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10302 		break;
10303 
10304 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10305 		off = si->off;
10306 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10307 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10308 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10309 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10310 			tmp_reg);
10311 		break;
10312 
10313 	case offsetof(struct bpf_sock_addr, user_port):
10314 		/* To get port we need to know sa_family first and then treat
10315 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10316 		 * Though we can simplify since port field has same offset and
10317 		 * size in both structures.
10318 		 * Here we check this invariant and use just one of the
10319 		 * structures if it's true.
10320 		 */
10321 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10322 			     offsetof(struct sockaddr_in6, sin6_port));
10323 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10324 			     sizeof_field(struct sockaddr_in6, sin6_port));
10325 		/* Account for sin6_port being smaller than user_port. */
10326 		port_size = min(port_size, BPF_LDST_BYTES(si));
10327 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10328 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10329 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10330 		break;
10331 
10332 	case offsetof(struct bpf_sock_addr, family):
10333 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10334 					    struct sock, sk, sk_family);
10335 		break;
10336 
10337 	case offsetof(struct bpf_sock_addr, type):
10338 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10339 					    struct sock, sk, sk_type);
10340 		break;
10341 
10342 	case offsetof(struct bpf_sock_addr, protocol):
10343 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10344 					    struct sock, sk, sk_protocol);
10345 		break;
10346 
10347 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10348 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10349 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10350 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10351 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10352 		break;
10353 
10354 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10355 				msg_src_ip6[3]):
10356 		off = si->off;
10357 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10358 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10359 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10360 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10361 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10362 		break;
10363 	case offsetof(struct bpf_sock_addr, sk):
10364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10365 				      si->dst_reg, si->src_reg,
10366 				      offsetof(struct bpf_sock_addr_kern, sk));
10367 		break;
10368 	}
10369 
10370 	return insn - insn_buf;
10371 }
10372 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10373 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10374 				       const struct bpf_insn *si,
10375 				       struct bpf_insn *insn_buf,
10376 				       struct bpf_prog *prog,
10377 				       u32 *target_size)
10378 {
10379 	struct bpf_insn *insn = insn_buf;
10380 	int off;
10381 
10382 /* Helper macro for adding read access to tcp_sock or sock fields. */
10383 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10384 	do {								      \
10385 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10386 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10387 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10388 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10389 			reg--;						      \
10390 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10391 			reg--;						      \
10392 		if (si->dst_reg == si->src_reg) {			      \
10393 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10394 					  offsetof(struct bpf_sock_ops_kern,  \
10395 					  temp));			      \
10396 			fullsock_reg = reg;				      \
10397 			jmp += 2;					      \
10398 		}							      \
10399 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10400 						struct bpf_sock_ops_kern,     \
10401 						is_fullsock),		      \
10402 				      fullsock_reg, si->src_reg,	      \
10403 				      offsetof(struct bpf_sock_ops_kern,      \
10404 					       is_fullsock));		      \
10405 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10406 		if (si->dst_reg == si->src_reg)				      \
10407 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10408 				      offsetof(struct bpf_sock_ops_kern,      \
10409 				      temp));				      \
10410 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10411 						struct bpf_sock_ops_kern, sk),\
10412 				      si->dst_reg, si->src_reg,		      \
10413 				      offsetof(struct bpf_sock_ops_kern, sk));\
10414 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10415 						       OBJ_FIELD),	      \
10416 				      si->dst_reg, si->dst_reg,		      \
10417 				      offsetof(OBJ, OBJ_FIELD));	      \
10418 		if (si->dst_reg == si->src_reg)	{			      \
10419 			*insn++ = BPF_JMP_A(1);				      \
10420 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10421 				      offsetof(struct bpf_sock_ops_kern,      \
10422 				      temp));				      \
10423 		}							      \
10424 	} while (0)
10425 
10426 #define SOCK_OPS_GET_SK()							      \
10427 	do {								      \
10428 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10429 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10430 			reg--;						      \
10431 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10432 			reg--;						      \
10433 		if (si->dst_reg == si->src_reg) {			      \
10434 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10435 					  offsetof(struct bpf_sock_ops_kern,  \
10436 					  temp));			      \
10437 			fullsock_reg = reg;				      \
10438 			jmp += 2;					      \
10439 		}							      \
10440 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10441 						struct bpf_sock_ops_kern,     \
10442 						is_fullsock),		      \
10443 				      fullsock_reg, si->src_reg,	      \
10444 				      offsetof(struct bpf_sock_ops_kern,      \
10445 					       is_fullsock));		      \
10446 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10447 		if (si->dst_reg == si->src_reg)				      \
10448 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10449 				      offsetof(struct bpf_sock_ops_kern,      \
10450 				      temp));				      \
10451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10452 						struct bpf_sock_ops_kern, sk),\
10453 				      si->dst_reg, si->src_reg,		      \
10454 				      offsetof(struct bpf_sock_ops_kern, sk));\
10455 		if (si->dst_reg == si->src_reg)	{			      \
10456 			*insn++ = BPF_JMP_A(1);				      \
10457 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10458 				      offsetof(struct bpf_sock_ops_kern,      \
10459 				      temp));				      \
10460 		}							      \
10461 	} while (0)
10462 
10463 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10464 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10465 
10466 /* Helper macro for adding write access to tcp_sock or sock fields.
10467  * The macro is called with two registers, dst_reg which contains a pointer
10468  * to ctx (context) and src_reg which contains the value that should be
10469  * stored. However, we need an additional register since we cannot overwrite
10470  * dst_reg because it may be used later in the program.
10471  * Instead we "borrow" one of the other register. We first save its value
10472  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10473  * it at the end of the macro.
10474  */
10475 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10476 	do {								      \
10477 		int reg = BPF_REG_9;					      \
10478 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10479 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10480 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10481 			reg--;						      \
10482 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10483 			reg--;						      \
10484 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10485 				      offsetof(struct bpf_sock_ops_kern,      \
10486 					       temp));			      \
10487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10488 						struct bpf_sock_ops_kern,     \
10489 						is_fullsock),		      \
10490 				      reg, si->dst_reg,			      \
10491 				      offsetof(struct bpf_sock_ops_kern,      \
10492 					       is_fullsock));		      \
10493 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10494 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10495 						struct bpf_sock_ops_kern, sk),\
10496 				      reg, si->dst_reg,			      \
10497 				      offsetof(struct bpf_sock_ops_kern, sk));\
10498 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10499 				       BPF_MEM | BPF_CLASS(si->code),	      \
10500 				       reg, si->src_reg,		      \
10501 				       offsetof(OBJ, OBJ_FIELD),	      \
10502 				       si->imm);			      \
10503 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10504 				      offsetof(struct bpf_sock_ops_kern,      \
10505 					       temp));			      \
10506 	} while (0)
10507 
10508 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10509 	do {								      \
10510 		if (TYPE == BPF_WRITE)					      \
10511 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10512 		else							      \
10513 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10514 	} while (0)
10515 
10516 	switch (si->off) {
10517 	case offsetof(struct bpf_sock_ops, op):
10518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10519 						       op),
10520 				      si->dst_reg, si->src_reg,
10521 				      offsetof(struct bpf_sock_ops_kern, op));
10522 		break;
10523 
10524 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10525 	     offsetof(struct bpf_sock_ops, replylong[3]):
10526 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10527 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10528 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10529 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10530 		off = si->off;
10531 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10532 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10533 		if (type == BPF_WRITE)
10534 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10535 		else
10536 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10537 					      off);
10538 		break;
10539 
10540 	case offsetof(struct bpf_sock_ops, family):
10541 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10542 
10543 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10544 					      struct bpf_sock_ops_kern, sk),
10545 				      si->dst_reg, si->src_reg,
10546 				      offsetof(struct bpf_sock_ops_kern, sk));
10547 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10548 				      offsetof(struct sock_common, skc_family));
10549 		break;
10550 
10551 	case offsetof(struct bpf_sock_ops, remote_ip4):
10552 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10553 
10554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10555 						struct bpf_sock_ops_kern, sk),
10556 				      si->dst_reg, si->src_reg,
10557 				      offsetof(struct bpf_sock_ops_kern, sk));
10558 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10559 				      offsetof(struct sock_common, skc_daddr));
10560 		break;
10561 
10562 	case offsetof(struct bpf_sock_ops, local_ip4):
10563 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10564 					  skc_rcv_saddr) != 4);
10565 
10566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10567 					      struct bpf_sock_ops_kern, sk),
10568 				      si->dst_reg, si->src_reg,
10569 				      offsetof(struct bpf_sock_ops_kern, sk));
10570 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10571 				      offsetof(struct sock_common,
10572 					       skc_rcv_saddr));
10573 		break;
10574 
10575 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10576 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10577 #if IS_ENABLED(CONFIG_IPV6)
10578 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10579 					  skc_v6_daddr.s6_addr32[0]) != 4);
10580 
10581 		off = si->off;
10582 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10583 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10584 						struct bpf_sock_ops_kern, sk),
10585 				      si->dst_reg, si->src_reg,
10586 				      offsetof(struct bpf_sock_ops_kern, sk));
10587 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10588 				      offsetof(struct sock_common,
10589 					       skc_v6_daddr.s6_addr32[0]) +
10590 				      off);
10591 #else
10592 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10593 #endif
10594 		break;
10595 
10596 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10597 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10598 #if IS_ENABLED(CONFIG_IPV6)
10599 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10600 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10601 
10602 		off = si->off;
10603 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10604 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10605 						struct bpf_sock_ops_kern, sk),
10606 				      si->dst_reg, si->src_reg,
10607 				      offsetof(struct bpf_sock_ops_kern, sk));
10608 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10609 				      offsetof(struct sock_common,
10610 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10611 				      off);
10612 #else
10613 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10614 #endif
10615 		break;
10616 
10617 	case offsetof(struct bpf_sock_ops, remote_port):
10618 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10619 
10620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10621 						struct bpf_sock_ops_kern, sk),
10622 				      si->dst_reg, si->src_reg,
10623 				      offsetof(struct bpf_sock_ops_kern, sk));
10624 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10625 				      offsetof(struct sock_common, skc_dport));
10626 #ifndef __BIG_ENDIAN_BITFIELD
10627 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10628 #endif
10629 		break;
10630 
10631 	case offsetof(struct bpf_sock_ops, local_port):
10632 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10633 
10634 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10635 						struct bpf_sock_ops_kern, sk),
10636 				      si->dst_reg, si->src_reg,
10637 				      offsetof(struct bpf_sock_ops_kern, sk));
10638 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10639 				      offsetof(struct sock_common, skc_num));
10640 		break;
10641 
10642 	case offsetof(struct bpf_sock_ops, is_fullsock):
10643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10644 						struct bpf_sock_ops_kern,
10645 						is_fullsock),
10646 				      si->dst_reg, si->src_reg,
10647 				      offsetof(struct bpf_sock_ops_kern,
10648 					       is_fullsock));
10649 		break;
10650 
10651 	case offsetof(struct bpf_sock_ops, state):
10652 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10653 
10654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10655 						struct bpf_sock_ops_kern, sk),
10656 				      si->dst_reg, si->src_reg,
10657 				      offsetof(struct bpf_sock_ops_kern, sk));
10658 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10659 				      offsetof(struct sock_common, skc_state));
10660 		break;
10661 
10662 	case offsetof(struct bpf_sock_ops, rtt_min):
10663 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10664 			     sizeof(struct minmax));
10665 		BUILD_BUG_ON(sizeof(struct minmax) <
10666 			     sizeof(struct minmax_sample));
10667 
10668 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10669 						struct bpf_sock_ops_kern, sk),
10670 				      si->dst_reg, si->src_reg,
10671 				      offsetof(struct bpf_sock_ops_kern, sk));
10672 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10673 				      offsetof(struct tcp_sock, rtt_min) +
10674 				      sizeof_field(struct minmax_sample, t));
10675 		break;
10676 
10677 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10678 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10679 				   struct tcp_sock);
10680 		break;
10681 
10682 	case offsetof(struct bpf_sock_ops, sk_txhash):
10683 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10684 					  struct sock, type);
10685 		break;
10686 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10687 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10688 		break;
10689 	case offsetof(struct bpf_sock_ops, srtt_us):
10690 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10691 		break;
10692 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10693 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10694 		break;
10695 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10696 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10697 		break;
10698 	case offsetof(struct bpf_sock_ops, snd_nxt):
10699 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10700 		break;
10701 	case offsetof(struct bpf_sock_ops, snd_una):
10702 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10703 		break;
10704 	case offsetof(struct bpf_sock_ops, mss_cache):
10705 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10706 		break;
10707 	case offsetof(struct bpf_sock_ops, ecn_flags):
10708 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10709 		break;
10710 	case offsetof(struct bpf_sock_ops, rate_delivered):
10711 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10712 		break;
10713 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10714 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10715 		break;
10716 	case offsetof(struct bpf_sock_ops, packets_out):
10717 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10718 		break;
10719 	case offsetof(struct bpf_sock_ops, retrans_out):
10720 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10721 		break;
10722 	case offsetof(struct bpf_sock_ops, total_retrans):
10723 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10724 		break;
10725 	case offsetof(struct bpf_sock_ops, segs_in):
10726 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10727 		break;
10728 	case offsetof(struct bpf_sock_ops, data_segs_in):
10729 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10730 		break;
10731 	case offsetof(struct bpf_sock_ops, segs_out):
10732 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10733 		break;
10734 	case offsetof(struct bpf_sock_ops, data_segs_out):
10735 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10736 		break;
10737 	case offsetof(struct bpf_sock_ops, lost_out):
10738 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10739 		break;
10740 	case offsetof(struct bpf_sock_ops, sacked_out):
10741 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10742 		break;
10743 	case offsetof(struct bpf_sock_ops, bytes_received):
10744 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10745 		break;
10746 	case offsetof(struct bpf_sock_ops, bytes_acked):
10747 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10748 		break;
10749 	case offsetof(struct bpf_sock_ops, sk):
10750 		SOCK_OPS_GET_SK();
10751 		break;
10752 	case offsetof(struct bpf_sock_ops, skb_data_end):
10753 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10754 						       skb_data_end),
10755 				      si->dst_reg, si->src_reg,
10756 				      offsetof(struct bpf_sock_ops_kern,
10757 					       skb_data_end));
10758 		break;
10759 	case offsetof(struct bpf_sock_ops, skb_data):
10760 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10761 						       skb),
10762 				      si->dst_reg, si->src_reg,
10763 				      offsetof(struct bpf_sock_ops_kern,
10764 					       skb));
10765 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10766 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10767 				      si->dst_reg, si->dst_reg,
10768 				      offsetof(struct sk_buff, data));
10769 		break;
10770 	case offsetof(struct bpf_sock_ops, skb_len):
10771 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10772 						       skb),
10773 				      si->dst_reg, si->src_reg,
10774 				      offsetof(struct bpf_sock_ops_kern,
10775 					       skb));
10776 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10777 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10778 				      si->dst_reg, si->dst_reg,
10779 				      offsetof(struct sk_buff, len));
10780 		break;
10781 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10782 		off = offsetof(struct sk_buff, cb);
10783 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10784 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10785 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10786 						       skb),
10787 				      si->dst_reg, si->src_reg,
10788 				      offsetof(struct bpf_sock_ops_kern,
10789 					       skb));
10790 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10791 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10792 						       tcp_flags),
10793 				      si->dst_reg, si->dst_reg, off);
10794 		break;
10795 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10796 		struct bpf_insn *jmp_on_null_skb;
10797 
10798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10799 						       skb),
10800 				      si->dst_reg, si->src_reg,
10801 				      offsetof(struct bpf_sock_ops_kern,
10802 					       skb));
10803 		/* Reserve one insn to test skb == NULL */
10804 		jmp_on_null_skb = insn++;
10805 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10806 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10807 				      bpf_target_off(struct skb_shared_info,
10808 						     hwtstamps, 8,
10809 						     target_size));
10810 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10811 					       insn - jmp_on_null_skb - 1);
10812 		break;
10813 	}
10814 	}
10815 	return insn - insn_buf;
10816 }
10817 
10818 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10819 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10820 						    struct bpf_insn *insn)
10821 {
10822 	int reg;
10823 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10824 			   offsetof(struct sk_skb_cb, temp_reg);
10825 
10826 	if (si->src_reg == si->dst_reg) {
10827 		/* We need an extra register, choose and save a register. */
10828 		reg = BPF_REG_9;
10829 		if (si->src_reg == reg || si->dst_reg == reg)
10830 			reg--;
10831 		if (si->src_reg == reg || si->dst_reg == reg)
10832 			reg--;
10833 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10834 	} else {
10835 		reg = si->dst_reg;
10836 	}
10837 
10838 	/* reg = skb->data */
10839 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10840 			      reg, si->src_reg,
10841 			      offsetof(struct sk_buff, data));
10842 	/* AX = skb->len */
10843 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10844 			      BPF_REG_AX, si->src_reg,
10845 			      offsetof(struct sk_buff, len));
10846 	/* reg = skb->data + skb->len */
10847 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10848 	/* AX = skb->data_len */
10849 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10850 			      BPF_REG_AX, si->src_reg,
10851 			      offsetof(struct sk_buff, data_len));
10852 
10853 	/* reg = skb->data + skb->len - skb->data_len */
10854 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10855 
10856 	if (si->src_reg == si->dst_reg) {
10857 		/* Restore the saved register */
10858 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10859 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10860 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10861 	}
10862 
10863 	return insn;
10864 }
10865 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10866 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10867 				     const struct bpf_insn *si,
10868 				     struct bpf_insn *insn_buf,
10869 				     struct bpf_prog *prog, u32 *target_size)
10870 {
10871 	struct bpf_insn *insn = insn_buf;
10872 	int off;
10873 
10874 	switch (si->off) {
10875 	case offsetof(struct __sk_buff, data_end):
10876 		insn = bpf_convert_data_end_access(si, insn);
10877 		break;
10878 	case offsetof(struct __sk_buff, cb[0]) ...
10879 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10880 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10881 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10882 			      offsetof(struct sk_skb_cb, data)) %
10883 			     sizeof(__u64));
10884 
10885 		prog->cb_access = 1;
10886 		off  = si->off;
10887 		off -= offsetof(struct __sk_buff, cb[0]);
10888 		off += offsetof(struct sk_buff, cb);
10889 		off += offsetof(struct sk_skb_cb, data);
10890 		if (type == BPF_WRITE)
10891 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10892 		else
10893 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10894 					      si->src_reg, off);
10895 		break;
10896 
10897 
10898 	default:
10899 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10900 					      target_size);
10901 	}
10902 
10903 	return insn - insn_buf;
10904 }
10905 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10906 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10907 				     const struct bpf_insn *si,
10908 				     struct bpf_insn *insn_buf,
10909 				     struct bpf_prog *prog, u32 *target_size)
10910 {
10911 	struct bpf_insn *insn = insn_buf;
10912 #if IS_ENABLED(CONFIG_IPV6)
10913 	int off;
10914 #endif
10915 
10916 	/* convert ctx uses the fact sg element is first in struct */
10917 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10918 
10919 	switch (si->off) {
10920 	case offsetof(struct sk_msg_md, data):
10921 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10922 				      si->dst_reg, si->src_reg,
10923 				      offsetof(struct sk_msg, data));
10924 		break;
10925 	case offsetof(struct sk_msg_md, data_end):
10926 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10927 				      si->dst_reg, si->src_reg,
10928 				      offsetof(struct sk_msg, data_end));
10929 		break;
10930 	case offsetof(struct sk_msg_md, family):
10931 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10932 
10933 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10934 					      struct sk_msg, sk),
10935 				      si->dst_reg, si->src_reg,
10936 				      offsetof(struct sk_msg, sk));
10937 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10938 				      offsetof(struct sock_common, skc_family));
10939 		break;
10940 
10941 	case offsetof(struct sk_msg_md, remote_ip4):
10942 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10943 
10944 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10945 						struct sk_msg, sk),
10946 				      si->dst_reg, si->src_reg,
10947 				      offsetof(struct sk_msg, sk));
10948 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10949 				      offsetof(struct sock_common, skc_daddr));
10950 		break;
10951 
10952 	case offsetof(struct sk_msg_md, local_ip4):
10953 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10954 					  skc_rcv_saddr) != 4);
10955 
10956 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10957 					      struct sk_msg, sk),
10958 				      si->dst_reg, si->src_reg,
10959 				      offsetof(struct sk_msg, sk));
10960 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10961 				      offsetof(struct sock_common,
10962 					       skc_rcv_saddr));
10963 		break;
10964 
10965 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10966 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10967 #if IS_ENABLED(CONFIG_IPV6)
10968 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10969 					  skc_v6_daddr.s6_addr32[0]) != 4);
10970 
10971 		off = si->off;
10972 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10973 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10974 						struct sk_msg, sk),
10975 				      si->dst_reg, si->src_reg,
10976 				      offsetof(struct sk_msg, sk));
10977 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10978 				      offsetof(struct sock_common,
10979 					       skc_v6_daddr.s6_addr32[0]) +
10980 				      off);
10981 #else
10982 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10983 #endif
10984 		break;
10985 
10986 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10987 	     offsetof(struct sk_msg_md, local_ip6[3]):
10988 #if IS_ENABLED(CONFIG_IPV6)
10989 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10990 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10991 
10992 		off = si->off;
10993 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10994 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10995 						struct sk_msg, sk),
10996 				      si->dst_reg, si->src_reg,
10997 				      offsetof(struct sk_msg, sk));
10998 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10999 				      offsetof(struct sock_common,
11000 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11001 				      off);
11002 #else
11003 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11004 #endif
11005 		break;
11006 
11007 	case offsetof(struct sk_msg_md, remote_port):
11008 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11009 
11010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11011 						struct sk_msg, sk),
11012 				      si->dst_reg, si->src_reg,
11013 				      offsetof(struct sk_msg, sk));
11014 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11015 				      offsetof(struct sock_common, skc_dport));
11016 #ifndef __BIG_ENDIAN_BITFIELD
11017 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11018 #endif
11019 		break;
11020 
11021 	case offsetof(struct sk_msg_md, local_port):
11022 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11023 
11024 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11025 						struct sk_msg, sk),
11026 				      si->dst_reg, si->src_reg,
11027 				      offsetof(struct sk_msg, sk));
11028 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11029 				      offsetof(struct sock_common, skc_num));
11030 		break;
11031 
11032 	case offsetof(struct sk_msg_md, size):
11033 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11034 				      si->dst_reg, si->src_reg,
11035 				      offsetof(struct sk_msg_sg, size));
11036 		break;
11037 
11038 	case offsetof(struct sk_msg_md, sk):
11039 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11040 				      si->dst_reg, si->src_reg,
11041 				      offsetof(struct sk_msg, sk));
11042 		break;
11043 	}
11044 
11045 	return insn - insn_buf;
11046 }
11047 
11048 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11049 	.get_func_proto		= sk_filter_func_proto,
11050 	.is_valid_access	= sk_filter_is_valid_access,
11051 	.convert_ctx_access	= bpf_convert_ctx_access,
11052 	.gen_ld_abs		= bpf_gen_ld_abs,
11053 };
11054 
11055 const struct bpf_prog_ops sk_filter_prog_ops = {
11056 	.test_run		= bpf_prog_test_run_skb,
11057 };
11058 
11059 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11060 	.get_func_proto		= tc_cls_act_func_proto,
11061 	.is_valid_access	= tc_cls_act_is_valid_access,
11062 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11063 	.gen_prologue		= tc_cls_act_prologue,
11064 	.gen_ld_abs		= bpf_gen_ld_abs,
11065 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11066 };
11067 
11068 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11069 	.test_run		= bpf_prog_test_run_skb,
11070 };
11071 
11072 const struct bpf_verifier_ops xdp_verifier_ops = {
11073 	.get_func_proto		= xdp_func_proto,
11074 	.is_valid_access	= xdp_is_valid_access,
11075 	.convert_ctx_access	= xdp_convert_ctx_access,
11076 	.gen_prologue		= bpf_noop_prologue,
11077 	.btf_struct_access	= xdp_btf_struct_access,
11078 };
11079 
11080 const struct bpf_prog_ops xdp_prog_ops = {
11081 	.test_run		= bpf_prog_test_run_xdp,
11082 };
11083 
11084 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11085 	.get_func_proto		= cg_skb_func_proto,
11086 	.is_valid_access	= cg_skb_is_valid_access,
11087 	.convert_ctx_access	= bpf_convert_ctx_access,
11088 };
11089 
11090 const struct bpf_prog_ops cg_skb_prog_ops = {
11091 	.test_run		= bpf_prog_test_run_skb,
11092 };
11093 
11094 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11095 	.get_func_proto		= lwt_in_func_proto,
11096 	.is_valid_access	= lwt_is_valid_access,
11097 	.convert_ctx_access	= bpf_convert_ctx_access,
11098 };
11099 
11100 const struct bpf_prog_ops lwt_in_prog_ops = {
11101 	.test_run		= bpf_prog_test_run_skb,
11102 };
11103 
11104 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11105 	.get_func_proto		= lwt_out_func_proto,
11106 	.is_valid_access	= lwt_is_valid_access,
11107 	.convert_ctx_access	= bpf_convert_ctx_access,
11108 };
11109 
11110 const struct bpf_prog_ops lwt_out_prog_ops = {
11111 	.test_run		= bpf_prog_test_run_skb,
11112 };
11113 
11114 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11115 	.get_func_proto		= lwt_xmit_func_proto,
11116 	.is_valid_access	= lwt_is_valid_access,
11117 	.convert_ctx_access	= bpf_convert_ctx_access,
11118 	.gen_prologue		= tc_cls_act_prologue,
11119 };
11120 
11121 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11122 	.test_run		= bpf_prog_test_run_skb,
11123 };
11124 
11125 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11126 	.get_func_proto		= lwt_seg6local_func_proto,
11127 	.is_valid_access	= lwt_is_valid_access,
11128 	.convert_ctx_access	= bpf_convert_ctx_access,
11129 };
11130 
11131 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11132 };
11133 
11134 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11135 	.get_func_proto		= sock_filter_func_proto,
11136 	.is_valid_access	= sock_filter_is_valid_access,
11137 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11138 };
11139 
11140 const struct bpf_prog_ops cg_sock_prog_ops = {
11141 };
11142 
11143 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11144 	.get_func_proto		= sock_addr_func_proto,
11145 	.is_valid_access	= sock_addr_is_valid_access,
11146 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11147 };
11148 
11149 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11150 };
11151 
11152 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11153 	.get_func_proto		= sock_ops_func_proto,
11154 	.is_valid_access	= sock_ops_is_valid_access,
11155 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11156 };
11157 
11158 const struct bpf_prog_ops sock_ops_prog_ops = {
11159 };
11160 
11161 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11162 	.get_func_proto		= sk_skb_func_proto,
11163 	.is_valid_access	= sk_skb_is_valid_access,
11164 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11165 	.gen_prologue		= sk_skb_prologue,
11166 };
11167 
11168 const struct bpf_prog_ops sk_skb_prog_ops = {
11169 };
11170 
11171 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11172 	.get_func_proto		= sk_msg_func_proto,
11173 	.is_valid_access	= sk_msg_is_valid_access,
11174 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11175 	.gen_prologue		= bpf_noop_prologue,
11176 };
11177 
11178 const struct bpf_prog_ops sk_msg_prog_ops = {
11179 };
11180 
11181 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11182 	.get_func_proto		= flow_dissector_func_proto,
11183 	.is_valid_access	= flow_dissector_is_valid_access,
11184 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11185 };
11186 
11187 const struct bpf_prog_ops flow_dissector_prog_ops = {
11188 	.test_run		= bpf_prog_test_run_flow_dissector,
11189 };
11190 
sk_detach_filter(struct sock * sk)11191 int sk_detach_filter(struct sock *sk)
11192 {
11193 	int ret = -ENOENT;
11194 	struct sk_filter *filter;
11195 
11196 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11197 		return -EPERM;
11198 
11199 	filter = rcu_dereference_protected(sk->sk_filter,
11200 					   lockdep_sock_is_held(sk));
11201 	if (filter) {
11202 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11203 		sk_filter_uncharge(sk, filter);
11204 		ret = 0;
11205 	}
11206 
11207 	return ret;
11208 }
11209 EXPORT_SYMBOL_GPL(sk_detach_filter);
11210 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11211 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11212 {
11213 	struct sock_fprog_kern *fprog;
11214 	struct sk_filter *filter;
11215 	int ret = 0;
11216 
11217 	sockopt_lock_sock(sk);
11218 	filter = rcu_dereference_protected(sk->sk_filter,
11219 					   lockdep_sock_is_held(sk));
11220 	if (!filter)
11221 		goto out;
11222 
11223 	/* We're copying the filter that has been originally attached,
11224 	 * so no conversion/decode needed anymore. eBPF programs that
11225 	 * have no original program cannot be dumped through this.
11226 	 */
11227 	ret = -EACCES;
11228 	fprog = filter->prog->orig_prog;
11229 	if (!fprog)
11230 		goto out;
11231 
11232 	ret = fprog->len;
11233 	if (!len)
11234 		/* User space only enquires number of filter blocks. */
11235 		goto out;
11236 
11237 	ret = -EINVAL;
11238 	if (len < fprog->len)
11239 		goto out;
11240 
11241 	ret = -EFAULT;
11242 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11243 		goto out;
11244 
11245 	/* Instead of bytes, the API requests to return the number
11246 	 * of filter blocks.
11247 	 */
11248 	ret = fprog->len;
11249 out:
11250 	sockopt_release_sock(sk);
11251 	return ret;
11252 }
11253 
11254 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11255 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11256 				    struct sock_reuseport *reuse,
11257 				    struct sock *sk, struct sk_buff *skb,
11258 				    struct sock *migrating_sk,
11259 				    u32 hash)
11260 {
11261 	reuse_kern->skb = skb;
11262 	reuse_kern->sk = sk;
11263 	reuse_kern->selected_sk = NULL;
11264 	reuse_kern->migrating_sk = migrating_sk;
11265 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11266 	reuse_kern->hash = hash;
11267 	reuse_kern->reuseport_id = reuse->reuseport_id;
11268 	reuse_kern->bind_inany = reuse->bind_inany;
11269 }
11270 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11271 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11272 				  struct bpf_prog *prog, struct sk_buff *skb,
11273 				  struct sock *migrating_sk,
11274 				  u32 hash)
11275 {
11276 	struct sk_reuseport_kern reuse_kern;
11277 	enum sk_action action;
11278 
11279 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11280 	action = bpf_prog_run(prog, &reuse_kern);
11281 
11282 	if (action == SK_PASS)
11283 		return reuse_kern.selected_sk;
11284 	else
11285 		return ERR_PTR(-ECONNREFUSED);
11286 }
11287 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11288 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11289 	   struct bpf_map *, map, void *, key, u32, flags)
11290 {
11291 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11292 	struct sock_reuseport *reuse;
11293 	struct sock *selected_sk;
11294 	int err;
11295 
11296 	selected_sk = map->ops->map_lookup_elem(map, key);
11297 	if (!selected_sk)
11298 		return -ENOENT;
11299 
11300 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11301 	if (!reuse) {
11302 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11303 		 * The only (!reuse) case here is - the sk has already been
11304 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11305 		 *
11306 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11307 		 * the sk may never be in the reuseport group to begin with.
11308 		 */
11309 		err = is_sockarray ? -ENOENT : -EINVAL;
11310 		goto error;
11311 	}
11312 
11313 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11314 		struct sock *sk = reuse_kern->sk;
11315 
11316 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11317 			err = -EPROTOTYPE;
11318 		} else if (sk->sk_family != selected_sk->sk_family) {
11319 			err = -EAFNOSUPPORT;
11320 		} else {
11321 			/* Catch all. Likely bound to a different sockaddr. */
11322 			err = -EBADFD;
11323 		}
11324 		goto error;
11325 	}
11326 
11327 	reuse_kern->selected_sk = selected_sk;
11328 
11329 	return 0;
11330 error:
11331 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11332 	if (sk_is_refcounted(selected_sk))
11333 		sock_put(selected_sk);
11334 
11335 	return err;
11336 }
11337 
11338 static const struct bpf_func_proto sk_select_reuseport_proto = {
11339 	.func           = sk_select_reuseport,
11340 	.gpl_only       = false,
11341 	.ret_type       = RET_INTEGER,
11342 	.arg1_type	= ARG_PTR_TO_CTX,
11343 	.arg2_type      = ARG_CONST_MAP_PTR,
11344 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11345 	.arg4_type	= ARG_ANYTHING,
11346 };
11347 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11348 BPF_CALL_4(sk_reuseport_load_bytes,
11349 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11350 	   void *, to, u32, len)
11351 {
11352 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11353 }
11354 
11355 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11356 	.func		= sk_reuseport_load_bytes,
11357 	.gpl_only	= false,
11358 	.ret_type	= RET_INTEGER,
11359 	.arg1_type	= ARG_PTR_TO_CTX,
11360 	.arg2_type	= ARG_ANYTHING,
11361 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11362 	.arg4_type	= ARG_CONST_SIZE,
11363 };
11364 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11365 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11366 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11367 	   void *, to, u32, len, u32, start_header)
11368 {
11369 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11370 					       len, start_header);
11371 }
11372 
11373 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11374 	.func		= sk_reuseport_load_bytes_relative,
11375 	.gpl_only	= false,
11376 	.ret_type	= RET_INTEGER,
11377 	.arg1_type	= ARG_PTR_TO_CTX,
11378 	.arg2_type	= ARG_ANYTHING,
11379 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11380 	.arg4_type	= ARG_CONST_SIZE,
11381 	.arg5_type	= ARG_ANYTHING,
11382 };
11383 
11384 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11385 sk_reuseport_func_proto(enum bpf_func_id func_id,
11386 			const struct bpf_prog *prog)
11387 {
11388 	switch (func_id) {
11389 	case BPF_FUNC_sk_select_reuseport:
11390 		return &sk_select_reuseport_proto;
11391 	case BPF_FUNC_skb_load_bytes:
11392 		return &sk_reuseport_load_bytes_proto;
11393 	case BPF_FUNC_skb_load_bytes_relative:
11394 		return &sk_reuseport_load_bytes_relative_proto;
11395 	case BPF_FUNC_get_socket_cookie:
11396 		return &bpf_get_socket_ptr_cookie_proto;
11397 	case BPF_FUNC_ktime_get_coarse_ns:
11398 		return &bpf_ktime_get_coarse_ns_proto;
11399 	default:
11400 		return bpf_base_func_proto(func_id, prog);
11401 	}
11402 }
11403 
11404 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11405 sk_reuseport_is_valid_access(int off, int size,
11406 			     enum bpf_access_type type,
11407 			     const struct bpf_prog *prog,
11408 			     struct bpf_insn_access_aux *info)
11409 {
11410 	const u32 size_default = sizeof(__u32);
11411 
11412 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11413 	    off % size || type != BPF_READ)
11414 		return false;
11415 
11416 	switch (off) {
11417 	case offsetof(struct sk_reuseport_md, data):
11418 		info->reg_type = PTR_TO_PACKET;
11419 		return size == sizeof(__u64);
11420 
11421 	case offsetof(struct sk_reuseport_md, data_end):
11422 		info->reg_type = PTR_TO_PACKET_END;
11423 		return size == sizeof(__u64);
11424 
11425 	case offsetof(struct sk_reuseport_md, hash):
11426 		return size == size_default;
11427 
11428 	case offsetof(struct sk_reuseport_md, sk):
11429 		info->reg_type = PTR_TO_SOCKET;
11430 		return size == sizeof(__u64);
11431 
11432 	case offsetof(struct sk_reuseport_md, migrating_sk):
11433 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11434 		return size == sizeof(__u64);
11435 
11436 	/* Fields that allow narrowing */
11437 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11438 		if (size < sizeof_field(struct sk_buff, protocol))
11439 			return false;
11440 		fallthrough;
11441 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11442 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11443 	case bpf_ctx_range(struct sk_reuseport_md, len):
11444 		bpf_ctx_record_field_size(info, size_default);
11445 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11446 
11447 	default:
11448 		return false;
11449 	}
11450 }
11451 
11452 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11453 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11454 			      si->dst_reg, si->src_reg,			\
11455 			      bpf_target_off(struct sk_reuseport_kern, F, \
11456 					     sizeof_field(struct sk_reuseport_kern, F), \
11457 					     target_size));		\
11458 	})
11459 
11460 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11461 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11462 				    struct sk_buff,			\
11463 				    skb,				\
11464 				    SKB_FIELD)
11465 
11466 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11467 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11468 				    struct sock,			\
11469 				    sk,					\
11470 				    SK_FIELD)
11471 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11472 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11473 					   const struct bpf_insn *si,
11474 					   struct bpf_insn *insn_buf,
11475 					   struct bpf_prog *prog,
11476 					   u32 *target_size)
11477 {
11478 	struct bpf_insn *insn = insn_buf;
11479 
11480 	switch (si->off) {
11481 	case offsetof(struct sk_reuseport_md, data):
11482 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11483 		break;
11484 
11485 	case offsetof(struct sk_reuseport_md, len):
11486 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11487 		break;
11488 
11489 	case offsetof(struct sk_reuseport_md, eth_protocol):
11490 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11491 		break;
11492 
11493 	case offsetof(struct sk_reuseport_md, ip_protocol):
11494 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11495 		break;
11496 
11497 	case offsetof(struct sk_reuseport_md, data_end):
11498 		SK_REUSEPORT_LOAD_FIELD(data_end);
11499 		break;
11500 
11501 	case offsetof(struct sk_reuseport_md, hash):
11502 		SK_REUSEPORT_LOAD_FIELD(hash);
11503 		break;
11504 
11505 	case offsetof(struct sk_reuseport_md, bind_inany):
11506 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11507 		break;
11508 
11509 	case offsetof(struct sk_reuseport_md, sk):
11510 		SK_REUSEPORT_LOAD_FIELD(sk);
11511 		break;
11512 
11513 	case offsetof(struct sk_reuseport_md, migrating_sk):
11514 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11515 		break;
11516 	}
11517 
11518 	return insn - insn_buf;
11519 }
11520 
11521 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11522 	.get_func_proto		= sk_reuseport_func_proto,
11523 	.is_valid_access	= sk_reuseport_is_valid_access,
11524 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11525 };
11526 
11527 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11528 };
11529 
11530 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11531 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11532 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11533 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11534 	   struct sock *, sk, u64, flags)
11535 {
11536 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11537 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11538 		return -EINVAL;
11539 	if (unlikely(sk && sk_is_refcounted(sk)))
11540 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11541 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11542 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11543 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11544 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11545 
11546 	/* Check if socket is suitable for packet L3/L4 protocol */
11547 	if (sk && sk->sk_protocol != ctx->protocol)
11548 		return -EPROTOTYPE;
11549 	if (sk && sk->sk_family != ctx->family &&
11550 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11551 		return -EAFNOSUPPORT;
11552 
11553 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11554 		return -EEXIST;
11555 
11556 	/* Select socket as lookup result */
11557 	ctx->selected_sk = sk;
11558 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11559 	return 0;
11560 }
11561 
11562 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11563 	.func		= bpf_sk_lookup_assign,
11564 	.gpl_only	= false,
11565 	.ret_type	= RET_INTEGER,
11566 	.arg1_type	= ARG_PTR_TO_CTX,
11567 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11568 	.arg3_type	= ARG_ANYTHING,
11569 };
11570 
11571 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11572 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11573 {
11574 	switch (func_id) {
11575 	case BPF_FUNC_perf_event_output:
11576 		return &bpf_event_output_data_proto;
11577 	case BPF_FUNC_sk_assign:
11578 		return &bpf_sk_lookup_assign_proto;
11579 	case BPF_FUNC_sk_release:
11580 		return &bpf_sk_release_proto;
11581 	default:
11582 		return bpf_sk_base_func_proto(func_id, prog);
11583 	}
11584 }
11585 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11586 static bool sk_lookup_is_valid_access(int off, int size,
11587 				      enum bpf_access_type type,
11588 				      const struct bpf_prog *prog,
11589 				      struct bpf_insn_access_aux *info)
11590 {
11591 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11592 		return false;
11593 	if (off % size != 0)
11594 		return false;
11595 	if (type != BPF_READ)
11596 		return false;
11597 
11598 	switch (off) {
11599 	case offsetof(struct bpf_sk_lookup, sk):
11600 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11601 		return size == sizeof(__u64);
11602 
11603 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11604 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11605 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11606 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11607 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11608 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11609 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11610 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11611 		bpf_ctx_record_field_size(info, sizeof(__u32));
11612 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11613 
11614 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11615 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11616 		if (size == sizeof(__u32))
11617 			return true;
11618 		bpf_ctx_record_field_size(info, sizeof(__be16));
11619 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11620 
11621 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11622 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11623 		/* Allow access to zero padding for backward compatibility */
11624 		bpf_ctx_record_field_size(info, sizeof(__u16));
11625 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11626 
11627 	default:
11628 		return false;
11629 	}
11630 }
11631 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11632 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11633 					const struct bpf_insn *si,
11634 					struct bpf_insn *insn_buf,
11635 					struct bpf_prog *prog,
11636 					u32 *target_size)
11637 {
11638 	struct bpf_insn *insn = insn_buf;
11639 
11640 	switch (si->off) {
11641 	case offsetof(struct bpf_sk_lookup, sk):
11642 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11643 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11644 		break;
11645 
11646 	case offsetof(struct bpf_sk_lookup, family):
11647 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11648 				      bpf_target_off(struct bpf_sk_lookup_kern,
11649 						     family, 2, target_size));
11650 		break;
11651 
11652 	case offsetof(struct bpf_sk_lookup, protocol):
11653 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11654 				      bpf_target_off(struct bpf_sk_lookup_kern,
11655 						     protocol, 2, target_size));
11656 		break;
11657 
11658 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11659 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11660 				      bpf_target_off(struct bpf_sk_lookup_kern,
11661 						     v4.saddr, 4, target_size));
11662 		break;
11663 
11664 	case offsetof(struct bpf_sk_lookup, local_ip4):
11665 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11666 				      bpf_target_off(struct bpf_sk_lookup_kern,
11667 						     v4.daddr, 4, target_size));
11668 		break;
11669 
11670 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11671 				remote_ip6[0], remote_ip6[3]): {
11672 #if IS_ENABLED(CONFIG_IPV6)
11673 		int off = si->off;
11674 
11675 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11676 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11677 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11678 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11679 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11680 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11681 #else
11682 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11683 #endif
11684 		break;
11685 	}
11686 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11687 				local_ip6[0], local_ip6[3]): {
11688 #if IS_ENABLED(CONFIG_IPV6)
11689 		int off = si->off;
11690 
11691 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11692 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11693 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11694 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11695 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11696 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11697 #else
11698 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11699 #endif
11700 		break;
11701 	}
11702 	case offsetof(struct bpf_sk_lookup, remote_port):
11703 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11704 				      bpf_target_off(struct bpf_sk_lookup_kern,
11705 						     sport, 2, target_size));
11706 		break;
11707 
11708 	case offsetofend(struct bpf_sk_lookup, remote_port):
11709 		*target_size = 2;
11710 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11711 		break;
11712 
11713 	case offsetof(struct bpf_sk_lookup, local_port):
11714 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11715 				      bpf_target_off(struct bpf_sk_lookup_kern,
11716 						     dport, 2, target_size));
11717 		break;
11718 
11719 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11720 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11721 				      bpf_target_off(struct bpf_sk_lookup_kern,
11722 						     ingress_ifindex, 4, target_size));
11723 		break;
11724 	}
11725 
11726 	return insn - insn_buf;
11727 }
11728 
11729 const struct bpf_prog_ops sk_lookup_prog_ops = {
11730 	.test_run = bpf_prog_test_run_sk_lookup,
11731 };
11732 
11733 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11734 	.get_func_proto		= sk_lookup_func_proto,
11735 	.is_valid_access	= sk_lookup_is_valid_access,
11736 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11737 };
11738 
11739 #endif /* CONFIG_INET */
11740 
DEFINE_BPF_DISPATCHER(xdp)11741 DEFINE_BPF_DISPATCHER(xdp)
11742 
11743 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11744 {
11745 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11746 }
11747 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11748 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11749 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11750 BTF_SOCK_TYPE_xxx
11751 #undef BTF_SOCK_TYPE
11752 
11753 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11754 {
11755 	/* tcp6_sock type is not generated in dwarf and hence btf,
11756 	 * trigger an explicit type generation here.
11757 	 */
11758 	BTF_TYPE_EMIT(struct tcp6_sock);
11759 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11760 	    sk->sk_family == AF_INET6)
11761 		return (unsigned long)sk;
11762 
11763 	return (unsigned long)NULL;
11764 }
11765 
11766 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11767 	.func			= bpf_skc_to_tcp6_sock,
11768 	.gpl_only		= false,
11769 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11770 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11771 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11772 };
11773 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11774 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11775 {
11776 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11777 		return (unsigned long)sk;
11778 
11779 	return (unsigned long)NULL;
11780 }
11781 
11782 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11783 	.func			= bpf_skc_to_tcp_sock,
11784 	.gpl_only		= false,
11785 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11786 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11787 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11788 };
11789 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11790 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11791 {
11792 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11793 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11794 	 */
11795 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11796 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11797 
11798 #ifdef CONFIG_INET
11799 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11800 		return (unsigned long)sk;
11801 #endif
11802 
11803 #if IS_BUILTIN(CONFIG_IPV6)
11804 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11805 		return (unsigned long)sk;
11806 #endif
11807 
11808 	return (unsigned long)NULL;
11809 }
11810 
11811 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11812 	.func			= bpf_skc_to_tcp_timewait_sock,
11813 	.gpl_only		= false,
11814 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11815 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11816 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11817 };
11818 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11819 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11820 {
11821 #ifdef CONFIG_INET
11822 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11823 		return (unsigned long)sk;
11824 #endif
11825 
11826 #if IS_BUILTIN(CONFIG_IPV6)
11827 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11828 		return (unsigned long)sk;
11829 #endif
11830 
11831 	return (unsigned long)NULL;
11832 }
11833 
11834 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11835 	.func			= bpf_skc_to_tcp_request_sock,
11836 	.gpl_only		= false,
11837 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11838 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11839 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11840 };
11841 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11842 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11843 {
11844 	/* udp6_sock type is not generated in dwarf and hence btf,
11845 	 * trigger an explicit type generation here.
11846 	 */
11847 	BTF_TYPE_EMIT(struct udp6_sock);
11848 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11849 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11850 		return (unsigned long)sk;
11851 
11852 	return (unsigned long)NULL;
11853 }
11854 
11855 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11856 	.func			= bpf_skc_to_udp6_sock,
11857 	.gpl_only		= false,
11858 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11859 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11860 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11861 };
11862 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11863 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11864 {
11865 	/* unix_sock type is not generated in dwarf and hence btf,
11866 	 * trigger an explicit type generation here.
11867 	 */
11868 	BTF_TYPE_EMIT(struct unix_sock);
11869 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11870 		return (unsigned long)sk;
11871 
11872 	return (unsigned long)NULL;
11873 }
11874 
11875 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11876 	.func			= bpf_skc_to_unix_sock,
11877 	.gpl_only		= false,
11878 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11879 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11880 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11881 };
11882 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11883 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11884 {
11885 	BTF_TYPE_EMIT(struct mptcp_sock);
11886 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11887 }
11888 
11889 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11890 	.func		= bpf_skc_to_mptcp_sock,
11891 	.gpl_only	= false,
11892 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11893 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11894 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11895 };
11896 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11897 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11898 {
11899 	return (unsigned long)sock_from_file(file);
11900 }
11901 
11902 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11903 BTF_ID(struct, socket)
11904 BTF_ID(struct, file)
11905 
11906 const struct bpf_func_proto bpf_sock_from_file_proto = {
11907 	.func		= bpf_sock_from_file,
11908 	.gpl_only	= false,
11909 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11910 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11911 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11912 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11913 };
11914 
11915 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11916 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11917 {
11918 	const struct bpf_func_proto *func;
11919 
11920 	switch (func_id) {
11921 	case BPF_FUNC_skc_to_tcp6_sock:
11922 		func = &bpf_skc_to_tcp6_sock_proto;
11923 		break;
11924 	case BPF_FUNC_skc_to_tcp_sock:
11925 		func = &bpf_skc_to_tcp_sock_proto;
11926 		break;
11927 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11928 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11929 		break;
11930 	case BPF_FUNC_skc_to_tcp_request_sock:
11931 		func = &bpf_skc_to_tcp_request_sock_proto;
11932 		break;
11933 	case BPF_FUNC_skc_to_udp6_sock:
11934 		func = &bpf_skc_to_udp6_sock_proto;
11935 		break;
11936 	case BPF_FUNC_skc_to_unix_sock:
11937 		func = &bpf_skc_to_unix_sock_proto;
11938 		break;
11939 	case BPF_FUNC_skc_to_mptcp_sock:
11940 		func = &bpf_skc_to_mptcp_sock_proto;
11941 		break;
11942 	case BPF_FUNC_ktime_get_coarse_ns:
11943 		return &bpf_ktime_get_coarse_ns_proto;
11944 	default:
11945 		return bpf_base_func_proto(func_id, prog);
11946 	}
11947 
11948 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11949 		return NULL;
11950 
11951 	return func;
11952 }
11953 
11954 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11955 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11956 				    struct bpf_dynptr *ptr__uninit)
11957 {
11958 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11959 	struct sk_buff *skb = (struct sk_buff *)s;
11960 
11961 	if (flags) {
11962 		bpf_dynptr_set_null(ptr);
11963 		return -EINVAL;
11964 	}
11965 
11966 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11967 
11968 	return 0;
11969 }
11970 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)11971 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11972 				    struct bpf_dynptr *ptr__uninit)
11973 {
11974 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11975 	struct xdp_buff *xdp = (struct xdp_buff *)x;
11976 
11977 	if (flags) {
11978 		bpf_dynptr_set_null(ptr);
11979 		return -EINVAL;
11980 	}
11981 
11982 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11983 
11984 	return 0;
11985 }
11986 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11987 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11988 					   const u8 *sun_path, u32 sun_path__sz)
11989 {
11990 	struct sockaddr_un *un;
11991 
11992 	if (sa_kern->sk->sk_family != AF_UNIX)
11993 		return -EINVAL;
11994 
11995 	/* We do not allow changing the address to unnamed or larger than the
11996 	 * maximum allowed address size for a unix sockaddr.
11997 	 */
11998 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11999 		return -EINVAL;
12000 
12001 	un = (struct sockaddr_un *)sa_kern->uaddr;
12002 	memcpy(un->sun_path, sun_path, sun_path__sz);
12003 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12004 
12005 	return 0;
12006 }
12007 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12008 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12009 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12010 {
12011 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12012 	struct sk_buff *skb = (struct sk_buff *)s;
12013 	const struct request_sock_ops *ops;
12014 	struct inet_request_sock *ireq;
12015 	struct tcp_request_sock *treq;
12016 	struct request_sock *req;
12017 	struct net *net;
12018 	__u16 min_mss;
12019 	u32 tsoff = 0;
12020 
12021 	if (attrs__sz != sizeof(*attrs) ||
12022 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12023 		return -EINVAL;
12024 
12025 	if (!skb_at_tc_ingress(skb))
12026 		return -EINVAL;
12027 
12028 	net = dev_net(skb->dev);
12029 	if (net != sock_net(sk))
12030 		return -ENETUNREACH;
12031 
12032 	switch (skb->protocol) {
12033 	case htons(ETH_P_IP):
12034 		ops = &tcp_request_sock_ops;
12035 		min_mss = 536;
12036 		break;
12037 #if IS_BUILTIN(CONFIG_IPV6)
12038 	case htons(ETH_P_IPV6):
12039 		ops = &tcp6_request_sock_ops;
12040 		min_mss = IPV6_MIN_MTU - 60;
12041 		break;
12042 #endif
12043 	default:
12044 		return -EINVAL;
12045 	}
12046 
12047 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12048 	    sk_is_mptcp(sk))
12049 		return -EINVAL;
12050 
12051 	if (attrs->mss < min_mss)
12052 		return -EINVAL;
12053 
12054 	if (attrs->wscale_ok) {
12055 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12056 			return -EINVAL;
12057 
12058 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12059 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12060 			return -EINVAL;
12061 	}
12062 
12063 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12064 		return -EINVAL;
12065 
12066 	if (attrs->tstamp_ok) {
12067 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12068 			return -EINVAL;
12069 
12070 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12071 	}
12072 
12073 	req = inet_reqsk_alloc(ops, sk, false);
12074 	if (!req)
12075 		return -ENOMEM;
12076 
12077 	ireq = inet_rsk(req);
12078 	treq = tcp_rsk(req);
12079 
12080 	req->rsk_listener = sk;
12081 	req->syncookie = 1;
12082 	req->mss = attrs->mss;
12083 	req->ts_recent = attrs->rcv_tsval;
12084 
12085 	ireq->snd_wscale = attrs->snd_wscale;
12086 	ireq->rcv_wscale = attrs->rcv_wscale;
12087 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12088 	ireq->sack_ok = !!attrs->sack_ok;
12089 	ireq->wscale_ok = !!attrs->wscale_ok;
12090 	ireq->ecn_ok = !!attrs->ecn_ok;
12091 
12092 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12093 	treq->ts_off = tsoff;
12094 
12095 	skb_orphan(skb);
12096 	skb->sk = req_to_sk(req);
12097 	skb->destructor = sock_pfree;
12098 
12099 	return 0;
12100 #else
12101 	return -EOPNOTSUPP;
12102 #endif
12103 }
12104 
12105 __bpf_kfunc_end_defs();
12106 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12107 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12108 			       struct bpf_dynptr *ptr__uninit)
12109 {
12110 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12111 	int err;
12112 
12113 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12114 	if (err)
12115 		return err;
12116 
12117 	bpf_dynptr_set_rdonly(ptr);
12118 
12119 	return 0;
12120 }
12121 
12122 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12123 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12124 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12125 
12126 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12127 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12128 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12129 
12130 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12131 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12132 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12133 
12134 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12135 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12136 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12137 
12138 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12139 	.owner = THIS_MODULE,
12140 	.set = &bpf_kfunc_check_set_skb,
12141 };
12142 
12143 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12144 	.owner = THIS_MODULE,
12145 	.set = &bpf_kfunc_check_set_xdp,
12146 };
12147 
12148 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12149 	.owner = THIS_MODULE,
12150 	.set = &bpf_kfunc_check_set_sock_addr,
12151 };
12152 
12153 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12154 	.owner = THIS_MODULE,
12155 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12156 };
12157 
bpf_kfunc_init(void)12158 static int __init bpf_kfunc_init(void)
12159 {
12160 	int ret;
12161 
12162 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12163 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12164 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12165 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12166 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12167 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12168 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12169 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12170 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12171 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12172 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12173 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12174 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12175 					       &bpf_kfunc_set_sock_addr);
12176 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12177 }
12178 late_initcall(bpf_kfunc_init);
12179 
12180 __bpf_kfunc_start_defs();
12181 
12182 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12183  *
12184  * The function expects a non-NULL pointer to a socket, and invokes the
12185  * protocol specific socket destroy handlers.
12186  *
12187  * The helper can only be called from BPF contexts that have acquired the socket
12188  * locks.
12189  *
12190  * Parameters:
12191  * @sock: Pointer to socket to be destroyed
12192  *
12193  * Return:
12194  * On error, may return EPROTONOSUPPORT, EINVAL.
12195  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12196  * 0 otherwise
12197  */
bpf_sock_destroy(struct sock_common * sock)12198 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12199 {
12200 	struct sock *sk = (struct sock *)sock;
12201 
12202 	/* The locking semantics that allow for synchronous execution of the
12203 	 * destroy handlers are only supported for TCP and UDP.
12204 	 * Supporting protocols will need to acquire sock lock in the BPF context
12205 	 * prior to invoking this kfunc.
12206 	 */
12207 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12208 					   sk->sk_protocol != IPPROTO_UDP))
12209 		return -EOPNOTSUPP;
12210 
12211 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12212 }
12213 
12214 __bpf_kfunc_end_defs();
12215 
12216 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12217 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12218 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12219 
12220 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12221 {
12222 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12223 	    prog->expected_attach_type != BPF_TRACE_ITER)
12224 		return -EACCES;
12225 	return 0;
12226 }
12227 
12228 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12229 	.owner = THIS_MODULE,
12230 	.set   = &bpf_sk_iter_kfunc_ids,
12231 	.filter = tracing_iter_filter,
12232 };
12233 
init_subsystem(void)12234 static int init_subsystem(void)
12235 {
12236 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12237 }
12238 late_initcall(init_subsystem);
12239