• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
4  *
5  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6  * Copyright (c) 2012 Paolo Valente.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18 
19 
20 /*  Quick Fair Queueing Plus
21     ========================
22 
23     Sources:
24 
25     [1] Paolo Valente,
26     "Reducing the Execution Time of Fair-Queueing Schedulers."
27     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28 
29     Sources for QFQ:
30 
31     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33 
34     See also:
35     http://retis.sssup.it/~fabio/linux/qfq/
36  */
37 
38 /*
39 
40   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41   classes. Each aggregate is timestamped with a virtual start time S
42   and a virtual finish time F, and scheduled according to its
43   timestamps. S and F are computed as a function of a system virtual
44   time function V. The classes within each aggregate are instead
45   scheduled with DRR.
46 
47   To speed up operations, QFQ+ divides also aggregates into a limited
48   number of groups. Which group a class belongs to depends on the
49   ratio between the maximum packet length for the class and the weight
50   of the class. Groups have their own S and F. In the end, QFQ+
51   schedules groups, then aggregates within groups, then classes within
52   aggregates. See [1] and [2] for a full description.
53 
54   Virtual time computations.
55 
56   S, F and V are all computed in fixed point arithmetic with
57   FRAC_BITS decimal bits.
58 
59   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 	one bit per index.
61   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62 
63   The layout of the bits is as below:
64 
65                    [ MTU_SHIFT ][      FRAC_BITS    ]
66                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
67 				 ^.__grp->index = 0
68 				 *.__grp->slot_shift
69 
70   where MIN_SLOT_SHIFT is derived by difference from the others.
71 
72   The max group index corresponds to Lmax/w_min, where
73   Lmax=1<<MTU_SHIFT, w_min = 1 .
74   From this, and knowing how many groups (MAX_INDEX) we want,
75   we can derive the shift corresponding to each group.
76 
77   Because we often need to compute
78 	F = S + len/w_i  and V = V + len/wsum
79   instead of storing w_i store the value
80 	inv_w = (1<<FRAC_BITS)/w_i
81   so we can do F = S + len * inv_w * wsum.
82   We use W_TOT in the formulas so we can easily move between
83   static and adaptive weight sum.
84 
85   The per-scheduler-instance data contain all the data structures
86   for the scheduler: bitmaps and bucket lists.
87 
88  */
89 
90 /*
91  * Maximum number of consecutive slots occupied by backlogged classes
92  * inside a group.
93  */
94 #define QFQ_MAX_SLOTS	32
95 
96 /*
97  * Shifts used for aggregate<->group mapping.  We allow class weights that are
98  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99  * group with the smallest index that can support the L_i / r_i configured
100  * for the classes in the aggregate.
101  *
102  * grp->index is the index of the group; and grp->slot_shift
103  * is the shift for the corresponding (scaled) sigma_i.
104  */
105 #define QFQ_MAX_INDEX		24
106 #define QFQ_MAX_WSHIFT		10
107 
108 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
110 
111 #define FRAC_BITS		30	/* fixed point arithmetic */
112 #define ONE_FP			(1UL << FRAC_BITS)
113 
114 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
115 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX		(1UL << QFQ_MTU_SHIFT)
117 
118 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
119 
120 /*
121  * Possible group states.  These values are used as indexes for the bitmaps
122  * array of struct qfq_queue.
123  */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125 
126 struct qfq_group;
127 
128 struct qfq_aggregate;
129 
130 struct qfq_class {
131 	struct Qdisc_class_common common;
132 
133 	struct gnet_stats_basic_sync bstats;
134 	struct gnet_stats_queue qstats;
135 	struct net_rate_estimator __rcu *rate_est;
136 	struct Qdisc *qdisc;
137 	struct list_head alist;		/* Link for active-classes list. */
138 	struct qfq_aggregate *agg;	/* Parent aggregate. */
139 	int deficit;			/* DRR deficit counter. */
140 };
141 
142 struct qfq_aggregate {
143 	struct hlist_node next;	/* Link for the slot list. */
144 	u64 S, F;		/* flow timestamps (exact) */
145 
146 	/* group we belong to. In principle we would need the index,
147 	 * which is log_2(lmax/weight), but we never reference it
148 	 * directly, only the group.
149 	 */
150 	struct qfq_group *grp;
151 
152 	/* these are copied from the flowset. */
153 	u32	class_weight; /* Weight of each class in this aggregate. */
154 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
155 	int	lmax;
156 
157 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
158 	u32	budgetmax;  /* Max budget for this aggregate. */
159 	u32	initial_budget, budget;     /* Initial and current budget. */
160 
161 	int		  num_classes;	/* Number of classes in this aggr. */
162 	struct list_head  active;	/* DRR queue of active classes. */
163 
164 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
165 };
166 
167 struct qfq_group {
168 	u64 S, F;			/* group timestamps (approx). */
169 	unsigned int slot_shift;	/* Slot shift. */
170 	unsigned int index;		/* Group index. */
171 	unsigned int front;		/* Index of the front slot. */
172 	unsigned long full_slots;	/* non-empty slots */
173 
174 	/* Array of RR lists of active aggregates. */
175 	struct hlist_head slots[QFQ_MAX_SLOTS];
176 };
177 
178 struct qfq_sched {
179 	struct tcf_proto __rcu *filter_list;
180 	struct tcf_block	*block;
181 	struct Qdisc_class_hash clhash;
182 
183 	u64			oldV, V;	/* Precise virtual times. */
184 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
185 	u32			wsum;		/* weight sum */
186 	u32			iwsum;		/* inverse weight sum */
187 
188 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
189 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
191 
192 	u32 max_agg_classes;		/* Max number of classes per aggr. */
193 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194 };
195 
196 /*
197  * Possible reasons why the timestamps of an aggregate are updated
198  * enqueue: the aggregate switches from idle to active and must scheduled
199  *	    for service
200  * requeue: the aggregate finishes its budget, so it stops being served and
201  *	    must be rescheduled for service
202  */
203 enum update_reason {enqueue, requeue};
204 
cl_is_active(struct qfq_class * cl)205 static bool cl_is_active(struct qfq_class *cl)
206 {
207 	return !list_empty(&cl->alist);
208 }
209 
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static const struct netlink_range_validation lmax_range = {
222 	.min = QFQ_MIN_LMAX,
223 	.max = QFQ_MAX_LMAX,
224 };
225 
226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
227 	[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
228 	[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
229 };
230 
231 /*
232  * Calculate a flow index, given its weight and maximum packet length.
233  * index = log_2(maxlen/weight) but we need to apply the scaling.
234  * This is used only once at flow creation.
235  */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
237 {
238 	u64 slot_size = (u64)maxlen * inv_w;
239 	unsigned long size_map;
240 	int index = 0;
241 
242 	size_map = slot_size >> min_slot_shift;
243 	if (!size_map)
244 		goto out;
245 
246 	index = __fls(size_map) + 1;	/* basically a log_2 */
247 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
248 
249 	if (index < 0)
250 		index = 0;
251 out:
252 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
253 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
254 
255 	return index;
256 }
257 
258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
260 			     enum update_reason);
261 
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
263 			 u32 lmax, u32 weight)
264 {
265 	INIT_LIST_HEAD(&agg->active);
266 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
267 
268 	agg->lmax = lmax;
269 	agg->class_weight = weight;
270 }
271 
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
273 					  u32 lmax, u32 weight)
274 {
275 	struct qfq_aggregate *agg;
276 
277 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
278 		if (agg->lmax == lmax && agg->class_weight == weight)
279 			return agg;
280 
281 	return NULL;
282 }
283 
284 
285 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
287 			   int new_num_classes)
288 {
289 	u32 new_agg_weight;
290 
291 	if (new_num_classes == q->max_agg_classes)
292 		hlist_del_init(&agg->nonfull_next);
293 
294 	if (agg->num_classes > new_num_classes &&
295 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
296 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
297 
298 	/* The next assignment may let
299 	 * agg->initial_budget > agg->budgetmax
300 	 * hold, we will take it into account in charge_actual_service().
301 	 */
302 	agg->budgetmax = new_num_classes * agg->lmax;
303 	new_agg_weight = agg->class_weight * new_num_classes;
304 	agg->inv_w = ONE_FP/new_agg_weight;
305 
306 	if (agg->grp == NULL) {
307 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
308 				       q->min_slot_shift);
309 		agg->grp = &q->groups[i];
310 	}
311 
312 	q->wsum +=
313 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
314 	q->iwsum = ONE_FP / q->wsum;
315 
316 	agg->num_classes = new_num_classes;
317 }
318 
319 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)320 static void qfq_add_to_agg(struct qfq_sched *q,
321 			   struct qfq_aggregate *agg,
322 			   struct qfq_class *cl)
323 {
324 	cl->agg = agg;
325 
326 	qfq_update_agg(q, agg, agg->num_classes+1);
327 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
328 		list_add_tail(&cl->alist, &agg->active);
329 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
330 		    cl && q->in_serv_agg != agg) /* agg was inactive */
331 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
332 	}
333 }
334 
335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
336 
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
338 {
339 	hlist_del_init(&agg->nonfull_next);
340 	q->wsum -= agg->class_weight;
341 	if (q->wsum != 0)
342 		q->iwsum = ONE_FP / q->wsum;
343 
344 	if (q->in_serv_agg == agg)
345 		q->in_serv_agg = qfq_choose_next_agg(q);
346 	kfree(agg);
347 }
348 
349 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
351 {
352 	struct qfq_aggregate *agg = cl->agg;
353 
354 
355 	list_del_init(&cl->alist); /* remove from RR queue of the aggregate */
356 	if (list_empty(&agg->active)) /* agg is now inactive */
357 		qfq_deactivate_agg(q, agg);
358 }
359 
360 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
362 {
363 	struct qfq_aggregate *agg = cl->agg;
364 
365 	cl->agg = NULL;
366 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
367 		qfq_destroy_agg(q, agg);
368 		return;
369 	}
370 	qfq_update_agg(q, agg, agg->num_classes-1);
371 }
372 
373 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
375 {
376 	if (cl->qdisc->q.qlen > 0) /* class is active */
377 		qfq_deactivate_class(q, cl);
378 
379 	qfq_rm_from_agg(q, cl);
380 }
381 
382 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
384 			   u32 lmax)
385 {
386 	struct qfq_sched *q = qdisc_priv(sch);
387 	struct qfq_aggregate *new_agg;
388 
389 	/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
390 	if (lmax > QFQ_MAX_LMAX)
391 		return -EINVAL;
392 
393 	new_agg = qfq_find_agg(q, lmax, weight);
394 	if (new_agg == NULL) { /* create new aggregate */
395 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 		if (new_agg == NULL)
397 			return -ENOBUFS;
398 		qfq_init_agg(q, new_agg, lmax, weight);
399 	}
400 	qfq_deact_rm_from_agg(q, cl);
401 	qfq_add_to_agg(q, new_agg, cl);
402 
403 	return 0;
404 }
405 
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 			    struct nlattr **tca, unsigned long *arg,
408 			    struct netlink_ext_ack *extack)
409 {
410 	struct qfq_sched *q = qdisc_priv(sch);
411 	struct qfq_class *cl = (struct qfq_class *)*arg;
412 	bool existing = false;
413 	struct nlattr *tb[TCA_QFQ_MAX + 1];
414 	struct qfq_aggregate *new_agg = NULL;
415 	u32 weight, lmax, inv_w, old_weight, old_lmax;
416 	int err;
417 	int delta_w;
418 
419 	if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
420 		NL_SET_ERR_MSG_MOD(extack, "missing options");
421 		return -EINVAL;
422 	}
423 
424 	err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
425 					  qfq_policy, extack);
426 	if (err < 0)
427 		return err;
428 
429 	if (tb[TCA_QFQ_WEIGHT])
430 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
431 	else
432 		weight = 1;
433 
434 	if (tb[TCA_QFQ_LMAX]) {
435 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
436 	} else {
437 		/* MTU size is user controlled */
438 		lmax = psched_mtu(qdisc_dev(sch));
439 		if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
440 			NL_SET_ERR_MSG_MOD(extack,
441 					   "MTU size out of bounds for qfq");
442 			return -EINVAL;
443 		}
444 	}
445 
446 	inv_w = ONE_FP / weight;
447 	weight = ONE_FP / inv_w;
448 
449 	if (cl != NULL) {
450 		sch_tree_lock(sch);
451 		old_weight = cl->agg->class_weight;
452 		old_lmax   = cl->agg->lmax;
453 		sch_tree_unlock(sch);
454 		if (lmax == old_lmax && weight == old_weight)
455 			return 0; /* nothing to change */
456 	}
457 
458 	delta_w = weight - (cl ? old_weight : 0);
459 
460 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
461 		NL_SET_ERR_MSG_FMT_MOD(extack,
462 				       "total weight out of range (%d + %u)\n",
463 				       delta_w, q->wsum);
464 		return -EINVAL;
465 	}
466 
467 	if (cl != NULL) { /* modify existing class */
468 		if (tca[TCA_RATE]) {
469 			err = gen_replace_estimator(&cl->bstats, NULL,
470 						    &cl->rate_est,
471 						    NULL,
472 						    true,
473 						    tca[TCA_RATE]);
474 			if (err)
475 				return err;
476 		}
477 		existing = true;
478 		goto set_change_agg;
479 	}
480 
481 	/* create and init new class */
482 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
483 	if (cl == NULL)
484 		return -ENOBUFS;
485 
486 	gnet_stats_basic_sync_init(&cl->bstats);
487 	cl->common.classid = classid;
488 	cl->deficit = lmax;
489 	INIT_LIST_HEAD(&cl->alist);
490 
491 	cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
492 				      classid, NULL);
493 	if (cl->qdisc == NULL)
494 		cl->qdisc = &noop_qdisc;
495 
496 	if (tca[TCA_RATE]) {
497 		err = gen_new_estimator(&cl->bstats, NULL,
498 					&cl->rate_est,
499 					NULL,
500 					true,
501 					tca[TCA_RATE]);
502 		if (err)
503 			goto destroy_class;
504 	}
505 
506 	if (cl->qdisc != &noop_qdisc)
507 		qdisc_hash_add(cl->qdisc, true);
508 
509 set_change_agg:
510 	sch_tree_lock(sch);
511 	new_agg = qfq_find_agg(q, lmax, weight);
512 	if (new_agg == NULL) { /* create new aggregate */
513 		sch_tree_unlock(sch);
514 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
515 		if (new_agg == NULL) {
516 			err = -ENOBUFS;
517 			gen_kill_estimator(&cl->rate_est);
518 			goto destroy_class;
519 		}
520 		sch_tree_lock(sch);
521 		qfq_init_agg(q, new_agg, lmax, weight);
522 	}
523 	if (existing)
524 		qfq_deact_rm_from_agg(q, cl);
525 	else
526 		qdisc_class_hash_insert(&q->clhash, &cl->common);
527 	qfq_add_to_agg(q, new_agg, cl);
528 	sch_tree_unlock(sch);
529 	qdisc_class_hash_grow(sch, &q->clhash);
530 
531 	*arg = (unsigned long)cl;
532 	return 0;
533 
534 destroy_class:
535 	qdisc_put(cl->qdisc);
536 	kfree(cl);
537 	return err;
538 }
539 
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)540 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
541 {
542 	gen_kill_estimator(&cl->rate_est);
543 	qdisc_put(cl->qdisc);
544 	kfree(cl);
545 }
546 
qfq_delete_class(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)547 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
548 			    struct netlink_ext_ack *extack)
549 {
550 	struct qfq_sched *q = qdisc_priv(sch);
551 	struct qfq_class *cl = (struct qfq_class *)arg;
552 
553 	if (qdisc_class_in_use(&cl->common)) {
554 		NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
555 		return -EBUSY;
556 	}
557 
558 	sch_tree_lock(sch);
559 
560 	qdisc_purge_queue(cl->qdisc);
561 	qdisc_class_hash_remove(&q->clhash, &cl->common);
562 	qfq_rm_from_agg(q, cl);
563 
564 	sch_tree_unlock(sch);
565 
566 	qfq_destroy_class(sch, cl);
567 	return 0;
568 }
569 
qfq_search_class(struct Qdisc * sch,u32 classid)570 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
571 {
572 	return (unsigned long)qfq_find_class(sch, classid);
573 }
574 
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)575 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
576 				       struct netlink_ext_ack *extack)
577 {
578 	struct qfq_sched *q = qdisc_priv(sch);
579 
580 	if (cl)
581 		return NULL;
582 
583 	return q->block;
584 }
585 
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)586 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
587 				  u32 classid)
588 {
589 	struct qfq_class *cl = qfq_find_class(sch, classid);
590 
591 	if (cl)
592 		qdisc_class_get(&cl->common);
593 
594 	return (unsigned long)cl;
595 }
596 
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)597 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
598 {
599 	struct qfq_class *cl = (struct qfq_class *)arg;
600 
601 	qdisc_class_put(&cl->common);
602 }
603 
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)604 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
605 			   struct Qdisc *new, struct Qdisc **old,
606 			   struct netlink_ext_ack *extack)
607 {
608 	struct qfq_class *cl = (struct qfq_class *)arg;
609 
610 	if (new == NULL) {
611 		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
612 					cl->common.classid, NULL);
613 		if (new == NULL)
614 			new = &noop_qdisc;
615 	}
616 
617 	*old = qdisc_replace(sch, new, &cl->qdisc);
618 	return 0;
619 }
620 
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)621 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
622 {
623 	struct qfq_class *cl = (struct qfq_class *)arg;
624 
625 	return cl->qdisc;
626 }
627 
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)628 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
629 			  struct sk_buff *skb, struct tcmsg *tcm)
630 {
631 	struct qfq_class *cl = (struct qfq_class *)arg;
632 	struct nlattr *nest;
633 	u32 class_weight, lmax;
634 
635 	tcm->tcm_parent	= TC_H_ROOT;
636 	tcm->tcm_handle	= cl->common.classid;
637 	tcm->tcm_info	= cl->qdisc->handle;
638 
639 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
640 	if (nest == NULL)
641 		goto nla_put_failure;
642 
643 	sch_tree_lock(sch);
644 	class_weight	= cl->agg->class_weight;
645 	lmax		= cl->agg->lmax;
646 	sch_tree_unlock(sch);
647 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, class_weight) ||
648 	    nla_put_u32(skb, TCA_QFQ_LMAX, lmax))
649 		goto nla_put_failure;
650 	return nla_nest_end(skb, nest);
651 
652 nla_put_failure:
653 	nla_nest_cancel(skb, nest);
654 	return -EMSGSIZE;
655 }
656 
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)657 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
658 				struct gnet_dump *d)
659 {
660 	struct qfq_class *cl = (struct qfq_class *)arg;
661 	struct tc_qfq_stats xstats;
662 
663 	memset(&xstats, 0, sizeof(xstats));
664 
665 	sch_tree_lock(sch);
666 	xstats.weight = cl->agg->class_weight;
667 	xstats.lmax = cl->agg->lmax;
668 	sch_tree_unlock(sch);
669 
670 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
671 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
672 	    qdisc_qstats_copy(d, cl->qdisc) < 0)
673 		return -1;
674 
675 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
676 }
677 
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)678 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
679 {
680 	struct qfq_sched *q = qdisc_priv(sch);
681 	struct qfq_class *cl;
682 	unsigned int i;
683 
684 	if (arg->stop)
685 		return;
686 
687 	for (i = 0; i < q->clhash.hashsize; i++) {
688 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
689 			if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
690 				return;
691 		}
692 	}
693 }
694 
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)695 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
696 				      int *qerr)
697 {
698 	struct qfq_sched *q = qdisc_priv(sch);
699 	struct qfq_class *cl;
700 	struct tcf_result res;
701 	struct tcf_proto *fl;
702 	int result;
703 
704 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
705 		pr_debug("qfq_classify: found %d\n", skb->priority);
706 		cl = qfq_find_class(sch, skb->priority);
707 		if (cl != NULL)
708 			return cl;
709 	}
710 
711 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
712 	fl = rcu_dereference_bh(q->filter_list);
713 	result = tcf_classify(skb, NULL, fl, &res, false);
714 	if (result >= 0) {
715 #ifdef CONFIG_NET_CLS_ACT
716 		switch (result) {
717 		case TC_ACT_QUEUED:
718 		case TC_ACT_STOLEN:
719 		case TC_ACT_TRAP:
720 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
721 			fallthrough;
722 		case TC_ACT_SHOT:
723 			return NULL;
724 		}
725 #endif
726 		cl = (struct qfq_class *)res.class;
727 		if (cl == NULL)
728 			cl = qfq_find_class(sch, res.classid);
729 		return cl;
730 	}
731 
732 	return NULL;
733 }
734 
735 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)736 static inline int qfq_gt(u64 a, u64 b)
737 {
738 	return (s64)(a - b) > 0;
739 }
740 
741 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)742 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
743 {
744 	return ts & ~((1ULL << shift) - 1);
745 }
746 
747 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)748 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
749 					unsigned long bitmap)
750 {
751 	int index = __ffs(bitmap);
752 	return &q->groups[index];
753 }
754 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)755 static inline unsigned long mask_from(unsigned long bitmap, int from)
756 {
757 	return bitmap & ~((1UL << from) - 1);
758 }
759 
760 /*
761  * The state computation relies on ER=0, IR=1, EB=2, IB=3
762  * First compute eligibility comparing grp->S, q->V,
763  * then check if someone is blocking us and possibly add EB
764  */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)765 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
766 {
767 	/* if S > V we are not eligible */
768 	unsigned int state = qfq_gt(grp->S, q->V);
769 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
770 	struct qfq_group *next;
771 
772 	if (mask) {
773 		next = qfq_ffs(q, mask);
774 		if (qfq_gt(grp->F, next->F))
775 			state |= EB;
776 	}
777 
778 	return state;
779 }
780 
781 
782 /*
783  * In principle
784  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
785  *	q->bitmaps[src] &= ~mask;
786  * but we should make sure that src != dst
787  */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)788 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
789 				   int src, int dst)
790 {
791 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
792 	q->bitmaps[src] &= ~mask;
793 }
794 
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)795 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
796 {
797 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
798 	struct qfq_group *next;
799 
800 	if (mask) {
801 		next = qfq_ffs(q, mask);
802 		if (!qfq_gt(next->F, old_F))
803 			return;
804 	}
805 
806 	mask = (1UL << index) - 1;
807 	qfq_move_groups(q, mask, EB, ER);
808 	qfq_move_groups(q, mask, IB, IR);
809 }
810 
811 /*
812  * perhaps
813  *
814 	old_V ^= q->V;
815 	old_V >>= q->min_slot_shift;
816 	if (old_V) {
817 		...
818 	}
819  *
820  */
qfq_make_eligible(struct qfq_sched * q)821 static void qfq_make_eligible(struct qfq_sched *q)
822 {
823 	unsigned long vslot = q->V >> q->min_slot_shift;
824 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
825 
826 	if (vslot != old_vslot) {
827 		unsigned long mask;
828 		int last_flip_pos = fls(vslot ^ old_vslot);
829 
830 		if (last_flip_pos > 31) /* higher than the number of groups */
831 			mask = ~0UL;    /* make all groups eligible */
832 		else
833 			mask = (1UL << last_flip_pos) - 1;
834 
835 		qfq_move_groups(q, mask, IR, ER);
836 		qfq_move_groups(q, mask, IB, EB);
837 	}
838 }
839 
840 /*
841  * The index of the slot in which the input aggregate agg is to be
842  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
843  * and not a '-1' because the start time of the group may be moved
844  * backward by one slot after the aggregate has been inserted, and
845  * this would cause non-empty slots to be right-shifted by one
846  * position.
847  *
848  * QFQ+ fully satisfies this bound to the slot index if the parameters
849  * of the classes are not changed dynamically, and if QFQ+ never
850  * happens to postpone the service of agg unjustly, i.e., it never
851  * happens that the aggregate becomes backlogged and eligible, or just
852  * eligible, while an aggregate with a higher approximated finish time
853  * is being served. In particular, in this case QFQ+ guarantees that
854  * the timestamps of agg are low enough that the slot index is never
855  * higher than 2. Unfortunately, QFQ+ cannot provide the same
856  * guarantee if it happens to unjustly postpone the service of agg, or
857  * if the parameters of some class are changed.
858  *
859  * As for the first event, i.e., an out-of-order service, the
860  * upper bound to the slot index guaranteed by QFQ+ grows to
861  * 2 +
862  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
863  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
864  *
865  * The following function deals with this problem by backward-shifting
866  * the timestamps of agg, if needed, so as to guarantee that the slot
867  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
868  * cause the service of other aggregates to be postponed, yet the
869  * worst-case guarantees of these aggregates are not violated.  In
870  * fact, in case of no out-of-order service, the timestamps of agg
871  * would have been even lower than they are after the backward shift,
872  * because QFQ+ would have guaranteed a maximum value equal to 2 for
873  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
874  * service is postponed because of the backward-shift would have
875  * however waited for the service of agg before being served.
876  *
877  * The other event that may cause the slot index to be higher than 2
878  * for agg is a recent change of the parameters of some class. If the
879  * weight of a class is increased or the lmax (max_pkt_size) of the
880  * class is decreased, then a new aggregate with smaller slot size
881  * than the original parent aggregate of the class may happen to be
882  * activated. The activation of this aggregate should be properly
883  * delayed to when the service of the class has finished in the ideal
884  * system tracked by QFQ+. If the activation of the aggregate is not
885  * delayed to this reference time instant, then this aggregate may be
886  * unjustly served before other aggregates waiting for service. This
887  * may cause the above bound to the slot index to be violated for some
888  * of these unlucky aggregates.
889  *
890  * Instead of delaying the activation of the new aggregate, which is
891  * quite complex, the above-discussed capping of the slot index is
892  * used to handle also the consequences of a change of the parameters
893  * of a class.
894  */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)895 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
896 			    u64 roundedS)
897 {
898 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
899 	unsigned int i; /* slot index in the bucket list */
900 
901 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
902 		u64 deltaS = roundedS - grp->S -
903 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
904 		agg->S -= deltaS;
905 		agg->F -= deltaS;
906 		slot = QFQ_MAX_SLOTS - 2;
907 	}
908 
909 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
910 
911 	hlist_add_head(&agg->next, &grp->slots[i]);
912 	__set_bit(slot, &grp->full_slots);
913 }
914 
915 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)916 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
917 {
918 	return hlist_entry(grp->slots[grp->front].first,
919 			   struct qfq_aggregate, next);
920 }
921 
922 /*
923  * remove the entry from the slot
924  */
qfq_front_slot_remove(struct qfq_group * grp)925 static void qfq_front_slot_remove(struct qfq_group *grp)
926 {
927 	struct qfq_aggregate *agg = qfq_slot_head(grp);
928 
929 	BUG_ON(!agg);
930 	hlist_del(&agg->next);
931 	if (hlist_empty(&grp->slots[grp->front]))
932 		__clear_bit(0, &grp->full_slots);
933 }
934 
935 /*
936  * Returns the first aggregate in the first non-empty bucket of the
937  * group. As a side effect, adjusts the bucket list so the first
938  * non-empty bucket is at position 0 in full_slots.
939  */
qfq_slot_scan(struct qfq_group * grp)940 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
941 {
942 	unsigned int i;
943 
944 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
945 		 grp->index, grp->full_slots);
946 
947 	if (grp->full_slots == 0)
948 		return NULL;
949 
950 	i = __ffs(grp->full_slots);  /* zero based */
951 	if (i > 0) {
952 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
953 		grp->full_slots >>= i;
954 	}
955 
956 	return qfq_slot_head(grp);
957 }
958 
959 /*
960  * adjust the bucket list. When the start time of a group decreases,
961  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
962  * move the objects. The mask of occupied slots must be shifted
963  * because we use ffs() to find the first non-empty slot.
964  * This covers decreases in the group's start time, but what about
965  * increases of the start time ?
966  * Here too we should make sure that i is less than 32
967  */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)968 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
969 {
970 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
971 
972 	grp->full_slots <<= i;
973 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
974 }
975 
qfq_update_eligible(struct qfq_sched * q)976 static void qfq_update_eligible(struct qfq_sched *q)
977 {
978 	struct qfq_group *grp;
979 	unsigned long ineligible;
980 
981 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
982 	if (ineligible) {
983 		if (!q->bitmaps[ER]) {
984 			grp = qfq_ffs(q, ineligible);
985 			if (qfq_gt(grp->S, q->V))
986 				q->V = grp->S;
987 		}
988 		qfq_make_eligible(q);
989 	}
990 }
991 
992 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)993 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
994 				   struct qfq_class *cl, unsigned int len)
995 {
996 	struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
997 
998 	if (!skb)
999 		return NULL;
1000 
1001 	cl->deficit -= (int) len;
1002 
1003 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1004 		list_del_init(&cl->alist);
1005 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1006 		cl->deficit += agg->lmax;
1007 		list_move_tail(&cl->alist, &agg->active);
1008 	}
1009 
1010 	return skb;
1011 }
1012 
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1013 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1014 					   struct qfq_class **cl,
1015 					   unsigned int *len)
1016 {
1017 	struct sk_buff *skb;
1018 
1019 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1020 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1021 	if (skb == NULL)
1022 		qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1023 	else
1024 		*len = qdisc_pkt_len(skb);
1025 
1026 	return skb;
1027 }
1028 
1029 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1030 static inline void charge_actual_service(struct qfq_aggregate *agg)
1031 {
1032 	/* Compute the service received by the aggregate, taking into
1033 	 * account that, after decreasing the number of classes in
1034 	 * agg, it may happen that
1035 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1036 	 */
1037 	u32 service_received = min(agg->budgetmax,
1038 				   agg->initial_budget - agg->budget);
1039 
1040 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1041 }
1042 
1043 /* Assign a reasonable start time for a new aggregate in group i.
1044  * Admissible values for \hat(F) are multiples of \sigma_i
1045  * no greater than V+\sigma_i . Larger values mean that
1046  * we had a wraparound so we consider the timestamp to be stale.
1047  *
1048  * If F is not stale and F >= V then we set S = F.
1049  * Otherwise we should assign S = V, but this may violate
1050  * the ordering in EB (see [2]). So, if we have groups in ER,
1051  * set S to the F_j of the first group j which would be blocking us.
1052  * We are guaranteed not to move S backward because
1053  * otherwise our group i would still be blocked.
1054  */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1055 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1056 {
1057 	unsigned long mask;
1058 	u64 limit, roundedF;
1059 	int slot_shift = agg->grp->slot_shift;
1060 
1061 	roundedF = qfq_round_down(agg->F, slot_shift);
1062 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1063 
1064 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1065 		/* timestamp was stale */
1066 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1067 		if (mask) {
1068 			struct qfq_group *next = qfq_ffs(q, mask);
1069 			if (qfq_gt(roundedF, next->F)) {
1070 				if (qfq_gt(limit, next->F))
1071 					agg->S = next->F;
1072 				else /* preserve timestamp correctness */
1073 					agg->S = limit;
1074 				return;
1075 			}
1076 		}
1077 		agg->S = q->V;
1078 	} else  /* timestamp is not stale */
1079 		agg->S = agg->F;
1080 }
1081 
1082 /* Update the timestamps of agg before scheduling/rescheduling it for
1083  * service.  In particular, assign to agg->F its maximum possible
1084  * value, i.e., the virtual finish time with which the aggregate
1085  * should be labeled if it used all its budget once in service.
1086  */
1087 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1088 qfq_update_agg_ts(struct qfq_sched *q,
1089 		    struct qfq_aggregate *agg, enum update_reason reason)
1090 {
1091 	if (reason != requeue)
1092 		qfq_update_start(q, agg);
1093 	else /* just charge agg for the service received */
1094 		agg->S = agg->F;
1095 
1096 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1097 }
1098 
1099 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1100 
qfq_dequeue(struct Qdisc * sch)1101 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1102 {
1103 	struct qfq_sched *q = qdisc_priv(sch);
1104 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1105 	struct qfq_class *cl;
1106 	struct sk_buff *skb = NULL;
1107 	/* next-packet len, 0 means no more active classes in in-service agg */
1108 	unsigned int len = 0;
1109 
1110 	if (in_serv_agg == NULL)
1111 		return NULL;
1112 
1113 	if (!list_empty(&in_serv_agg->active))
1114 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1115 
1116 	/*
1117 	 * If there are no active classes in the in-service aggregate,
1118 	 * or if the aggregate has not enough budget to serve its next
1119 	 * class, then choose the next aggregate to serve.
1120 	 */
1121 	if (len == 0 || in_serv_agg->budget < len) {
1122 		charge_actual_service(in_serv_agg);
1123 
1124 		/* recharge the budget of the aggregate */
1125 		in_serv_agg->initial_budget = in_serv_agg->budget =
1126 			in_serv_agg->budgetmax;
1127 
1128 		if (!list_empty(&in_serv_agg->active)) {
1129 			/*
1130 			 * Still active: reschedule for
1131 			 * service. Possible optimization: if no other
1132 			 * aggregate is active, then there is no point
1133 			 * in rescheduling this aggregate, and we can
1134 			 * just keep it as the in-service one. This
1135 			 * should be however a corner case, and to
1136 			 * handle it, we would need to maintain an
1137 			 * extra num_active_aggs field.
1138 			*/
1139 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1140 			qfq_schedule_agg(q, in_serv_agg);
1141 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1142 			q->in_serv_agg = NULL;
1143 			return NULL;
1144 		}
1145 
1146 		/*
1147 		 * If we get here, there are other aggregates queued:
1148 		 * choose the new aggregate to serve.
1149 		 */
1150 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1151 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1152 	}
1153 	if (!skb)
1154 		return NULL;
1155 
1156 	sch->q.qlen--;
1157 
1158 	skb = agg_dequeue(in_serv_agg, cl, len);
1159 
1160 	if (!skb) {
1161 		sch->q.qlen++;
1162 		return NULL;
1163 	}
1164 
1165 	qdisc_qstats_backlog_dec(sch, skb);
1166 	qdisc_bstats_update(sch, skb);
1167 
1168 	/* If lmax is lowered, through qfq_change_class, for a class
1169 	 * owning pending packets with larger size than the new value
1170 	 * of lmax, then the following condition may hold.
1171 	 */
1172 	if (unlikely(in_serv_agg->budget < len))
1173 		in_serv_agg->budget = 0;
1174 	else
1175 		in_serv_agg->budget -= len;
1176 
1177 	q->V += (u64)len * q->iwsum;
1178 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1179 		 len, (unsigned long long) in_serv_agg->F,
1180 		 (unsigned long long) q->V);
1181 
1182 	return skb;
1183 }
1184 
qfq_choose_next_agg(struct qfq_sched * q)1185 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1186 {
1187 	struct qfq_group *grp;
1188 	struct qfq_aggregate *agg, *new_front_agg;
1189 	u64 old_F;
1190 
1191 	qfq_update_eligible(q);
1192 	q->oldV = q->V;
1193 
1194 	if (!q->bitmaps[ER])
1195 		return NULL;
1196 
1197 	grp = qfq_ffs(q, q->bitmaps[ER]);
1198 	old_F = grp->F;
1199 
1200 	agg = qfq_slot_head(grp);
1201 
1202 	/* agg starts to be served, remove it from schedule */
1203 	qfq_front_slot_remove(grp);
1204 
1205 	new_front_agg = qfq_slot_scan(grp);
1206 
1207 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1208 		__clear_bit(grp->index, &q->bitmaps[ER]);
1209 	else {
1210 		u64 roundedS = qfq_round_down(new_front_agg->S,
1211 					      grp->slot_shift);
1212 		unsigned int s;
1213 
1214 		if (grp->S == roundedS)
1215 			return agg;
1216 		grp->S = roundedS;
1217 		grp->F = roundedS + (2ULL << grp->slot_shift);
1218 		__clear_bit(grp->index, &q->bitmaps[ER]);
1219 		s = qfq_calc_state(q, grp);
1220 		__set_bit(grp->index, &q->bitmaps[s]);
1221 	}
1222 
1223 	qfq_unblock_groups(q, grp->index, old_F);
1224 
1225 	return agg;
1226 }
1227 
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1228 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1229 		       struct sk_buff **to_free)
1230 {
1231 	unsigned int len = qdisc_pkt_len(skb), gso_segs;
1232 	struct qfq_sched *q = qdisc_priv(sch);
1233 	struct qfq_class *cl;
1234 	struct qfq_aggregate *agg;
1235 	int err = 0;
1236 
1237 	cl = qfq_classify(skb, sch, &err);
1238 	if (cl == NULL) {
1239 		if (err & __NET_XMIT_BYPASS)
1240 			qdisc_qstats_drop(sch);
1241 		__qdisc_drop(skb, to_free);
1242 		return err;
1243 	}
1244 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1245 
1246 	if (unlikely(cl->agg->lmax < len)) {
1247 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1248 			 cl->agg->lmax, len, cl->common.classid);
1249 		err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1250 		if (err) {
1251 			cl->qstats.drops++;
1252 			return qdisc_drop(skb, sch, to_free);
1253 		}
1254 	}
1255 
1256 	gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1257 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1258 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1259 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1260 		if (net_xmit_drop_count(err)) {
1261 			cl->qstats.drops++;
1262 			qdisc_qstats_drop(sch);
1263 		}
1264 		return err;
1265 	}
1266 
1267 	_bstats_update(&cl->bstats, len, gso_segs);
1268 	sch->qstats.backlog += len;
1269 	++sch->q.qlen;
1270 
1271 	agg = cl->agg;
1272 	/* if the class is active, then done here */
1273 	if (cl_is_active(cl)) {
1274 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1275 		    list_first_entry(&agg->active, struct qfq_class, alist)
1276 		    == cl && cl->deficit < len)
1277 			list_move_tail(&cl->alist, &agg->active);
1278 
1279 		return err;
1280 	}
1281 
1282 	/* schedule class for service within the aggregate */
1283 	cl->deficit = agg->lmax;
1284 	list_add_tail(&cl->alist, &agg->active);
1285 
1286 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1287 	    q->in_serv_agg == agg)
1288 		return err; /* non-empty or in service, nothing else to do */
1289 
1290 	qfq_activate_agg(q, agg, enqueue);
1291 
1292 	return err;
1293 }
1294 
1295 /*
1296  * Schedule aggregate according to its timestamps.
1297  */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1298 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1299 {
1300 	struct qfq_group *grp = agg->grp;
1301 	u64 roundedS;
1302 	int s;
1303 
1304 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1305 
1306 	/*
1307 	 * Insert agg in the correct bucket.
1308 	 * If agg->S >= grp->S we don't need to adjust the
1309 	 * bucket list and simply go to the insertion phase.
1310 	 * Otherwise grp->S is decreasing, we must make room
1311 	 * in the bucket list, and also recompute the group state.
1312 	 * Finally, if there were no flows in this group and nobody
1313 	 * was in ER make sure to adjust V.
1314 	 */
1315 	if (grp->full_slots) {
1316 		if (!qfq_gt(grp->S, agg->S))
1317 			goto skip_update;
1318 
1319 		/* create a slot for this agg->S */
1320 		qfq_slot_rotate(grp, roundedS);
1321 		/* group was surely ineligible, remove */
1322 		__clear_bit(grp->index, &q->bitmaps[IR]);
1323 		__clear_bit(grp->index, &q->bitmaps[IB]);
1324 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1325 		   q->in_serv_agg == NULL)
1326 		q->V = roundedS;
1327 
1328 	grp->S = roundedS;
1329 	grp->F = roundedS + (2ULL << grp->slot_shift);
1330 	s = qfq_calc_state(q, grp);
1331 	__set_bit(grp->index, &q->bitmaps[s]);
1332 
1333 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1334 		 s, q->bitmaps[s],
1335 		 (unsigned long long) agg->S,
1336 		 (unsigned long long) agg->F,
1337 		 (unsigned long long) q->V);
1338 
1339 skip_update:
1340 	qfq_slot_insert(grp, agg, roundedS);
1341 }
1342 
1343 
1344 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1345 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1346 			     enum update_reason reason)
1347 {
1348 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1349 
1350 	qfq_update_agg_ts(q, agg, reason);
1351 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1352 		q->in_serv_agg = agg; /* start serving this aggregate */
1353 		 /* update V: to be in service, agg must be eligible */
1354 		q->oldV = q->V = agg->S;
1355 	} else if (agg != q->in_serv_agg)
1356 		qfq_schedule_agg(q, agg);
1357 }
1358 
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1359 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1360 			    struct qfq_aggregate *agg)
1361 {
1362 	unsigned int i, offset;
1363 	u64 roundedS;
1364 
1365 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1366 	offset = (roundedS - grp->S) >> grp->slot_shift;
1367 
1368 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1369 
1370 	hlist_del(&agg->next);
1371 	if (hlist_empty(&grp->slots[i]))
1372 		__clear_bit(offset, &grp->full_slots);
1373 }
1374 
1375 /*
1376  * Called to forcibly deschedule an aggregate.  If the aggregate is
1377  * not in the front bucket, or if the latter has other aggregates in
1378  * the front bucket, we can simply remove the aggregate with no other
1379  * side effects.
1380  * Otherwise we must propagate the event up.
1381  */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1382 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1383 {
1384 	struct qfq_group *grp = agg->grp;
1385 	unsigned long mask;
1386 	u64 roundedS;
1387 	int s;
1388 
1389 	if (agg == q->in_serv_agg) {
1390 		charge_actual_service(agg);
1391 		q->in_serv_agg = qfq_choose_next_agg(q);
1392 		return;
1393 	}
1394 
1395 	agg->F = agg->S;
1396 	qfq_slot_remove(q, grp, agg);
1397 
1398 	if (!grp->full_slots) {
1399 		__clear_bit(grp->index, &q->bitmaps[IR]);
1400 		__clear_bit(grp->index, &q->bitmaps[EB]);
1401 		__clear_bit(grp->index, &q->bitmaps[IB]);
1402 
1403 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1404 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1405 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1406 			if (mask)
1407 				mask = ~((1UL << __fls(mask)) - 1);
1408 			else
1409 				mask = ~0UL;
1410 			qfq_move_groups(q, mask, EB, ER);
1411 			qfq_move_groups(q, mask, IB, IR);
1412 		}
1413 		__clear_bit(grp->index, &q->bitmaps[ER]);
1414 	} else if (hlist_empty(&grp->slots[grp->front])) {
1415 		agg = qfq_slot_scan(grp);
1416 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1417 		if (grp->S != roundedS) {
1418 			__clear_bit(grp->index, &q->bitmaps[ER]);
1419 			__clear_bit(grp->index, &q->bitmaps[IR]);
1420 			__clear_bit(grp->index, &q->bitmaps[EB]);
1421 			__clear_bit(grp->index, &q->bitmaps[IB]);
1422 			grp->S = roundedS;
1423 			grp->F = roundedS + (2ULL << grp->slot_shift);
1424 			s = qfq_calc_state(q, grp);
1425 			__set_bit(grp->index, &q->bitmaps[s]);
1426 		}
1427 	}
1428 }
1429 
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1430 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1431 {
1432 	struct qfq_sched *q = qdisc_priv(sch);
1433 	struct qfq_class *cl = (struct qfq_class *)arg;
1434 
1435 	if (list_empty(&cl->alist))
1436 		return;
1437 	qfq_deactivate_class(q, cl);
1438 }
1439 
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1440 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1441 			  struct netlink_ext_ack *extack)
1442 {
1443 	struct qfq_sched *q = qdisc_priv(sch);
1444 	struct qfq_group *grp;
1445 	int i, j, err;
1446 	u32 max_cl_shift, maxbudg_shift, max_classes;
1447 
1448 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1449 	if (err)
1450 		return err;
1451 
1452 	err = qdisc_class_hash_init(&q->clhash);
1453 	if (err < 0)
1454 		return err;
1455 
1456 	max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1457 			    QFQ_MAX_AGG_CLASSES);
1458 	/* max_cl_shift = floor(log_2(max_classes)) */
1459 	max_cl_shift = __fls(max_classes);
1460 	q->max_agg_classes = 1<<max_cl_shift;
1461 
1462 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1463 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1464 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1465 
1466 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1467 		grp = &q->groups[i];
1468 		grp->index = i;
1469 		grp->slot_shift = q->min_slot_shift + i;
1470 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1471 			INIT_HLIST_HEAD(&grp->slots[j]);
1472 	}
1473 
1474 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1475 
1476 	return 0;
1477 }
1478 
qfq_reset_qdisc(struct Qdisc * sch)1479 static void qfq_reset_qdisc(struct Qdisc *sch)
1480 {
1481 	struct qfq_sched *q = qdisc_priv(sch);
1482 	struct qfq_class *cl;
1483 	unsigned int i;
1484 
1485 	for (i = 0; i < q->clhash.hashsize; i++) {
1486 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1487 			if (cl->qdisc->q.qlen > 0)
1488 				qfq_deactivate_class(q, cl);
1489 
1490 			qdisc_reset(cl->qdisc);
1491 		}
1492 	}
1493 }
1494 
qfq_destroy_qdisc(struct Qdisc * sch)1495 static void qfq_destroy_qdisc(struct Qdisc *sch)
1496 {
1497 	struct qfq_sched *q = qdisc_priv(sch);
1498 	struct qfq_class *cl;
1499 	struct hlist_node *next;
1500 	unsigned int i;
1501 
1502 	tcf_block_put(q->block);
1503 
1504 	for (i = 0; i < q->clhash.hashsize; i++) {
1505 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1506 					  common.hnode) {
1507 			qfq_rm_from_agg(q, cl);
1508 			qfq_destroy_class(sch, cl);
1509 		}
1510 	}
1511 	qdisc_class_hash_destroy(&q->clhash);
1512 }
1513 
1514 static const struct Qdisc_class_ops qfq_class_ops = {
1515 	.change		= qfq_change_class,
1516 	.delete		= qfq_delete_class,
1517 	.find		= qfq_search_class,
1518 	.tcf_block	= qfq_tcf_block,
1519 	.bind_tcf	= qfq_bind_tcf,
1520 	.unbind_tcf	= qfq_unbind_tcf,
1521 	.graft		= qfq_graft_class,
1522 	.leaf		= qfq_class_leaf,
1523 	.qlen_notify	= qfq_qlen_notify,
1524 	.dump		= qfq_dump_class,
1525 	.dump_stats	= qfq_dump_class_stats,
1526 	.walk		= qfq_walk,
1527 };
1528 
1529 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1530 	.cl_ops		= &qfq_class_ops,
1531 	.id		= "qfq",
1532 	.priv_size	= sizeof(struct qfq_sched),
1533 	.enqueue	= qfq_enqueue,
1534 	.dequeue	= qfq_dequeue,
1535 	.peek		= qdisc_peek_dequeued,
1536 	.init		= qfq_init_qdisc,
1537 	.reset		= qfq_reset_qdisc,
1538 	.destroy	= qfq_destroy_qdisc,
1539 	.owner		= THIS_MODULE,
1540 };
1541 MODULE_ALIAS_NET_SCH("qfq");
1542 
qfq_init(void)1543 static int __init qfq_init(void)
1544 {
1545 	return register_qdisc(&qfq_qdisc_ops);
1546 }
1547 
qfq_exit(void)1548 static void __exit qfq_exit(void)
1549 {
1550 	unregister_qdisc(&qfq_qdisc_ops);
1551 }
1552 
1553 module_init(qfq_init);
1554 module_exit(qfq_exit);
1555 MODULE_LICENSE("GPL");
1556 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1557