1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 bool async_done;
56 u8 tail;
57 );
58
59 struct sk_buff *skb;
60 };
61
62 struct tls_decrypt_ctx {
63 struct sock *sk;
64 u8 iv[TLS_MAX_IV_SIZE];
65 u8 aad[TLS_MAX_AAD_SIZE];
66 u8 tail;
67 bool free_sgout;
68 struct scatterlist sg[];
69 };
70
tls_err_abort(struct sock * sk,int err)71 noinline void tls_err_abort(struct sock *sk, int err)
72 {
73 WARN_ON_ONCE(err >= 0);
74 /* sk->sk_err should contain a positive error code. */
75 WRITE_ONCE(sk->sk_err, -err);
76 /* Paired with smp_rmb() in tcp_poll() */
77 smp_wmb();
78 sk_error_report(sk);
79 }
80
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82 unsigned int recursion_level)
83 {
84 int start = skb_headlen(skb);
85 int i, chunk = start - offset;
86 struct sk_buff *frag_iter;
87 int elt = 0;
88
89 if (unlikely(recursion_level >= 24))
90 return -EMSGSIZE;
91
92 if (chunk > 0) {
93 if (chunk > len)
94 chunk = len;
95 elt++;
96 len -= chunk;
97 if (len == 0)
98 return elt;
99 offset += chunk;
100 }
101
102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 int end;
104
105 WARN_ON(start > offset + len);
106
107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108 chunk = end - offset;
109 if (chunk > 0) {
110 if (chunk > len)
111 chunk = len;
112 elt++;
113 len -= chunk;
114 if (len == 0)
115 return elt;
116 offset += chunk;
117 }
118 start = end;
119 }
120
121 if (unlikely(skb_has_frag_list(skb))) {
122 skb_walk_frags(skb, frag_iter) {
123 int end, ret;
124
125 WARN_ON(start > offset + len);
126
127 end = start + frag_iter->len;
128 chunk = end - offset;
129 if (chunk > 0) {
130 if (chunk > len)
131 chunk = len;
132 ret = __skb_nsg(frag_iter, offset - start, chunk,
133 recursion_level + 1);
134 if (unlikely(ret < 0))
135 return ret;
136 elt += ret;
137 len -= chunk;
138 if (len == 0)
139 return elt;
140 offset += chunk;
141 }
142 start = end;
143 }
144 }
145 BUG_ON(len);
146 return elt;
147 }
148
149 /* Return the number of scatterlist elements required to completely map the
150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
151 */
skb_nsg(struct sk_buff * skb,int offset,int len)152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
153 {
154 return __skb_nsg(skb, offset, len, 0);
155 }
156
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 struct tls_decrypt_arg *darg)
159 {
160 struct strp_msg *rxm = strp_msg(skb);
161 struct tls_msg *tlm = tls_msg(skb);
162 int sub = 0;
163
164 /* Determine zero-padding length */
165 if (prot->version == TLS_1_3_VERSION) {
166 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 char content_type = darg->zc ? darg->tail : 0;
168 int err;
169
170 while (content_type == 0) {
171 if (offset < prot->prepend_size)
172 return -EBADMSG;
173 err = skb_copy_bits(skb, rxm->offset + offset,
174 &content_type, 1);
175 if (err)
176 return err;
177 if (content_type)
178 break;
179 sub++;
180 offset--;
181 }
182 tlm->control = content_type;
183 }
184 return sub;
185 }
186
tls_decrypt_done(void * data,int err)187 static void tls_decrypt_done(void *data, int err)
188 {
189 struct aead_request *aead_req = data;
190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 struct scatterlist *sgout = aead_req->dst;
192 struct tls_sw_context_rx *ctx;
193 struct tls_decrypt_ctx *dctx;
194 struct tls_context *tls_ctx;
195 struct scatterlist *sg;
196 unsigned int pages;
197 struct sock *sk;
198 int aead_size;
199
200 /* If requests get too backlogged crypto API returns -EBUSY and calls
201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 * -EINPROGRESS -> 0.
205 * We have a single struct crypto_async_request per direction, this
206 * scheme doesn't help us, so just ignore the first ->complete().
207 */
208 if (err == -EINPROGRESS)
209 return;
210
211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 dctx = (void *)((u8 *)aead_req + aead_size);
214
215 sk = dctx->sk;
216 tls_ctx = tls_get_ctx(sk);
217 ctx = tls_sw_ctx_rx(tls_ctx);
218
219 /* Propagate if there was an err */
220 if (err) {
221 if (err == -EBADMSG)
222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 ctx->async_wait.err = err;
224 tls_err_abort(sk, err);
225 }
226
227 /* Free the destination pages if skb was not decrypted inplace */
228 if (dctx->free_sgout) {
229 /* Skip the first S/G entry as it points to AAD */
230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 if (!sg)
232 break;
233 put_page(sg_page(sg));
234 }
235 }
236
237 kfree(aead_req);
238
239 if (atomic_dec_and_test(&ctx->decrypt_pending))
240 complete(&ctx->async_wait.completion);
241 }
242
tls_decrypt_async_wait(struct tls_sw_context_rx * ctx)243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244 {
245 if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 atomic_inc(&ctx->decrypt_pending);
248
249 return ctx->async_wait.err;
250 }
251
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)252 static int tls_do_decryption(struct sock *sk,
253 struct scatterlist *sgin,
254 struct scatterlist *sgout,
255 char *iv_recv,
256 size_t data_len,
257 struct aead_request *aead_req,
258 struct tls_decrypt_arg *darg)
259 {
260 struct tls_context *tls_ctx = tls_get_ctx(sk);
261 struct tls_prot_info *prot = &tls_ctx->prot_info;
262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 int ret;
264
265 aead_request_set_tfm(aead_req, ctx->aead_recv);
266 aead_request_set_ad(aead_req, prot->aad_size);
267 aead_request_set_crypt(aead_req, sgin, sgout,
268 data_len + prot->tag_size,
269 (u8 *)iv_recv);
270
271 if (darg->async) {
272 aead_request_set_callback(aead_req,
273 CRYPTO_TFM_REQ_MAY_BACKLOG,
274 tls_decrypt_done, aead_req);
275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 atomic_inc(&ctx->decrypt_pending);
277 } else {
278 DECLARE_CRYPTO_WAIT(wait);
279
280 aead_request_set_callback(aead_req,
281 CRYPTO_TFM_REQ_MAY_BACKLOG,
282 crypto_req_done, &wait);
283 ret = crypto_aead_decrypt(aead_req);
284 if (ret == -EINPROGRESS || ret == -EBUSY)
285 ret = crypto_wait_req(ret, &wait);
286 return ret;
287 }
288
289 ret = crypto_aead_decrypt(aead_req);
290 if (ret == -EINPROGRESS)
291 return 0;
292
293 if (ret == -EBUSY) {
294 ret = tls_decrypt_async_wait(ctx);
295 darg->async_done = true;
296 /* all completions have run, we're not doing async anymore */
297 darg->async = false;
298 return ret;
299 }
300
301 atomic_dec(&ctx->decrypt_pending);
302 darg->async = false;
303
304 return ret;
305 }
306
tls_trim_both_msgs(struct sock * sk,int target_size)307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
308 {
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
310 struct tls_prot_info *prot = &tls_ctx->prot_info;
311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 struct tls_rec *rec = ctx->open_rec;
313
314 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 if (target_size > 0)
316 target_size += prot->overhead_size;
317 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318 }
319
tls_alloc_encrypted_msg(struct sock * sk,int len)320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321 {
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 struct tls_rec *rec = ctx->open_rec;
325 struct sk_msg *msg_en = &rec->msg_encrypted;
326
327 return sk_msg_alloc(sk, msg_en, len, 0);
328 }
329
tls_clone_plaintext_msg(struct sock * sk,int required)330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
331 {
332 struct tls_context *tls_ctx = tls_get_ctx(sk);
333 struct tls_prot_info *prot = &tls_ctx->prot_info;
334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 struct tls_rec *rec = ctx->open_rec;
336 struct sk_msg *msg_pl = &rec->msg_plaintext;
337 struct sk_msg *msg_en = &rec->msg_encrypted;
338 int skip, len;
339
340 /* We add page references worth len bytes from encrypted sg
341 * at the end of plaintext sg. It is guaranteed that msg_en
342 * has enough required room (ensured by caller).
343 */
344 len = required - msg_pl->sg.size;
345
346 /* Skip initial bytes in msg_en's data to be able to use
347 * same offset of both plain and encrypted data.
348 */
349 skip = prot->prepend_size + msg_pl->sg.size;
350
351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352 }
353
tls_get_rec(struct sock * sk)354 static struct tls_rec *tls_get_rec(struct sock *sk)
355 {
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_prot_info *prot = &tls_ctx->prot_info;
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct sk_msg *msg_pl, *msg_en;
360 struct tls_rec *rec;
361 int mem_size;
362
363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364
365 rec = kzalloc(mem_size, sk->sk_allocation);
366 if (!rec)
367 return NULL;
368
369 msg_pl = &rec->msg_plaintext;
370 msg_en = &rec->msg_encrypted;
371
372 sk_msg_init(msg_pl);
373 sk_msg_init(msg_en);
374
375 sg_init_table(rec->sg_aead_in, 2);
376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 sg_unmark_end(&rec->sg_aead_in[1]);
378
379 sg_init_table(rec->sg_aead_out, 2);
380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 sg_unmark_end(&rec->sg_aead_out[1]);
382
383 rec->sk = sk;
384
385 return rec;
386 }
387
tls_free_rec(struct sock * sk,struct tls_rec * rec)388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389 {
390 sk_msg_free(sk, &rec->msg_encrypted);
391 sk_msg_free(sk, &rec->msg_plaintext);
392 kfree(rec);
393 }
394
tls_free_open_rec(struct sock * sk)395 static void tls_free_open_rec(struct sock *sk)
396 {
397 struct tls_context *tls_ctx = tls_get_ctx(sk);
398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 struct tls_rec *rec = ctx->open_rec;
400
401 if (rec) {
402 tls_free_rec(sk, rec);
403 ctx->open_rec = NULL;
404 }
405 }
406
tls_tx_records(struct sock * sk,int flags)407 int tls_tx_records(struct sock *sk, int flags)
408 {
409 struct tls_context *tls_ctx = tls_get_ctx(sk);
410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 struct tls_rec *rec, *tmp;
412 struct sk_msg *msg_en;
413 int tx_flags, rc = 0;
414
415 if (tls_is_partially_sent_record(tls_ctx)) {
416 rec = list_first_entry(&ctx->tx_list,
417 struct tls_rec, list);
418
419 if (flags == -1)
420 tx_flags = rec->tx_flags;
421 else
422 tx_flags = flags;
423
424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 if (rc)
426 goto tx_err;
427
428 /* Full record has been transmitted.
429 * Remove the head of tx_list
430 */
431 list_del(&rec->list);
432 sk_msg_free(sk, &rec->msg_plaintext);
433 kfree(rec);
434 }
435
436 /* Tx all ready records */
437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 if (READ_ONCE(rec->tx_ready)) {
439 if (flags == -1)
440 tx_flags = rec->tx_flags;
441 else
442 tx_flags = flags;
443
444 msg_en = &rec->msg_encrypted;
445 rc = tls_push_sg(sk, tls_ctx,
446 &msg_en->sg.data[msg_en->sg.curr],
447 0, tx_flags);
448 if (rc)
449 goto tx_err;
450
451 list_del(&rec->list);
452 sk_msg_free(sk, &rec->msg_plaintext);
453 kfree(rec);
454 } else {
455 break;
456 }
457 }
458
459 tx_err:
460 if (rc < 0 && rc != -EAGAIN)
461 tls_err_abort(sk, rc);
462
463 return rc;
464 }
465
tls_encrypt_done(void * data,int err)466 static void tls_encrypt_done(void *data, int err)
467 {
468 struct tls_sw_context_tx *ctx;
469 struct tls_context *tls_ctx;
470 struct tls_prot_info *prot;
471 struct tls_rec *rec = data;
472 struct scatterlist *sge;
473 struct sk_msg *msg_en;
474 struct sock *sk;
475
476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 return;
478
479 msg_en = &rec->msg_encrypted;
480
481 sk = rec->sk;
482 tls_ctx = tls_get_ctx(sk);
483 prot = &tls_ctx->prot_info;
484 ctx = tls_sw_ctx_tx(tls_ctx);
485
486 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 sge->offset -= prot->prepend_size;
488 sge->length += prot->prepend_size;
489
490 /* Check if error is previously set on socket */
491 if (err || sk->sk_err) {
492 rec = NULL;
493
494 /* If err is already set on socket, return the same code */
495 if (sk->sk_err) {
496 ctx->async_wait.err = -sk->sk_err;
497 } else {
498 ctx->async_wait.err = err;
499 tls_err_abort(sk, err);
500 }
501 }
502
503 if (rec) {
504 struct tls_rec *first_rec;
505
506 /* Mark the record as ready for transmission */
507 smp_store_mb(rec->tx_ready, true);
508
509 /* If received record is at head of tx_list, schedule tx */
510 first_rec = list_first_entry(&ctx->tx_list,
511 struct tls_rec, list);
512 if (rec == first_rec) {
513 /* Schedule the transmission */
514 if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 &ctx->tx_bitmask))
516 schedule_delayed_work(&ctx->tx_work.work, 1);
517 }
518 }
519
520 if (atomic_dec_and_test(&ctx->encrypt_pending))
521 complete(&ctx->async_wait.completion);
522 }
523
tls_encrypt_async_wait(struct tls_sw_context_tx * ctx)524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525 {
526 if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 atomic_inc(&ctx->encrypt_pending);
529
530 return ctx->async_wait.err;
531 }
532
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)533 static int tls_do_encryption(struct sock *sk,
534 struct tls_context *tls_ctx,
535 struct tls_sw_context_tx *ctx,
536 struct aead_request *aead_req,
537 size_t data_len, u32 start)
538 {
539 struct tls_prot_info *prot = &tls_ctx->prot_info;
540 struct tls_rec *rec = ctx->open_rec;
541 struct sk_msg *msg_en = &rec->msg_encrypted;
542 struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 int rc, iv_offset = 0;
544
545 /* For CCM based ciphers, first byte of IV is a constant */
546 switch (prot->cipher_type) {
547 case TLS_CIPHER_AES_CCM_128:
548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 iv_offset = 1;
550 break;
551 case TLS_CIPHER_SM4_CCM:
552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 iv_offset = 1;
554 break;
555 }
556
557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 prot->iv_size + prot->salt_size);
559
560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 tls_ctx->tx.rec_seq);
562
563 sge->offset += prot->prepend_size;
564 sge->length -= prot->prepend_size;
565
566 msg_en->sg.curr = start;
567
568 aead_request_set_tfm(aead_req, ctx->aead_send);
569 aead_request_set_ad(aead_req, prot->aad_size);
570 aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 rec->sg_aead_out,
572 data_len, rec->iv_data);
573
574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 tls_encrypt_done, rec);
576
577 /* Add the record in tx_list */
578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 atomic_inc(&ctx->encrypt_pending);
581
582 rc = crypto_aead_encrypt(aead_req);
583 if (rc == -EBUSY) {
584 rc = tls_encrypt_async_wait(ctx);
585 rc = rc ?: -EINPROGRESS;
586 }
587 if (!rc || rc != -EINPROGRESS) {
588 atomic_dec(&ctx->encrypt_pending);
589 sge->offset -= prot->prepend_size;
590 sge->length += prot->prepend_size;
591 }
592
593 if (!rc) {
594 WRITE_ONCE(rec->tx_ready, true);
595 } else if (rc != -EINPROGRESS) {
596 list_del(&rec->list);
597 return rc;
598 }
599
600 /* Unhook the record from context if encryption is not failure */
601 ctx->open_rec = NULL;
602 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 return rc;
604 }
605
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 struct tls_rec **to, struct sk_msg *msg_opl,
608 struct sk_msg *msg_oen, u32 split_point,
609 u32 tx_overhead_size, u32 *orig_end)
610 {
611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 struct scatterlist *sge, *osge, *nsge;
613 u32 orig_size = msg_opl->sg.size;
614 struct scatterlist tmp = { };
615 struct sk_msg *msg_npl;
616 struct tls_rec *new;
617 int ret;
618
619 new = tls_get_rec(sk);
620 if (!new)
621 return -ENOMEM;
622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 tx_overhead_size, 0);
624 if (ret < 0) {
625 tls_free_rec(sk, new);
626 return ret;
627 }
628
629 *orig_end = msg_opl->sg.end;
630 i = msg_opl->sg.start;
631 sge = sk_msg_elem(msg_opl, i);
632 while (apply && sge->length) {
633 if (sge->length > apply) {
634 u32 len = sge->length - apply;
635
636 get_page(sg_page(sge));
637 sg_set_page(&tmp, sg_page(sge), len,
638 sge->offset + apply);
639 sge->length = apply;
640 bytes += apply;
641 apply = 0;
642 } else {
643 apply -= sge->length;
644 bytes += sge->length;
645 }
646
647 sk_msg_iter_var_next(i);
648 if (i == msg_opl->sg.end)
649 break;
650 sge = sk_msg_elem(msg_opl, i);
651 }
652
653 msg_opl->sg.end = i;
654 msg_opl->sg.curr = i;
655 msg_opl->sg.copybreak = 0;
656 msg_opl->apply_bytes = 0;
657 msg_opl->sg.size = bytes;
658
659 msg_npl = &new->msg_plaintext;
660 msg_npl->apply_bytes = apply;
661 msg_npl->sg.size = orig_size - bytes;
662
663 j = msg_npl->sg.start;
664 nsge = sk_msg_elem(msg_npl, j);
665 if (tmp.length) {
666 memcpy(nsge, &tmp, sizeof(*nsge));
667 sk_msg_iter_var_next(j);
668 nsge = sk_msg_elem(msg_npl, j);
669 }
670
671 osge = sk_msg_elem(msg_opl, i);
672 while (osge->length) {
673 memcpy(nsge, osge, sizeof(*nsge));
674 sg_unmark_end(nsge);
675 sk_msg_iter_var_next(i);
676 sk_msg_iter_var_next(j);
677 if (i == *orig_end)
678 break;
679 osge = sk_msg_elem(msg_opl, i);
680 nsge = sk_msg_elem(msg_npl, j);
681 }
682
683 msg_npl->sg.end = j;
684 msg_npl->sg.curr = j;
685 msg_npl->sg.copybreak = 0;
686
687 *to = new;
688 return 0;
689 }
690
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 struct tls_rec *from, u32 orig_end)
693 {
694 struct sk_msg *msg_npl = &from->msg_plaintext;
695 struct sk_msg *msg_opl = &to->msg_plaintext;
696 struct scatterlist *osge, *nsge;
697 u32 i, j;
698
699 i = msg_opl->sg.end;
700 sk_msg_iter_var_prev(i);
701 j = msg_npl->sg.start;
702
703 osge = sk_msg_elem(msg_opl, i);
704 nsge = sk_msg_elem(msg_npl, j);
705
706 if (sg_page(osge) == sg_page(nsge) &&
707 osge->offset + osge->length == nsge->offset) {
708 osge->length += nsge->length;
709 put_page(sg_page(nsge));
710 }
711
712 msg_opl->sg.end = orig_end;
713 msg_opl->sg.curr = orig_end;
714 msg_opl->sg.copybreak = 0;
715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 msg_opl->sg.size += msg_npl->sg.size;
717
718 sk_msg_free(sk, &to->msg_encrypted);
719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720
721 kfree(from);
722 }
723
tls_push_record(struct sock * sk,int flags,unsigned char record_type)724 static int tls_push_record(struct sock *sk, int flags,
725 unsigned char record_type)
726 {
727 struct tls_context *tls_ctx = tls_get_ctx(sk);
728 struct tls_prot_info *prot = &tls_ctx->prot_info;
729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 u32 i, split_point, orig_end;
732 struct sk_msg *msg_pl, *msg_en;
733 struct aead_request *req;
734 bool split;
735 int rc;
736
737 if (!rec)
738 return 0;
739
740 msg_pl = &rec->msg_plaintext;
741 msg_en = &rec->msg_encrypted;
742
743 split_point = msg_pl->apply_bytes;
744 split = split_point && split_point < msg_pl->sg.size;
745 if (unlikely((!split &&
746 msg_pl->sg.size +
747 prot->overhead_size > msg_en->sg.size) ||
748 (split &&
749 split_point +
750 prot->overhead_size > msg_en->sg.size))) {
751 split = true;
752 split_point = msg_en->sg.size;
753 }
754 if (split) {
755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 split_point, prot->overhead_size,
757 &orig_end);
758 if (rc < 0)
759 return rc;
760 /* This can happen if above tls_split_open_record allocates
761 * a single large encryption buffer instead of two smaller
762 * ones. In this case adjust pointers and continue without
763 * split.
764 */
765 if (!msg_pl->sg.size) {
766 tls_merge_open_record(sk, rec, tmp, orig_end);
767 msg_pl = &rec->msg_plaintext;
768 msg_en = &rec->msg_encrypted;
769 split = false;
770 }
771 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 prot->overhead_size);
773 }
774
775 rec->tx_flags = flags;
776 req = &rec->aead_req;
777
778 i = msg_pl->sg.end;
779 sk_msg_iter_var_prev(i);
780
781 rec->content_type = record_type;
782 if (prot->version == TLS_1_3_VERSION) {
783 /* Add content type to end of message. No padding added */
784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 sg_mark_end(&rec->sg_content_type);
786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 &rec->sg_content_type);
788 } else {
789 sg_mark_end(sk_msg_elem(msg_pl, i));
790 }
791
792 if (msg_pl->sg.end < msg_pl->sg.start) {
793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 msg_pl->sg.data);
796 }
797
798 i = msg_pl->sg.start;
799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800
801 i = msg_en->sg.end;
802 sk_msg_iter_var_prev(i);
803 sg_mark_end(sk_msg_elem(msg_en, i));
804
805 i = msg_en->sg.start;
806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807
808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 tls_ctx->tx.rec_seq, record_type, prot);
810
811 tls_fill_prepend(tls_ctx,
812 page_address(sg_page(&msg_en->sg.data[i])) +
813 msg_en->sg.data[i].offset,
814 msg_pl->sg.size + prot->tail_size,
815 record_type);
816
817 tls_ctx->pending_open_record_frags = false;
818
819 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 msg_pl->sg.size + prot->tail_size, i);
821 if (rc < 0) {
822 if (rc != -EINPROGRESS) {
823 tls_err_abort(sk, -EBADMSG);
824 if (split) {
825 tls_ctx->pending_open_record_frags = true;
826 tls_merge_open_record(sk, rec, tmp, orig_end);
827 }
828 }
829 ctx->async_capable = 1;
830 return rc;
831 } else if (split) {
832 msg_pl = &tmp->msg_plaintext;
833 msg_en = &tmp->msg_encrypted;
834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 tls_ctx->pending_open_record_frags = true;
836 ctx->open_rec = tmp;
837 }
838
839 return tls_tx_records(sk, flags);
840 }
841
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 bool full_record, u8 record_type,
844 ssize_t *copied, int flags)
845 {
846 struct tls_context *tls_ctx = tls_get_ctx(sk);
847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 struct sk_msg msg_redir = { };
849 struct sk_psock *psock;
850 struct sock *sk_redir;
851 struct tls_rec *rec;
852 bool enospc, policy, redir_ingress;
853 int err = 0, send;
854 u32 delta = 0;
855
856 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 psock = sk_psock_get(sk);
858 if (!psock || !policy) {
859 err = tls_push_record(sk, flags, record_type);
860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 *copied -= sk_msg_free(sk, msg);
862 tls_free_open_rec(sk);
863 err = -sk->sk_err;
864 }
865 if (psock)
866 sk_psock_put(sk, psock);
867 return err;
868 }
869 more_data:
870 enospc = sk_msg_full(msg);
871 if (psock->eval == __SK_NONE) {
872 delta = msg->sg.size;
873 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 delta -= msg->sg.size;
875
876 if ((s32)delta > 0) {
877 /* It indicates that we executed bpf_msg_pop_data(),
878 * causing the plaintext data size to decrease.
879 * Therefore the encrypted data size also needs to
880 * correspondingly decrease. We only need to subtract
881 * delta to calculate the new ciphertext length since
882 * ktls does not support block encryption.
883 */
884 struct sk_msg *enc = &ctx->open_rec->msg_encrypted;
885
886 sk_msg_trim(sk, enc, enc->sg.size - delta);
887 }
888 }
889 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
890 !enospc && !full_record) {
891 err = -ENOSPC;
892 goto out_err;
893 }
894 msg->cork_bytes = 0;
895 send = msg->sg.size;
896 if (msg->apply_bytes && msg->apply_bytes < send)
897 send = msg->apply_bytes;
898
899 switch (psock->eval) {
900 case __SK_PASS:
901 err = tls_push_record(sk, flags, record_type);
902 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
903 *copied -= sk_msg_free(sk, msg);
904 tls_free_open_rec(sk);
905 err = -sk->sk_err;
906 goto out_err;
907 }
908 break;
909 case __SK_REDIRECT:
910 redir_ingress = psock->redir_ingress;
911 sk_redir = psock->sk_redir;
912 memcpy(&msg_redir, msg, sizeof(*msg));
913 if (msg->apply_bytes < send)
914 msg->apply_bytes = 0;
915 else
916 msg->apply_bytes -= send;
917 sk_msg_return_zero(sk, msg, send);
918 msg->sg.size -= send;
919 release_sock(sk);
920 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
921 &msg_redir, send, flags);
922 lock_sock(sk);
923 if (err < 0) {
924 /* Regardless of whether the data represented by
925 * msg_redir is sent successfully, we have already
926 * uncharged it via sk_msg_return_zero(). The
927 * msg->sg.size represents the remaining unprocessed
928 * data, which needs to be uncharged here.
929 */
930 sk_mem_uncharge(sk, msg->sg.size);
931 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
932 msg->sg.size = 0;
933 }
934 if (msg->sg.size == 0)
935 tls_free_open_rec(sk);
936 break;
937 case __SK_DROP:
938 default:
939 sk_msg_free_partial(sk, msg, send);
940 if (msg->apply_bytes < send)
941 msg->apply_bytes = 0;
942 else
943 msg->apply_bytes -= send;
944 if (msg->sg.size == 0)
945 tls_free_open_rec(sk);
946 *copied -= (send + delta);
947 err = -EACCES;
948 }
949
950 if (likely(!err)) {
951 bool reset_eval = !ctx->open_rec;
952
953 rec = ctx->open_rec;
954 if (rec) {
955 msg = &rec->msg_plaintext;
956 if (!msg->apply_bytes)
957 reset_eval = true;
958 }
959 if (reset_eval) {
960 psock->eval = __SK_NONE;
961 if (psock->sk_redir) {
962 sock_put(psock->sk_redir);
963 psock->sk_redir = NULL;
964 }
965 }
966 if (rec)
967 goto more_data;
968 }
969 out_err:
970 sk_psock_put(sk, psock);
971 return err;
972 }
973
tls_sw_push_pending_record(struct sock * sk,int flags)974 static int tls_sw_push_pending_record(struct sock *sk, int flags)
975 {
976 struct tls_context *tls_ctx = tls_get_ctx(sk);
977 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
978 struct tls_rec *rec = ctx->open_rec;
979 struct sk_msg *msg_pl;
980 size_t copied;
981
982 if (!rec)
983 return 0;
984
985 msg_pl = &rec->msg_plaintext;
986 copied = msg_pl->sg.size;
987 if (!copied)
988 return 0;
989
990 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
991 &copied, flags);
992 }
993
tls_sw_sendmsg_splice(struct sock * sk,struct msghdr * msg,struct sk_msg * msg_pl,size_t try_to_copy,ssize_t * copied)994 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
995 struct sk_msg *msg_pl, size_t try_to_copy,
996 ssize_t *copied)
997 {
998 struct page *page = NULL, **pages = &page;
999
1000 do {
1001 ssize_t part;
1002 size_t off;
1003
1004 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
1005 try_to_copy, 1, 0, &off);
1006 if (part <= 0)
1007 return part ?: -EIO;
1008
1009 if (WARN_ON_ONCE(!sendpage_ok(page))) {
1010 iov_iter_revert(&msg->msg_iter, part);
1011 return -EIO;
1012 }
1013
1014 sk_msg_page_add(msg_pl, page, part, off);
1015 msg_pl->sg.copybreak = 0;
1016 msg_pl->sg.curr = msg_pl->sg.end;
1017 sk_mem_charge(sk, part);
1018 *copied += part;
1019 try_to_copy -= part;
1020 } while (try_to_copy && !sk_msg_full(msg_pl));
1021
1022 return 0;
1023 }
1024
tls_sw_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1025 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1026 size_t size)
1027 {
1028 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1029 struct tls_context *tls_ctx = tls_get_ctx(sk);
1030 struct tls_prot_info *prot = &tls_ctx->prot_info;
1031 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1032 bool async_capable = ctx->async_capable;
1033 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1034 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1035 bool eor = !(msg->msg_flags & MSG_MORE);
1036 size_t try_to_copy;
1037 ssize_t copied = 0;
1038 struct sk_msg *msg_pl, *msg_en;
1039 struct tls_rec *rec;
1040 int required_size;
1041 int num_async = 0;
1042 bool full_record;
1043 int record_room;
1044 int num_zc = 0;
1045 int orig_size;
1046 int ret = 0;
1047
1048 if (!eor && (msg->msg_flags & MSG_EOR))
1049 return -EINVAL;
1050
1051 if (unlikely(msg->msg_controllen)) {
1052 ret = tls_process_cmsg(sk, msg, &record_type);
1053 if (ret) {
1054 if (ret == -EINPROGRESS)
1055 num_async++;
1056 else if (ret != -EAGAIN)
1057 goto send_end;
1058 }
1059 }
1060
1061 while (msg_data_left(msg)) {
1062 if (sk->sk_err) {
1063 ret = -sk->sk_err;
1064 goto send_end;
1065 }
1066
1067 if (ctx->open_rec)
1068 rec = ctx->open_rec;
1069 else
1070 rec = ctx->open_rec = tls_get_rec(sk);
1071 if (!rec) {
1072 ret = -ENOMEM;
1073 goto send_end;
1074 }
1075
1076 msg_pl = &rec->msg_plaintext;
1077 msg_en = &rec->msg_encrypted;
1078
1079 orig_size = msg_pl->sg.size;
1080 full_record = false;
1081 try_to_copy = msg_data_left(msg);
1082 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1083 if (try_to_copy >= record_room) {
1084 try_to_copy = record_room;
1085 full_record = true;
1086 }
1087
1088 required_size = msg_pl->sg.size + try_to_copy +
1089 prot->overhead_size;
1090
1091 if (!sk_stream_memory_free(sk))
1092 goto wait_for_sndbuf;
1093
1094 alloc_encrypted:
1095 ret = tls_alloc_encrypted_msg(sk, required_size);
1096 if (ret) {
1097 if (ret != -ENOSPC)
1098 goto wait_for_memory;
1099
1100 /* Adjust try_to_copy according to the amount that was
1101 * actually allocated. The difference is due
1102 * to max sg elements limit
1103 */
1104 try_to_copy -= required_size - msg_en->sg.size;
1105 full_record = true;
1106 }
1107
1108 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1109 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1110 try_to_copy, &copied);
1111 if (ret < 0)
1112 goto send_end;
1113 tls_ctx->pending_open_record_frags = true;
1114
1115 if (sk_msg_full(msg_pl))
1116 full_record = true;
1117
1118 if (full_record || eor)
1119 goto copied;
1120 continue;
1121 }
1122
1123 if (!is_kvec && (full_record || eor) && !async_capable) {
1124 u32 first = msg_pl->sg.end;
1125
1126 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1127 msg_pl, try_to_copy);
1128 if (ret)
1129 goto fallback_to_reg_send;
1130
1131 num_zc++;
1132 copied += try_to_copy;
1133
1134 sk_msg_sg_copy_set(msg_pl, first);
1135 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1136 record_type, &copied,
1137 msg->msg_flags);
1138 if (ret) {
1139 if (ret == -EINPROGRESS)
1140 num_async++;
1141 else if (ret == -ENOMEM)
1142 goto wait_for_memory;
1143 else if (ctx->open_rec && ret == -ENOSPC) {
1144 if (msg_pl->cork_bytes) {
1145 ret = 0;
1146 goto send_end;
1147 }
1148 goto rollback_iter;
1149 } else if (ret != -EAGAIN)
1150 goto send_end;
1151 }
1152 continue;
1153 rollback_iter:
1154 copied -= try_to_copy;
1155 sk_msg_sg_copy_clear(msg_pl, first);
1156 iov_iter_revert(&msg->msg_iter,
1157 msg_pl->sg.size - orig_size);
1158 fallback_to_reg_send:
1159 sk_msg_trim(sk, msg_pl, orig_size);
1160 }
1161
1162 required_size = msg_pl->sg.size + try_to_copy;
1163
1164 ret = tls_clone_plaintext_msg(sk, required_size);
1165 if (ret) {
1166 if (ret != -ENOSPC)
1167 goto send_end;
1168
1169 /* Adjust try_to_copy according to the amount that was
1170 * actually allocated. The difference is due
1171 * to max sg elements limit
1172 */
1173 try_to_copy -= required_size - msg_pl->sg.size;
1174 full_record = true;
1175 sk_msg_trim(sk, msg_en,
1176 msg_pl->sg.size + prot->overhead_size);
1177 }
1178
1179 if (try_to_copy) {
1180 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1181 msg_pl, try_to_copy);
1182 if (ret < 0)
1183 goto trim_sgl;
1184 }
1185
1186 /* Open records defined only if successfully copied, otherwise
1187 * we would trim the sg but not reset the open record frags.
1188 */
1189 tls_ctx->pending_open_record_frags = true;
1190 copied += try_to_copy;
1191 copied:
1192 if (full_record || eor) {
1193 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1194 record_type, &copied,
1195 msg->msg_flags);
1196 if (ret) {
1197 if (ret == -EINPROGRESS)
1198 num_async++;
1199 else if (ret == -ENOMEM)
1200 goto wait_for_memory;
1201 else if (ret != -EAGAIN) {
1202 if (ret == -ENOSPC)
1203 ret = 0;
1204 goto send_end;
1205 }
1206 }
1207 }
1208
1209 continue;
1210
1211 wait_for_sndbuf:
1212 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1213 wait_for_memory:
1214 ret = sk_stream_wait_memory(sk, &timeo);
1215 if (ret) {
1216 trim_sgl:
1217 if (ctx->open_rec)
1218 tls_trim_both_msgs(sk, orig_size);
1219 goto send_end;
1220 }
1221
1222 if (ctx->open_rec && msg_en->sg.size < required_size)
1223 goto alloc_encrypted;
1224 }
1225
1226 if (!num_async) {
1227 goto send_end;
1228 } else if (num_zc || eor) {
1229 int err;
1230
1231 /* Wait for pending encryptions to get completed */
1232 err = tls_encrypt_async_wait(ctx);
1233 if (err) {
1234 ret = err;
1235 copied = 0;
1236 }
1237 }
1238
1239 /* Transmit if any encryptions have completed */
1240 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1241 cancel_delayed_work(&ctx->tx_work.work);
1242 tls_tx_records(sk, msg->msg_flags);
1243 }
1244
1245 send_end:
1246 ret = sk_stream_error(sk, msg->msg_flags, ret);
1247 return copied > 0 ? copied : ret;
1248 }
1249
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1250 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1251 {
1252 struct tls_context *tls_ctx = tls_get_ctx(sk);
1253 int ret;
1254
1255 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1256 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1257 MSG_SENDPAGE_NOPOLICY))
1258 return -EOPNOTSUPP;
1259
1260 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1261 if (ret)
1262 return ret;
1263 lock_sock(sk);
1264 ret = tls_sw_sendmsg_locked(sk, msg, size);
1265 release_sock(sk);
1266 mutex_unlock(&tls_ctx->tx_lock);
1267 return ret;
1268 }
1269
1270 /*
1271 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1272 */
tls_sw_splice_eof(struct socket * sock)1273 void tls_sw_splice_eof(struct socket *sock)
1274 {
1275 struct sock *sk = sock->sk;
1276 struct tls_context *tls_ctx = tls_get_ctx(sk);
1277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1278 struct tls_rec *rec;
1279 struct sk_msg *msg_pl;
1280 ssize_t copied = 0;
1281 bool retrying = false;
1282 int ret = 0;
1283
1284 if (!ctx->open_rec)
1285 return;
1286
1287 mutex_lock(&tls_ctx->tx_lock);
1288 lock_sock(sk);
1289
1290 retry:
1291 /* same checks as in tls_sw_push_pending_record() */
1292 rec = ctx->open_rec;
1293 if (!rec)
1294 goto unlock;
1295
1296 msg_pl = &rec->msg_plaintext;
1297 if (msg_pl->sg.size == 0)
1298 goto unlock;
1299
1300 /* Check the BPF advisor and perform transmission. */
1301 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1302 &copied, 0);
1303 switch (ret) {
1304 case 0:
1305 case -EAGAIN:
1306 if (retrying)
1307 goto unlock;
1308 retrying = true;
1309 goto retry;
1310 case -EINPROGRESS:
1311 break;
1312 default:
1313 goto unlock;
1314 }
1315
1316 /* Wait for pending encryptions to get completed */
1317 if (tls_encrypt_async_wait(ctx))
1318 goto unlock;
1319
1320 /* Transmit if any encryptions have completed */
1321 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1322 cancel_delayed_work(&ctx->tx_work.work);
1323 tls_tx_records(sk, 0);
1324 }
1325
1326 unlock:
1327 release_sock(sk);
1328 mutex_unlock(&tls_ctx->tx_lock);
1329 }
1330
1331 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1332 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1333 bool released)
1334 {
1335 struct tls_context *tls_ctx = tls_get_ctx(sk);
1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1337 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1338 int ret = 0;
1339 long timeo;
1340
1341 timeo = sock_rcvtimeo(sk, nonblock);
1342
1343 while (!tls_strp_msg_ready(ctx)) {
1344 if (!sk_psock_queue_empty(psock))
1345 return 0;
1346
1347 if (sk->sk_err)
1348 return sock_error(sk);
1349
1350 if (ret < 0)
1351 return ret;
1352
1353 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1354 tls_strp_check_rcv(&ctx->strp);
1355 if (tls_strp_msg_ready(ctx))
1356 break;
1357 }
1358
1359 if (sk->sk_shutdown & RCV_SHUTDOWN)
1360 return 0;
1361
1362 if (sock_flag(sk, SOCK_DONE))
1363 return 0;
1364
1365 if (!timeo)
1366 return -EAGAIN;
1367
1368 released = true;
1369 add_wait_queue(sk_sleep(sk), &wait);
1370 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1371 ret = sk_wait_event(sk, &timeo,
1372 tls_strp_msg_ready(ctx) ||
1373 !sk_psock_queue_empty(psock),
1374 &wait);
1375 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1376 remove_wait_queue(sk_sleep(sk), &wait);
1377
1378 /* Handle signals */
1379 if (signal_pending(current))
1380 return sock_intr_errno(timeo);
1381 }
1382
1383 if (unlikely(!tls_strp_msg_load(&ctx->strp, released)))
1384 return tls_rx_rec_wait(sk, psock, nonblock, false);
1385
1386 return 1;
1387 }
1388
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1389 static int tls_setup_from_iter(struct iov_iter *from,
1390 int length, int *pages_used,
1391 struct scatterlist *to,
1392 int to_max_pages)
1393 {
1394 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1395 struct page *pages[MAX_SKB_FRAGS];
1396 unsigned int size = 0;
1397 ssize_t copied, use;
1398 size_t offset;
1399
1400 while (length > 0) {
1401 i = 0;
1402 maxpages = to_max_pages - num_elem;
1403 if (maxpages == 0) {
1404 rc = -EFAULT;
1405 goto out;
1406 }
1407 copied = iov_iter_get_pages2(from, pages,
1408 length,
1409 maxpages, &offset);
1410 if (copied <= 0) {
1411 rc = -EFAULT;
1412 goto out;
1413 }
1414
1415 length -= copied;
1416 size += copied;
1417 while (copied) {
1418 use = min_t(int, copied, PAGE_SIZE - offset);
1419
1420 sg_set_page(&to[num_elem],
1421 pages[i], use, offset);
1422 sg_unmark_end(&to[num_elem]);
1423 /* We do not uncharge memory from this API */
1424
1425 offset = 0;
1426 copied -= use;
1427
1428 i++;
1429 num_elem++;
1430 }
1431 }
1432 /* Mark the end in the last sg entry if newly added */
1433 if (num_elem > *pages_used)
1434 sg_mark_end(&to[num_elem - 1]);
1435 out:
1436 if (rc)
1437 iov_iter_revert(from, size);
1438 *pages_used = num_elem;
1439
1440 return rc;
1441 }
1442
1443 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1444 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1445 unsigned int full_len)
1446 {
1447 struct strp_msg *clr_rxm;
1448 struct sk_buff *clr_skb;
1449 int err;
1450
1451 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1452 &err, sk->sk_allocation);
1453 if (!clr_skb)
1454 return NULL;
1455
1456 skb_copy_header(clr_skb, skb);
1457 clr_skb->len = full_len;
1458 clr_skb->data_len = full_len;
1459
1460 clr_rxm = strp_msg(clr_skb);
1461 clr_rxm->offset = 0;
1462
1463 return clr_skb;
1464 }
1465
1466 /* Decrypt handlers
1467 *
1468 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1469 * They must transform the darg in/out argument are as follows:
1470 * | Input | Output
1471 * -------------------------------------------------------------------
1472 * zc | Zero-copy decrypt allowed | Zero-copy performed
1473 * async | Async decrypt allowed | Async crypto used / in progress
1474 * skb | * | Output skb
1475 *
1476 * If ZC decryption was performed darg.skb will point to the input skb.
1477 */
1478
1479 /* This function decrypts the input skb into either out_iov or in out_sg
1480 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1481 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1482 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1483 * NULL, then the decryption happens inside skb buffers itself, i.e.
1484 * zero-copy gets disabled and 'darg->zc' is updated.
1485 */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1486 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1487 struct scatterlist *out_sg,
1488 struct tls_decrypt_arg *darg)
1489 {
1490 struct tls_context *tls_ctx = tls_get_ctx(sk);
1491 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1492 struct tls_prot_info *prot = &tls_ctx->prot_info;
1493 int n_sgin, n_sgout, aead_size, err, pages = 0;
1494 struct sk_buff *skb = tls_strp_msg(ctx);
1495 const struct strp_msg *rxm = strp_msg(skb);
1496 const struct tls_msg *tlm = tls_msg(skb);
1497 struct aead_request *aead_req;
1498 struct scatterlist *sgin = NULL;
1499 struct scatterlist *sgout = NULL;
1500 const int data_len = rxm->full_len - prot->overhead_size;
1501 int tail_pages = !!prot->tail_size;
1502 struct tls_decrypt_ctx *dctx;
1503 struct sk_buff *clear_skb;
1504 int iv_offset = 0;
1505 u8 *mem;
1506
1507 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1508 rxm->full_len - prot->prepend_size);
1509 if (n_sgin < 1)
1510 return n_sgin ?: -EBADMSG;
1511
1512 if (darg->zc && (out_iov || out_sg)) {
1513 clear_skb = NULL;
1514
1515 if (out_iov)
1516 n_sgout = 1 + tail_pages +
1517 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1518 else
1519 n_sgout = sg_nents(out_sg);
1520 } else {
1521 darg->zc = false;
1522
1523 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1524 if (!clear_skb)
1525 return -ENOMEM;
1526
1527 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1528 }
1529
1530 /* Increment to accommodate AAD */
1531 n_sgin = n_sgin + 1;
1532
1533 /* Allocate a single block of memory which contains
1534 * aead_req || tls_decrypt_ctx.
1535 * Both structs are variable length.
1536 */
1537 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1538 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1539 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1540 sk->sk_allocation);
1541 if (!mem) {
1542 err = -ENOMEM;
1543 goto exit_free_skb;
1544 }
1545
1546 /* Segment the allocated memory */
1547 aead_req = (struct aead_request *)mem;
1548 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1549 dctx->sk = sk;
1550 sgin = &dctx->sg[0];
1551 sgout = &dctx->sg[n_sgin];
1552
1553 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1554 switch (prot->cipher_type) {
1555 case TLS_CIPHER_AES_CCM_128:
1556 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1557 iv_offset = 1;
1558 break;
1559 case TLS_CIPHER_SM4_CCM:
1560 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1561 iv_offset = 1;
1562 break;
1563 }
1564
1565 /* Prepare IV */
1566 if (prot->version == TLS_1_3_VERSION ||
1567 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1568 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1569 prot->iv_size + prot->salt_size);
1570 } else {
1571 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1572 &dctx->iv[iv_offset] + prot->salt_size,
1573 prot->iv_size);
1574 if (err < 0)
1575 goto exit_free;
1576 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1577 }
1578 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1579
1580 /* Prepare AAD */
1581 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1582 prot->tail_size,
1583 tls_ctx->rx.rec_seq, tlm->control, prot);
1584
1585 /* Prepare sgin */
1586 sg_init_table(sgin, n_sgin);
1587 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1588 err = skb_to_sgvec(skb, &sgin[1],
1589 rxm->offset + prot->prepend_size,
1590 rxm->full_len - prot->prepend_size);
1591 if (err < 0)
1592 goto exit_free;
1593
1594 if (clear_skb) {
1595 sg_init_table(sgout, n_sgout);
1596 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1597
1598 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1599 data_len + prot->tail_size);
1600 if (err < 0)
1601 goto exit_free;
1602 } else if (out_iov) {
1603 sg_init_table(sgout, n_sgout);
1604 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1605
1606 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1607 (n_sgout - 1 - tail_pages));
1608 if (err < 0)
1609 goto exit_free_pages;
1610
1611 if (prot->tail_size) {
1612 sg_unmark_end(&sgout[pages]);
1613 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1614 prot->tail_size);
1615 sg_mark_end(&sgout[pages + 1]);
1616 }
1617 } else if (out_sg) {
1618 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1619 }
1620 dctx->free_sgout = !!pages;
1621
1622 /* Prepare and submit AEAD request */
1623 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1624 data_len + prot->tail_size, aead_req, darg);
1625 if (err) {
1626 if (darg->async_done)
1627 goto exit_free_skb;
1628 goto exit_free_pages;
1629 }
1630
1631 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1632 clear_skb = NULL;
1633
1634 if (unlikely(darg->async)) {
1635 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1636 if (err)
1637 __skb_queue_tail(&ctx->async_hold, darg->skb);
1638 return err;
1639 }
1640
1641 if (unlikely(darg->async_done))
1642 return 0;
1643
1644 if (prot->tail_size)
1645 darg->tail = dctx->tail;
1646
1647 exit_free_pages:
1648 /* Release the pages in case iov was mapped to pages */
1649 for (; pages > 0; pages--)
1650 put_page(sg_page(&sgout[pages]));
1651 exit_free:
1652 kfree(mem);
1653 exit_free_skb:
1654 consume_skb(clear_skb);
1655 return err;
1656 }
1657
1658 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1659 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1660 struct msghdr *msg, struct tls_decrypt_arg *darg)
1661 {
1662 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1663 struct tls_prot_info *prot = &tls_ctx->prot_info;
1664 struct strp_msg *rxm;
1665 int pad, err;
1666
1667 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1668 if (err < 0) {
1669 if (err == -EBADMSG)
1670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1671 return err;
1672 }
1673 /* keep going even for ->async, the code below is TLS 1.3 */
1674
1675 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1676 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1677 darg->tail != TLS_RECORD_TYPE_DATA)) {
1678 darg->zc = false;
1679 if (!darg->tail)
1680 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1681 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1682 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1683 }
1684
1685 pad = tls_padding_length(prot, darg->skb, darg);
1686 if (pad < 0) {
1687 if (darg->skb != tls_strp_msg(ctx))
1688 consume_skb(darg->skb);
1689 return pad;
1690 }
1691
1692 rxm = strp_msg(darg->skb);
1693 rxm->full_len -= pad;
1694
1695 return 0;
1696 }
1697
1698 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1699 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1700 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1701 {
1702 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1703 struct tls_prot_info *prot = &tls_ctx->prot_info;
1704 struct strp_msg *rxm;
1705 int pad, err;
1706
1707 if (tls_ctx->rx_conf != TLS_HW)
1708 return 0;
1709
1710 err = tls_device_decrypted(sk, tls_ctx);
1711 if (err <= 0)
1712 return err;
1713
1714 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1715 if (pad < 0)
1716 return pad;
1717
1718 darg->async = false;
1719 darg->skb = tls_strp_msg(ctx);
1720 /* ->zc downgrade check, in case TLS 1.3 gets here */
1721 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1722 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1723
1724 rxm = strp_msg(darg->skb);
1725 rxm->full_len -= pad;
1726
1727 if (!darg->zc) {
1728 /* Non-ZC case needs a real skb */
1729 darg->skb = tls_strp_msg_detach(ctx);
1730 if (!darg->skb)
1731 return -ENOMEM;
1732 } else {
1733 unsigned int off, len;
1734
1735 /* In ZC case nobody cares about the output skb.
1736 * Just copy the data here. Note the skb is not fully trimmed.
1737 */
1738 off = rxm->offset + prot->prepend_size;
1739 len = rxm->full_len - prot->overhead_size;
1740
1741 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1742 if (err)
1743 return err;
1744 }
1745 return 1;
1746 }
1747
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1748 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1749 struct tls_decrypt_arg *darg)
1750 {
1751 struct tls_context *tls_ctx = tls_get_ctx(sk);
1752 struct tls_prot_info *prot = &tls_ctx->prot_info;
1753 struct strp_msg *rxm;
1754 int err;
1755
1756 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1757 if (!err)
1758 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1759 if (err < 0)
1760 return err;
1761
1762 rxm = strp_msg(darg->skb);
1763 rxm->offset += prot->prepend_size;
1764 rxm->full_len -= prot->overhead_size;
1765 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1766
1767 return 0;
1768 }
1769
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1770 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1771 {
1772 struct tls_decrypt_arg darg = { .zc = true, };
1773
1774 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1775 }
1776
1777 /* All records returned from a recvmsg() call must have the same type.
1778 * 0 is not a valid content type. Use it as "no type reported, yet".
1779 */
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1780 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1781 u8 *control)
1782 {
1783 int err;
1784
1785 if (!*control) {
1786 *control = tlm->control;
1787 if (!*control)
1788 return -EBADMSG;
1789
1790 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1791 sizeof(*control), control);
1792 if (*control != TLS_RECORD_TYPE_DATA) {
1793 if (err || msg->msg_flags & MSG_CTRUNC)
1794 return -EIO;
1795 }
1796 } else if (*control != tlm->control) {
1797 return 0;
1798 }
1799
1800 return 1;
1801 }
1802
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1803 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1804 {
1805 tls_strp_msg_done(&ctx->strp);
1806 }
1807
1808 /* This function traverses the rx_list in tls receive context to copies the
1809 * decrypted records into the buffer provided by caller zero copy is not
1810 * true. Further, the records are removed from the rx_list if it is not a peek
1811 * case and the record has been consumed completely.
1812 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek,bool * more)1813 static int process_rx_list(struct tls_sw_context_rx *ctx,
1814 struct msghdr *msg,
1815 u8 *control,
1816 size_t skip,
1817 size_t len,
1818 bool is_peek,
1819 bool *more)
1820 {
1821 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1822 struct tls_msg *tlm;
1823 ssize_t copied = 0;
1824 int err;
1825
1826 while (skip && skb) {
1827 struct strp_msg *rxm = strp_msg(skb);
1828 tlm = tls_msg(skb);
1829
1830 err = tls_record_content_type(msg, tlm, control);
1831 if (err <= 0)
1832 goto more;
1833
1834 if (skip < rxm->full_len)
1835 break;
1836
1837 skip = skip - rxm->full_len;
1838 skb = skb_peek_next(skb, &ctx->rx_list);
1839 }
1840
1841 while (len && skb) {
1842 struct sk_buff *next_skb;
1843 struct strp_msg *rxm = strp_msg(skb);
1844 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1845
1846 tlm = tls_msg(skb);
1847
1848 err = tls_record_content_type(msg, tlm, control);
1849 if (err <= 0)
1850 goto more;
1851
1852 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1853 msg, chunk);
1854 if (err < 0)
1855 goto more;
1856
1857 len = len - chunk;
1858 copied = copied + chunk;
1859
1860 /* Consume the data from record if it is non-peek case*/
1861 if (!is_peek) {
1862 rxm->offset = rxm->offset + chunk;
1863 rxm->full_len = rxm->full_len - chunk;
1864
1865 /* Return if there is unconsumed data in the record */
1866 if (rxm->full_len - skip)
1867 break;
1868 }
1869
1870 /* The remaining skip-bytes must lie in 1st record in rx_list.
1871 * So from the 2nd record, 'skip' should be 0.
1872 */
1873 skip = 0;
1874
1875 if (msg)
1876 msg->msg_flags |= MSG_EOR;
1877
1878 next_skb = skb_peek_next(skb, &ctx->rx_list);
1879
1880 if (!is_peek) {
1881 __skb_unlink(skb, &ctx->rx_list);
1882 consume_skb(skb);
1883 }
1884
1885 skb = next_skb;
1886 }
1887 err = 0;
1888
1889 out:
1890 return copied ? : err;
1891 more:
1892 if (more)
1893 *more = true;
1894 goto out;
1895 }
1896
1897 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1898 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1899 size_t len_left, size_t decrypted, ssize_t done,
1900 size_t *flushed_at)
1901 {
1902 size_t max_rec;
1903
1904 if (len_left <= decrypted)
1905 return false;
1906
1907 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1908 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1909 return false;
1910
1911 *flushed_at = done;
1912 return sk_flush_backlog(sk);
1913 }
1914
tls_rx_reader_acquire(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1915 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1916 bool nonblock)
1917 {
1918 long timeo;
1919 int ret;
1920
1921 timeo = sock_rcvtimeo(sk, nonblock);
1922
1923 while (unlikely(ctx->reader_present)) {
1924 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1925
1926 ctx->reader_contended = 1;
1927
1928 add_wait_queue(&ctx->wq, &wait);
1929 ret = sk_wait_event(sk, &timeo,
1930 !READ_ONCE(ctx->reader_present), &wait);
1931 remove_wait_queue(&ctx->wq, &wait);
1932
1933 if (timeo <= 0)
1934 return -EAGAIN;
1935 if (signal_pending(current))
1936 return sock_intr_errno(timeo);
1937 if (ret < 0)
1938 return ret;
1939 }
1940
1941 WRITE_ONCE(ctx->reader_present, 1);
1942
1943 return 0;
1944 }
1945
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1946 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1947 bool nonblock)
1948 {
1949 int err;
1950
1951 lock_sock(sk);
1952 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1953 if (err)
1954 release_sock(sk);
1955 return err;
1956 }
1957
tls_rx_reader_release(struct sock * sk,struct tls_sw_context_rx * ctx)1958 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1959 {
1960 if (unlikely(ctx->reader_contended)) {
1961 if (wq_has_sleeper(&ctx->wq))
1962 wake_up(&ctx->wq);
1963 else
1964 ctx->reader_contended = 0;
1965
1966 WARN_ON_ONCE(!ctx->reader_present);
1967 }
1968
1969 WRITE_ONCE(ctx->reader_present, 0);
1970 }
1971
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)1972 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1973 {
1974 tls_rx_reader_release(sk, ctx);
1975 release_sock(sk);
1976 }
1977
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1978 int tls_sw_recvmsg(struct sock *sk,
1979 struct msghdr *msg,
1980 size_t len,
1981 int flags,
1982 int *addr_len)
1983 {
1984 struct tls_context *tls_ctx = tls_get_ctx(sk);
1985 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1986 struct tls_prot_info *prot = &tls_ctx->prot_info;
1987 ssize_t decrypted = 0, async_copy_bytes = 0;
1988 struct sk_psock *psock;
1989 unsigned char control = 0;
1990 size_t flushed_at = 0;
1991 struct strp_msg *rxm;
1992 struct tls_msg *tlm;
1993 ssize_t copied = 0;
1994 ssize_t peeked = 0;
1995 bool async = false;
1996 int target, err;
1997 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1998 bool is_peek = flags & MSG_PEEK;
1999 bool rx_more = false;
2000 bool released = true;
2001 bool bpf_strp_enabled;
2002 bool zc_capable;
2003
2004 if (unlikely(flags & MSG_ERRQUEUE))
2005 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2006
2007 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2008 if (err < 0)
2009 return err;
2010 psock = sk_psock_get(sk);
2011 bpf_strp_enabled = sk_psock_strp_enabled(psock);
2012
2013 /* If crypto failed the connection is broken */
2014 err = ctx->async_wait.err;
2015 if (err)
2016 goto end;
2017
2018 /* Process pending decrypted records. It must be non-zero-copy */
2019 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2020 if (err < 0)
2021 goto end;
2022
2023 /* process_rx_list() will set @control if it processed any records */
2024 copied = err;
2025 if (len <= copied || rx_more ||
2026 (control && control != TLS_RECORD_TYPE_DATA))
2027 goto end;
2028
2029 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2030 len = len - copied;
2031
2032 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2033 ctx->zc_capable;
2034 decrypted = 0;
2035 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2036 struct tls_decrypt_arg darg;
2037 int to_decrypt, chunk;
2038
2039 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2040 released);
2041 if (err <= 0) {
2042 if (psock) {
2043 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2044 flags);
2045 if (chunk > 0) {
2046 decrypted += chunk;
2047 len -= chunk;
2048 continue;
2049 }
2050 }
2051 goto recv_end;
2052 }
2053
2054 memset(&darg.inargs, 0, sizeof(darg.inargs));
2055
2056 rxm = strp_msg(tls_strp_msg(ctx));
2057 tlm = tls_msg(tls_strp_msg(ctx));
2058
2059 to_decrypt = rxm->full_len - prot->overhead_size;
2060
2061 if (zc_capable && to_decrypt <= len &&
2062 tlm->control == TLS_RECORD_TYPE_DATA)
2063 darg.zc = true;
2064
2065 /* Do not use async mode if record is non-data */
2066 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2067 darg.async = ctx->async_capable;
2068 else
2069 darg.async = false;
2070
2071 err = tls_rx_one_record(sk, msg, &darg);
2072 if (err < 0) {
2073 tls_err_abort(sk, -EBADMSG);
2074 goto recv_end;
2075 }
2076
2077 async |= darg.async;
2078
2079 /* If the type of records being processed is not known yet,
2080 * set it to record type just dequeued. If it is already known,
2081 * but does not match the record type just dequeued, go to end.
2082 * We always get record type here since for tls1.2, record type
2083 * is known just after record is dequeued from stream parser.
2084 * For tls1.3, we disable async.
2085 */
2086 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2087 if (err <= 0) {
2088 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2089 tls_rx_rec_done(ctx);
2090 put_on_rx_list_err:
2091 __skb_queue_tail(&ctx->rx_list, darg.skb);
2092 goto recv_end;
2093 }
2094
2095 /* periodically flush backlog, and feed strparser */
2096 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2097 decrypted + copied,
2098 &flushed_at);
2099
2100 /* TLS 1.3 may have updated the length by more than overhead */
2101 rxm = strp_msg(darg.skb);
2102 chunk = rxm->full_len;
2103 tls_rx_rec_done(ctx);
2104
2105 if (!darg.zc) {
2106 bool partially_consumed = chunk > len;
2107 struct sk_buff *skb = darg.skb;
2108
2109 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2110
2111 if (async) {
2112 /* TLS 1.2-only, to_decrypt must be text len */
2113 chunk = min_t(int, to_decrypt, len);
2114 async_copy_bytes += chunk;
2115 put_on_rx_list:
2116 decrypted += chunk;
2117 len -= chunk;
2118 __skb_queue_tail(&ctx->rx_list, skb);
2119 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2120 break;
2121 continue;
2122 }
2123
2124 if (bpf_strp_enabled) {
2125 released = true;
2126 err = sk_psock_tls_strp_read(psock, skb);
2127 if (err != __SK_PASS) {
2128 rxm->offset = rxm->offset + rxm->full_len;
2129 rxm->full_len = 0;
2130 if (err == __SK_DROP)
2131 consume_skb(skb);
2132 continue;
2133 }
2134 }
2135
2136 if (partially_consumed)
2137 chunk = len;
2138
2139 err = skb_copy_datagram_msg(skb, rxm->offset,
2140 msg, chunk);
2141 if (err < 0)
2142 goto put_on_rx_list_err;
2143
2144 if (is_peek) {
2145 peeked += chunk;
2146 goto put_on_rx_list;
2147 }
2148
2149 if (partially_consumed) {
2150 rxm->offset += chunk;
2151 rxm->full_len -= chunk;
2152 goto put_on_rx_list;
2153 }
2154
2155 consume_skb(skb);
2156 }
2157
2158 decrypted += chunk;
2159 len -= chunk;
2160
2161 /* Return full control message to userspace before trying
2162 * to parse another message type
2163 */
2164 msg->msg_flags |= MSG_EOR;
2165 if (control != TLS_RECORD_TYPE_DATA)
2166 break;
2167 }
2168
2169 recv_end:
2170 if (async) {
2171 int ret;
2172
2173 /* Wait for all previously submitted records to be decrypted */
2174 ret = tls_decrypt_async_wait(ctx);
2175 __skb_queue_purge(&ctx->async_hold);
2176
2177 if (ret) {
2178 if (err >= 0 || err == -EINPROGRESS)
2179 err = ret;
2180 goto end;
2181 }
2182
2183 /* Drain records from the rx_list & copy if required */
2184 if (is_peek)
2185 err = process_rx_list(ctx, msg, &control, copied + peeked,
2186 decrypted - peeked, is_peek, NULL);
2187 else
2188 err = process_rx_list(ctx, msg, &control, 0,
2189 async_copy_bytes, is_peek, NULL);
2190
2191 /* we could have copied less than we wanted, and possibly nothing */
2192 decrypted += max(err, 0) - async_copy_bytes;
2193 }
2194
2195 copied += decrypted;
2196
2197 end:
2198 tls_rx_reader_unlock(sk, ctx);
2199 if (psock)
2200 sk_psock_put(sk, psock);
2201 return copied ? : err;
2202 }
2203
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2204 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2205 struct pipe_inode_info *pipe,
2206 size_t len, unsigned int flags)
2207 {
2208 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2209 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2210 struct strp_msg *rxm = NULL;
2211 struct sock *sk = sock->sk;
2212 struct tls_msg *tlm;
2213 struct sk_buff *skb;
2214 ssize_t copied = 0;
2215 int chunk;
2216 int err;
2217
2218 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2219 if (err < 0)
2220 return err;
2221
2222 if (!skb_queue_empty(&ctx->rx_list)) {
2223 skb = __skb_dequeue(&ctx->rx_list);
2224 } else {
2225 struct tls_decrypt_arg darg;
2226
2227 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2228 true);
2229 if (err <= 0)
2230 goto splice_read_end;
2231
2232 memset(&darg.inargs, 0, sizeof(darg.inargs));
2233
2234 err = tls_rx_one_record(sk, NULL, &darg);
2235 if (err < 0) {
2236 tls_err_abort(sk, -EBADMSG);
2237 goto splice_read_end;
2238 }
2239
2240 tls_rx_rec_done(ctx);
2241 skb = darg.skb;
2242 }
2243
2244 rxm = strp_msg(skb);
2245 tlm = tls_msg(skb);
2246
2247 /* splice does not support reading control messages */
2248 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2249 err = -EINVAL;
2250 goto splice_requeue;
2251 }
2252
2253 chunk = min_t(unsigned int, rxm->full_len, len);
2254 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2255 if (copied < 0)
2256 goto splice_requeue;
2257
2258 if (chunk < rxm->full_len) {
2259 rxm->offset += len;
2260 rxm->full_len -= len;
2261 goto splice_requeue;
2262 }
2263
2264 consume_skb(skb);
2265
2266 splice_read_end:
2267 tls_rx_reader_unlock(sk, ctx);
2268 return copied ? : err;
2269
2270 splice_requeue:
2271 __skb_queue_head(&ctx->rx_list, skb);
2272 goto splice_read_end;
2273 }
2274
tls_sw_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t read_actor)2275 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2276 sk_read_actor_t read_actor)
2277 {
2278 struct tls_context *tls_ctx = tls_get_ctx(sk);
2279 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2280 struct tls_prot_info *prot = &tls_ctx->prot_info;
2281 struct strp_msg *rxm = NULL;
2282 struct sk_buff *skb = NULL;
2283 struct sk_psock *psock;
2284 size_t flushed_at = 0;
2285 bool released = true;
2286 struct tls_msg *tlm;
2287 ssize_t copied = 0;
2288 ssize_t decrypted;
2289 int err, used;
2290
2291 psock = sk_psock_get(sk);
2292 if (psock) {
2293 sk_psock_put(sk, psock);
2294 return -EINVAL;
2295 }
2296 err = tls_rx_reader_acquire(sk, ctx, true);
2297 if (err < 0)
2298 return err;
2299
2300 /* If crypto failed the connection is broken */
2301 err = ctx->async_wait.err;
2302 if (err)
2303 goto read_sock_end;
2304
2305 decrypted = 0;
2306 do {
2307 if (!skb_queue_empty(&ctx->rx_list)) {
2308 skb = __skb_dequeue(&ctx->rx_list);
2309 rxm = strp_msg(skb);
2310 tlm = tls_msg(skb);
2311 } else {
2312 struct tls_decrypt_arg darg;
2313
2314 err = tls_rx_rec_wait(sk, NULL, true, released);
2315 if (err <= 0)
2316 goto read_sock_end;
2317
2318 memset(&darg.inargs, 0, sizeof(darg.inargs));
2319
2320 err = tls_rx_one_record(sk, NULL, &darg);
2321 if (err < 0) {
2322 tls_err_abort(sk, -EBADMSG);
2323 goto read_sock_end;
2324 }
2325
2326 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2327 0, decrypted,
2328 &flushed_at);
2329 skb = darg.skb;
2330 rxm = strp_msg(skb);
2331 tlm = tls_msg(skb);
2332 decrypted += rxm->full_len;
2333
2334 tls_rx_rec_done(ctx);
2335 }
2336
2337 /* read_sock does not support reading control messages */
2338 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2339 err = -EINVAL;
2340 goto read_sock_requeue;
2341 }
2342
2343 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2344 if (used <= 0) {
2345 if (!copied)
2346 err = used;
2347 goto read_sock_requeue;
2348 }
2349 copied += used;
2350 if (used < rxm->full_len) {
2351 rxm->offset += used;
2352 rxm->full_len -= used;
2353 if (!desc->count)
2354 goto read_sock_requeue;
2355 } else {
2356 consume_skb(skb);
2357 if (!desc->count)
2358 skb = NULL;
2359 }
2360 } while (skb);
2361
2362 read_sock_end:
2363 tls_rx_reader_release(sk, ctx);
2364 return copied ? : err;
2365
2366 read_sock_requeue:
2367 __skb_queue_head(&ctx->rx_list, skb);
2368 goto read_sock_end;
2369 }
2370
tls_sw_sock_is_readable(struct sock * sk)2371 bool tls_sw_sock_is_readable(struct sock *sk)
2372 {
2373 struct tls_context *tls_ctx = tls_get_ctx(sk);
2374 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2375 bool ingress_empty = true;
2376 struct sk_psock *psock;
2377
2378 rcu_read_lock();
2379 psock = sk_psock(sk);
2380 if (psock)
2381 ingress_empty = list_empty(&psock->ingress_msg);
2382 rcu_read_unlock();
2383
2384 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2385 !skb_queue_empty(&ctx->rx_list);
2386 }
2387
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2388 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2389 {
2390 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2391 struct tls_prot_info *prot = &tls_ctx->prot_info;
2392 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2393 size_t cipher_overhead;
2394 size_t data_len = 0;
2395 int ret;
2396
2397 /* Verify that we have a full TLS header, or wait for more data */
2398 if (strp->stm.offset + prot->prepend_size > skb->len)
2399 return 0;
2400
2401 /* Sanity-check size of on-stack buffer. */
2402 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2403 ret = -EINVAL;
2404 goto read_failure;
2405 }
2406
2407 /* Linearize header to local buffer */
2408 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2409 if (ret < 0)
2410 goto read_failure;
2411
2412 strp->mark = header[0];
2413
2414 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2415
2416 cipher_overhead = prot->tag_size;
2417 if (prot->version != TLS_1_3_VERSION &&
2418 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2419 cipher_overhead += prot->iv_size;
2420
2421 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2422 prot->tail_size) {
2423 ret = -EMSGSIZE;
2424 goto read_failure;
2425 }
2426 if (data_len < cipher_overhead) {
2427 ret = -EBADMSG;
2428 goto read_failure;
2429 }
2430
2431 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2432 if (header[1] != TLS_1_2_VERSION_MINOR ||
2433 header[2] != TLS_1_2_VERSION_MAJOR) {
2434 ret = -EINVAL;
2435 goto read_failure;
2436 }
2437
2438 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2439 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2440 return data_len + TLS_HEADER_SIZE;
2441
2442 read_failure:
2443 tls_strp_abort_strp(strp, ret);
2444 return ret;
2445 }
2446
tls_rx_msg_ready(struct tls_strparser * strp)2447 void tls_rx_msg_ready(struct tls_strparser *strp)
2448 {
2449 struct tls_sw_context_rx *ctx;
2450
2451 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2452 ctx->saved_data_ready(strp->sk);
2453 }
2454
tls_data_ready(struct sock * sk)2455 static void tls_data_ready(struct sock *sk)
2456 {
2457 struct tls_context *tls_ctx = tls_get_ctx(sk);
2458 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2459 struct sk_psock *psock;
2460 gfp_t alloc_save;
2461
2462 trace_sk_data_ready(sk);
2463
2464 alloc_save = sk->sk_allocation;
2465 sk->sk_allocation = GFP_ATOMIC;
2466 tls_strp_data_ready(&ctx->strp);
2467 sk->sk_allocation = alloc_save;
2468
2469 psock = sk_psock_get(sk);
2470 if (psock) {
2471 if (!list_empty(&psock->ingress_msg))
2472 ctx->saved_data_ready(sk);
2473 sk_psock_put(sk, psock);
2474 }
2475 }
2476
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2477 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2478 {
2479 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2480
2481 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2482 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2483 cancel_delayed_work_sync(&ctx->tx_work.work);
2484 }
2485
tls_sw_release_resources_tx(struct sock * sk)2486 void tls_sw_release_resources_tx(struct sock *sk)
2487 {
2488 struct tls_context *tls_ctx = tls_get_ctx(sk);
2489 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2490 struct tls_rec *rec, *tmp;
2491
2492 /* Wait for any pending async encryptions to complete */
2493 tls_encrypt_async_wait(ctx);
2494
2495 tls_tx_records(sk, -1);
2496
2497 /* Free up un-sent records in tx_list. First, free
2498 * the partially sent record if any at head of tx_list.
2499 */
2500 if (tls_ctx->partially_sent_record) {
2501 tls_free_partial_record(sk, tls_ctx);
2502 rec = list_first_entry(&ctx->tx_list,
2503 struct tls_rec, list);
2504 list_del(&rec->list);
2505 sk_msg_free(sk, &rec->msg_plaintext);
2506 kfree(rec);
2507 }
2508
2509 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2510 list_del(&rec->list);
2511 sk_msg_free(sk, &rec->msg_encrypted);
2512 sk_msg_free(sk, &rec->msg_plaintext);
2513 kfree(rec);
2514 }
2515
2516 crypto_free_aead(ctx->aead_send);
2517 tls_free_open_rec(sk);
2518 }
2519
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2520 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2521 {
2522 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2523
2524 kfree(ctx);
2525 }
2526
tls_sw_release_resources_rx(struct sock * sk)2527 void tls_sw_release_resources_rx(struct sock *sk)
2528 {
2529 struct tls_context *tls_ctx = tls_get_ctx(sk);
2530 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2531
2532 if (ctx->aead_recv) {
2533 __skb_queue_purge(&ctx->rx_list);
2534 crypto_free_aead(ctx->aead_recv);
2535 tls_strp_stop(&ctx->strp);
2536 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2537 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2538 * never swapped.
2539 */
2540 if (ctx->saved_data_ready) {
2541 write_lock_bh(&sk->sk_callback_lock);
2542 sk->sk_data_ready = ctx->saved_data_ready;
2543 write_unlock_bh(&sk->sk_callback_lock);
2544 }
2545 }
2546 }
2547
tls_sw_strparser_done(struct tls_context * tls_ctx)2548 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2549 {
2550 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2551
2552 tls_strp_done(&ctx->strp);
2553 }
2554
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2555 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2556 {
2557 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2558
2559 kfree(ctx);
2560 }
2561
tls_sw_free_resources_rx(struct sock * sk)2562 void tls_sw_free_resources_rx(struct sock *sk)
2563 {
2564 struct tls_context *tls_ctx = tls_get_ctx(sk);
2565
2566 tls_sw_release_resources_rx(sk);
2567 tls_sw_free_ctx_rx(tls_ctx);
2568 }
2569
2570 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2571 static void tx_work_handler(struct work_struct *work)
2572 {
2573 struct delayed_work *delayed_work = to_delayed_work(work);
2574 struct tx_work *tx_work = container_of(delayed_work,
2575 struct tx_work, work);
2576 struct sock *sk = tx_work->sk;
2577 struct tls_context *tls_ctx = tls_get_ctx(sk);
2578 struct tls_sw_context_tx *ctx;
2579
2580 if (unlikely(!tls_ctx))
2581 return;
2582
2583 ctx = tls_sw_ctx_tx(tls_ctx);
2584 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2585 return;
2586
2587 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2588 return;
2589
2590 if (mutex_trylock(&tls_ctx->tx_lock)) {
2591 lock_sock(sk);
2592 tls_tx_records(sk, -1);
2593 release_sock(sk);
2594 mutex_unlock(&tls_ctx->tx_lock);
2595 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2596 /* Someone is holding the tx_lock, they will likely run Tx
2597 * and cancel the work on their way out of the lock section.
2598 * Schedule a long delay just in case.
2599 */
2600 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2601 }
2602 }
2603
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2604 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2605 {
2606 struct tls_rec *rec;
2607
2608 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2609 if (!rec)
2610 return false;
2611
2612 return READ_ONCE(rec->tx_ready);
2613 }
2614
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2615 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2616 {
2617 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2618
2619 /* Schedule the transmission if tx list is ready */
2620 if (tls_is_tx_ready(tx_ctx) &&
2621 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2622 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2623 }
2624
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2625 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2626 {
2627 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2628
2629 write_lock_bh(&sk->sk_callback_lock);
2630 rx_ctx->saved_data_ready = sk->sk_data_ready;
2631 sk->sk_data_ready = tls_data_ready;
2632 write_unlock_bh(&sk->sk_callback_lock);
2633 }
2634
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2635 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2636 {
2637 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2638
2639 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2640 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2641 }
2642
init_ctx_tx(struct tls_context * ctx,struct sock * sk)2643 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2644 {
2645 struct tls_sw_context_tx *sw_ctx_tx;
2646
2647 if (!ctx->priv_ctx_tx) {
2648 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2649 if (!sw_ctx_tx)
2650 return NULL;
2651 } else {
2652 sw_ctx_tx = ctx->priv_ctx_tx;
2653 }
2654
2655 crypto_init_wait(&sw_ctx_tx->async_wait);
2656 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2657 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2658 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2659 sw_ctx_tx->tx_work.sk = sk;
2660
2661 return sw_ctx_tx;
2662 }
2663
init_ctx_rx(struct tls_context * ctx)2664 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2665 {
2666 struct tls_sw_context_rx *sw_ctx_rx;
2667
2668 if (!ctx->priv_ctx_rx) {
2669 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2670 if (!sw_ctx_rx)
2671 return NULL;
2672 } else {
2673 sw_ctx_rx = ctx->priv_ctx_rx;
2674 }
2675
2676 crypto_init_wait(&sw_ctx_rx->async_wait);
2677 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2678 init_waitqueue_head(&sw_ctx_rx->wq);
2679 skb_queue_head_init(&sw_ctx_rx->rx_list);
2680 skb_queue_head_init(&sw_ctx_rx->async_hold);
2681
2682 return sw_ctx_rx;
2683 }
2684
init_prot_info(struct tls_prot_info * prot,const struct tls_crypto_info * crypto_info,const struct tls_cipher_desc * cipher_desc)2685 int init_prot_info(struct tls_prot_info *prot,
2686 const struct tls_crypto_info *crypto_info,
2687 const struct tls_cipher_desc *cipher_desc)
2688 {
2689 u16 nonce_size = cipher_desc->nonce;
2690
2691 if (crypto_info->version == TLS_1_3_VERSION) {
2692 nonce_size = 0;
2693 prot->aad_size = TLS_HEADER_SIZE;
2694 prot->tail_size = 1;
2695 } else {
2696 prot->aad_size = TLS_AAD_SPACE_SIZE;
2697 prot->tail_size = 0;
2698 }
2699
2700 /* Sanity-check the sizes for stack allocations. */
2701 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2702 return -EINVAL;
2703
2704 prot->version = crypto_info->version;
2705 prot->cipher_type = crypto_info->cipher_type;
2706 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2707 prot->tag_size = cipher_desc->tag;
2708 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2709 prot->iv_size = cipher_desc->iv;
2710 prot->salt_size = cipher_desc->salt;
2711 prot->rec_seq_size = cipher_desc->rec_seq;
2712
2713 return 0;
2714 }
2715
tls_set_sw_offload(struct sock * sk,int tx)2716 int tls_set_sw_offload(struct sock *sk, int tx)
2717 {
2718 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2719 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2720 const struct tls_cipher_desc *cipher_desc;
2721 struct tls_crypto_info *crypto_info;
2722 char *iv, *rec_seq, *key, *salt;
2723 struct cipher_context *cctx;
2724 struct tls_prot_info *prot;
2725 struct crypto_aead **aead;
2726 struct tls_context *ctx;
2727 struct crypto_tfm *tfm;
2728 int rc = 0;
2729
2730 ctx = tls_get_ctx(sk);
2731 prot = &ctx->prot_info;
2732
2733 if (tx) {
2734 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2735 if (!ctx->priv_ctx_tx)
2736 return -ENOMEM;
2737
2738 sw_ctx_tx = ctx->priv_ctx_tx;
2739 crypto_info = &ctx->crypto_send.info;
2740 cctx = &ctx->tx;
2741 aead = &sw_ctx_tx->aead_send;
2742 } else {
2743 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2744 if (!ctx->priv_ctx_rx)
2745 return -ENOMEM;
2746
2747 sw_ctx_rx = ctx->priv_ctx_rx;
2748 crypto_info = &ctx->crypto_recv.info;
2749 cctx = &ctx->rx;
2750 aead = &sw_ctx_rx->aead_recv;
2751 }
2752
2753 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2754 if (!cipher_desc) {
2755 rc = -EINVAL;
2756 goto free_priv;
2757 }
2758
2759 rc = init_prot_info(prot, crypto_info, cipher_desc);
2760 if (rc)
2761 goto free_priv;
2762
2763 iv = crypto_info_iv(crypto_info, cipher_desc);
2764 key = crypto_info_key(crypto_info, cipher_desc);
2765 salt = crypto_info_salt(crypto_info, cipher_desc);
2766 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2767
2768 memcpy(cctx->iv, salt, cipher_desc->salt);
2769 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2770 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2771
2772 if (!*aead) {
2773 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2774 if (IS_ERR(*aead)) {
2775 rc = PTR_ERR(*aead);
2776 *aead = NULL;
2777 goto free_priv;
2778 }
2779 }
2780
2781 ctx->push_pending_record = tls_sw_push_pending_record;
2782
2783 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2784 if (rc)
2785 goto free_aead;
2786
2787 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2788 if (rc)
2789 goto free_aead;
2790
2791 if (sw_ctx_rx) {
2792 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2793
2794 tls_update_rx_zc_capable(ctx);
2795 sw_ctx_rx->async_capable =
2796 crypto_info->version != TLS_1_3_VERSION &&
2797 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2798
2799 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2800 if (rc)
2801 goto free_aead;
2802 }
2803
2804 goto out;
2805
2806 free_aead:
2807 crypto_free_aead(*aead);
2808 *aead = NULL;
2809 free_priv:
2810 if (tx) {
2811 kfree(ctx->priv_ctx_tx);
2812 ctx->priv_ctx_tx = NULL;
2813 } else {
2814 kfree(ctx->priv_ctx_rx);
2815 ctx->priv_ctx_rx = NULL;
2816 }
2817 out:
2818 return rc;
2819 }
2820