• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 pub struct Arc<T: ?Sized> {
129     ptr: NonNull<ArcInner<T>>,
130     _p: PhantomData<ArcInner<T>>,
131 }
132 
133 #[pin_data]
134 #[repr(C)]
135 struct ArcInner<T: ?Sized> {
136     refcount: Opaque<bindings::refcount_t>,
137     data: T,
138 }
139 
140 impl<T: ?Sized> ArcInner<T> {
141     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
142     ///
143     /// # Safety
144     ///
145     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
146     /// not yet have been destroyed.
container_of(ptr: *const T) -> NonNull<ArcInner<T>>147     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
148         let refcount_layout = Layout::new::<bindings::refcount_t>();
149         // SAFETY: The caller guarantees that the pointer is valid.
150         let val_layout = Layout::for_value(unsafe { &*ptr });
151         // SAFETY: We're computing the layout of a real struct that existed when compiling this
152         // binary, so its layout is not so large that it can trigger arithmetic overflow.
153         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
154 
155         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
156         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
157         //
158         // This is documented at:
159         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
160         let ptr = ptr as *const ArcInner<T>;
161 
162         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
163         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
164         // still valid.
165         let ptr = unsafe { ptr.byte_sub(val_offset) };
166 
167         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
168         // address.
169         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
170     }
171 }
172 
173 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
174 // dynamically-sized type (DST) `U`.
175 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
176 
177 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
179 
180 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
181 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
182 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
183 // mutable reference when the reference count reaches zero and `T` is dropped.
184 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
185 
186 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
187 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
188 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
189 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
190 // the reference count reaches zero and `T` is dropped.
191 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
192 
193 impl<T> Arc<T> {
194     /// Constructs a new reference counted instance of `T`.
new(contents: T, flags: Flags) -> Result<Self, AllocError>195     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
196         // INVARIANT: The refcount is initialised to a non-zero value.
197         let value = ArcInner {
198             // SAFETY: There are no safety requirements for this FFI call.
199             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
200             data: contents,
201         };
202 
203         let inner = KBox::new(value, flags)?;
204 
205         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
206         // `Arc` object.
207         Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) })
208     }
209 
210     /// The offset that the value is stored at.
211     pub const DATA_OFFSET: usize = core::mem::offset_of!(ArcInner<T>, data);
212 }
213 
214 impl<T: ?Sized> Arc<T> {
215     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
216     ///
217     /// # Safety
218     ///
219     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
220     /// count, one of which will be owned by the new [`Arc`] instance.
from_inner(inner: NonNull<ArcInner<T>>) -> Self221     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
222         // INVARIANT: By the safety requirements, the invariants hold.
223         Arc {
224             ptr: inner,
225             _p: PhantomData,
226         }
227     }
228 
229     /// Convert the [`Arc`] into a raw pointer.
230     ///
231     /// The raw pointer has ownership of the refcount that this Arc object owned.
into_raw(self) -> *const T232     pub fn into_raw(self) -> *const T {
233         let ptr = self.ptr.as_ptr();
234         core::mem::forget(self);
235         // SAFETY: The pointer is valid.
236         unsafe { core::ptr::addr_of!((*ptr).data) }
237     }
238 
239     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
240     ///
241     /// # Safety
242     ///
243     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
244     /// must not be called more than once for each previous call to [`Arc::into_raw`].
from_raw(ptr: *const T) -> Self245     pub unsafe fn from_raw(ptr: *const T) -> Self {
246         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
247         // `Arc` that is still valid.
248         let ptr = unsafe { ArcInner::container_of(ptr) };
249 
250         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
251         // reference count held then will be owned by the new `Arc` object.
252         unsafe { Self::from_inner(ptr) }
253     }
254 
255     /// Returns an [`ArcBorrow`] from the given [`Arc`].
256     ///
257     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
258     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
259     #[inline]
as_arc_borrow(&self) -> ArcBorrow<'_, T>260     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
261         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
262         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
263         // reference can be created.
264         unsafe { ArcBorrow::new(self.ptr) }
265     }
266 
267     /// Compare whether two [`Arc`] pointers reference the same underlying object.
ptr_eq(this: &Self, other: &Self) -> bool268     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
269         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
270     }
271 
272     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
273     ///
274     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
275     /// this method will never call the destructor of the value.
276     ///
277     /// # Examples
278     ///
279     /// ```
280     /// use kernel::sync::{Arc, UniqueArc};
281     ///
282     /// let arc = Arc::new(42, GFP_KERNEL)?;
283     /// let unique_arc = arc.into_unique_or_drop();
284     ///
285     /// // The above conversion should succeed since refcount of `arc` is 1.
286     /// assert!(unique_arc.is_some());
287     ///
288     /// assert_eq!(*(unique_arc.unwrap()), 42);
289     ///
290     /// # Ok::<(), Error>(())
291     /// ```
292     ///
293     /// ```
294     /// use kernel::sync::{Arc, UniqueArc};
295     ///
296     /// let arc = Arc::new(42, GFP_KERNEL)?;
297     /// let another = arc.clone();
298     ///
299     /// let unique_arc = arc.into_unique_or_drop();
300     ///
301     /// // The above conversion should fail since refcount of `arc` is >1.
302     /// assert!(unique_arc.is_none());
303     ///
304     /// # Ok::<(), Error>(())
305     /// ```
into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>>306     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
307         // We will manually manage the refcount in this method, so we disable the destructor.
308         let me = ManuallyDrop::new(self);
309         // SAFETY: We own a refcount, so the pointer is still valid.
310         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
311 
312         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
313         // return without further touching the `Arc`. If the refcount reaches zero, then there are
314         // no other arcs, and we can create a `UniqueArc`.
315         //
316         // SAFETY: We own a refcount, so the pointer is not dangling.
317         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
318         if is_zero {
319             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
320             // accesses to the refcount.
321             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
322 
323             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
324             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
325             // their values.
326             Some(Pin::from(UniqueArc {
327                 inner: ManuallyDrop::into_inner(me),
328             }))
329         } else {
330             None
331         }
332     }
333 }
334 
335 impl<T: 'static> ForeignOwnable for Arc<T> {
336     type Borrowed<'a> = ArcBorrow<'a, T>;
337 
into_foreign(self) -> *const crate::ffi::c_void338     fn into_foreign(self) -> *const crate::ffi::c_void {
339         ManuallyDrop::new(self).ptr.as_ptr() as _
340     }
341 
borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T>342     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
343         // By the safety requirement of this function, we know that `ptr` came from
344         // a previous call to `Arc::into_foreign`.
345         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
346 
347         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
348         // for the lifetime of the returned value.
349         unsafe { ArcBorrow::new(inner) }
350     }
351 
from_foreign(ptr: *const crate::ffi::c_void) -> Self352     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
353         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
354         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
355         // holds a reference count increment that is transferrable to us.
356         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
357     }
358 }
359 
360 impl<T: ?Sized> Deref for Arc<T> {
361     type Target = T;
362 
deref(&self) -> &Self::Target363     fn deref(&self) -> &Self::Target {
364         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
365         // safe to dereference it.
366         unsafe { &self.ptr.as_ref().data }
367     }
368 }
369 
370 impl<T: ?Sized> AsRef<T> for Arc<T> {
as_ref(&self) -> &T371     fn as_ref(&self) -> &T {
372         self.deref()
373     }
374 }
375 
376 impl<T: ?Sized> Clone for Arc<T> {
clone(&self) -> Self377     fn clone(&self) -> Self {
378         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
379         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
380         // safe to increment the refcount.
381         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
382 
383         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
384         unsafe { Self::from_inner(self.ptr) }
385     }
386 }
387 
388 impl<T: ?Sized> Drop for Arc<T> {
drop(&mut self)389     fn drop(&mut self) {
390         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
391         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
392         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
393         // freed/invalid memory as long as it is never dereferenced.
394         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
395 
396         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
397         // this instance is being dropped, so the broken invariant is not observable.
398         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
399         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
400         if is_zero {
401             // The count reached zero, we must free the memory.
402             //
403             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
404             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
405         }
406     }
407 }
408 
409 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
from(item: UniqueArc<T>) -> Self410     fn from(item: UniqueArc<T>) -> Self {
411         item.inner
412     }
413 }
414 
415 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
from(item: Pin<UniqueArc<T>>) -> Self416     fn from(item: Pin<UniqueArc<T>>) -> Self {
417         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
418         unsafe { Pin::into_inner_unchecked(item).inner }
419     }
420 }
421 
422 /// A borrowed reference to an [`Arc`] instance.
423 ///
424 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
425 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
426 ///
427 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
428 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
429 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
430 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
431 /// needed.
432 ///
433 /// # Invariants
434 ///
435 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
436 /// lifetime of the [`ArcBorrow`] instance.
437 ///
438 /// # Example
439 ///
440 /// ```
441 /// use kernel::sync::{Arc, ArcBorrow};
442 ///
443 /// struct Example;
444 ///
445 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
446 ///     e.into()
447 /// }
448 ///
449 /// let obj = Arc::new(Example, GFP_KERNEL)?;
450 /// let cloned = do_something(obj.as_arc_borrow());
451 ///
452 /// // Assert that both `obj` and `cloned` point to the same underlying object.
453 /// assert!(core::ptr::eq(&*obj, &*cloned));
454 /// # Ok::<(), Error>(())
455 /// ```
456 ///
457 /// Using `ArcBorrow<T>` as the type of `self`:
458 ///
459 /// ```
460 /// use kernel::sync::{Arc, ArcBorrow};
461 ///
462 /// struct Example {
463 ///     a: u32,
464 ///     b: u32,
465 /// }
466 ///
467 /// impl Example {
468 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
469 ///         // ...
470 ///     }
471 /// }
472 ///
473 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
474 /// obj.as_arc_borrow().use_reference();
475 /// # Ok::<(), Error>(())
476 /// ```
477 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
478     inner: NonNull<ArcInner<T>>,
479     _p: PhantomData<&'a ()>,
480 }
481 
482 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
483 // `ArcBorrow<U>`.
484 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
485     for ArcBorrow<'_, T>
486 {
487 }
488 
489 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
clone(&self) -> Self490     fn clone(&self) -> Self {
491         *self
492     }
493 }
494 
495 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
496 
497 impl<T: ?Sized> ArcBorrow<'_, T> {
498     /// Creates a new [`ArcBorrow`] instance.
499     ///
500     /// # Safety
501     ///
502     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
503     /// 1. That `inner` remains valid;
504     /// 2. That no mutable references to `inner` are created.
new(inner: NonNull<ArcInner<T>>) -> Self505     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
506         // INVARIANT: The safety requirements guarantee the invariants.
507         Self {
508             inner,
509             _p: PhantomData,
510         }
511     }
512 
513     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
514     /// [`Arc::into_raw`].
515     ///
516     /// # Safety
517     ///
518     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
519     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
520     ///   not hit zero.
521     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
522     ///   [`UniqueArc`] reference to this value.
from_raw(ptr: *const T) -> Self523     pub unsafe fn from_raw(ptr: *const T) -> Self {
524         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
525         // `Arc` that is still valid.
526         let ptr = unsafe { ArcInner::container_of(ptr) };
527 
528         // SAFETY: The caller promises that the value remains valid since the reference count must
529         // not hit zero, and no mutable reference will be created since that would involve a
530         // `UniqueArc`.
531         unsafe { Self::new(ptr) }
532     }
533 }
534 
535 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
from(b: ArcBorrow<'_, T>) -> Self536     fn from(b: ArcBorrow<'_, T>) -> Self {
537         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
538         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
539         // increment.
540         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
541             .deref()
542             .clone()
543     }
544 }
545 
546 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
547     type Target = T;
548 
deref(&self) -> &Self::Target549     fn deref(&self) -> &Self::Target {
550         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
551         // references to it, so it is safe to create a shared reference.
552         unsafe { &self.inner.as_ref().data }
553     }
554 }
555 
556 /// A refcounted object that is known to have a refcount of 1.
557 ///
558 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
559 ///
560 /// # Invariants
561 ///
562 /// `inner` always has a reference count of 1.
563 ///
564 /// # Examples
565 ///
566 /// In the following example, we make changes to the inner object before turning it into an
567 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
568 /// cannot fail.
569 ///
570 /// ```
571 /// use kernel::sync::{Arc, UniqueArc};
572 ///
573 /// struct Example {
574 ///     a: u32,
575 ///     b: u32,
576 /// }
577 ///
578 /// fn test() -> Result<Arc<Example>> {
579 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
580 ///     x.a += 1;
581 ///     x.b += 1;
582 ///     Ok(x.into())
583 /// }
584 ///
585 /// # test().unwrap();
586 /// ```
587 ///
588 /// In the following example we first allocate memory for a refcounted `Example` but we don't
589 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
590 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
591 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
592 ///
593 /// ```
594 /// use kernel::sync::{Arc, UniqueArc};
595 ///
596 /// struct Example {
597 ///     a: u32,
598 ///     b: u32,
599 /// }
600 ///
601 /// fn test() -> Result<Arc<Example>> {
602 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
603 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
604 /// }
605 ///
606 /// # test().unwrap();
607 /// ```
608 ///
609 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
610 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
611 /// initialisation, for example, when initialising fields that are wrapped in locks.
612 ///
613 /// ```
614 /// use kernel::sync::{Arc, UniqueArc};
615 ///
616 /// struct Example {
617 ///     a: u32,
618 ///     b: u32,
619 /// }
620 ///
621 /// fn test() -> Result<Arc<Example>> {
622 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
623 ///     // We can modify `pinned` because it is `Unpin`.
624 ///     pinned.as_mut().a += 1;
625 ///     Ok(pinned.into())
626 /// }
627 ///
628 /// # test().unwrap();
629 /// ```
630 pub struct UniqueArc<T: ?Sized> {
631     inner: Arc<T>,
632 }
633 
634 impl<T> UniqueArc<T> {
635     /// Tries to allocate a new [`UniqueArc`] instance.
new(value: T, flags: Flags) -> Result<Self, AllocError>636     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
637         Ok(Self {
638             // INVARIANT: The newly-created object has a refcount of 1.
639             inner: Arc::new(value, flags)?,
640         })
641     }
642 
643     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError>644     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
645         // INVARIANT: The refcount is initialised to a non-zero value.
646         let inner = KBox::try_init::<AllocError>(
647             try_init!(ArcInner {
648                 // SAFETY: There are no safety requirements for this FFI call.
649                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
650                 data <- init::uninit::<T, AllocError>(),
651             }? AllocError),
652             flags,
653         )?;
654         Ok(UniqueArc {
655             // INVARIANT: The newly-created object has a refcount of 1.
656             // SAFETY: The pointer from the `KBox` is valid.
657             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
658         })
659     }
660 }
661 
662 impl<T> UniqueArc<MaybeUninit<T>> {
663     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
write(mut self, value: T) -> UniqueArc<T>664     pub fn write(mut self, value: T) -> UniqueArc<T> {
665         self.deref_mut().write(value);
666         // SAFETY: We just wrote the value to be initialized.
667         unsafe { self.assume_init() }
668     }
669 
670     /// Unsafely assume that `self` is initialized.
671     ///
672     /// # Safety
673     ///
674     /// The caller guarantees that the value behind this pointer has been initialized. It is
675     /// *immediate* UB to call this when the value is not initialized.
assume_init(self) -> UniqueArc<T>676     pub unsafe fn assume_init(self) -> UniqueArc<T> {
677         let inner = ManuallyDrop::new(self).inner.ptr;
678         UniqueArc {
679             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
680             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
681             inner: unsafe { Arc::from_inner(inner.cast()) },
682         }
683     }
684 
685     /// Initialize `self` using the given initializer.
init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E>686     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
687         // SAFETY: The supplied pointer is valid for initialization.
688         match unsafe { init.__init(self.as_mut_ptr()) } {
689             // SAFETY: Initialization completed successfully.
690             Ok(()) => Ok(unsafe { self.assume_init() }),
691             Err(err) => Err(err),
692         }
693     }
694 
695     /// Pin-initialize `self` using the given pin-initializer.
pin_init_with<E>( mut self, init: impl PinInit<T, E>, ) -> core::result::Result<Pin<UniqueArc<T>>, E>696     pub fn pin_init_with<E>(
697         mut self,
698         init: impl PinInit<T, E>,
699     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
700         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
701         // to ensure it does not move.
702         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
703             // SAFETY: Initialization completed successfully.
704             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
705             Err(err) => Err(err),
706         }
707     }
708 }
709 
710 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
from(obj: UniqueArc<T>) -> Self711     fn from(obj: UniqueArc<T>) -> Self {
712         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
713         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
714         unsafe { Pin::new_unchecked(obj) }
715     }
716 }
717 
718 impl<T: ?Sized> Deref for UniqueArc<T> {
719     type Target = T;
720 
deref(&self) -> &Self::Target721     fn deref(&self) -> &Self::Target {
722         self.inner.deref()
723     }
724 }
725 
726 impl<T: ?Sized> DerefMut for UniqueArc<T> {
deref_mut(&mut self) -> &mut Self::Target727     fn deref_mut(&mut self) -> &mut Self::Target {
728         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
729         // it is safe to dereference it. Additionally, we know there is only one reference when
730         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
731         unsafe { &mut self.inner.ptr.as_mut().data }
732     }
733 }
734 
735 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result736     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
737         fmt::Display::fmt(self.deref(), f)
738     }
739 }
740 
741 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result742     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
743         fmt::Display::fmt(self.deref(), f)
744     }
745 }
746 
747 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result748     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
749         fmt::Debug::fmt(self.deref(), f)
750     }
751 }
752 
753 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result754     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
755         fmt::Debug::fmt(self.deref(), f)
756     }
757 }
758