1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A condition variable. 4 //! 5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition 6 //! variable. 7 8 use super::{lock::Backend, lock::Guard, LockClassKey}; 9 use crate::{ 10 ffi::{c_int, c_long}, 11 init::PinInit, 12 pin_init, 13 str::CStr, 14 task::{ 15 MAX_SCHEDULE_TIMEOUT, TASK_FREEZABLE, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE, 16 }, 17 time::Jiffies, 18 types::Opaque, 19 }; 20 use core::marker::PhantomPinned; 21 use core::ptr; 22 use macros::pin_data; 23 24 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class. 25 #[macro_export] 26 macro_rules! new_condvar { 27 ($($name:literal)?) => { 28 $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 29 }; 30 } 31 pub use new_condvar; 32 33 /// A conditional variable. 34 /// 35 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to 36 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And 37 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or 38 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up 39 /// spuriously. 40 /// 41 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such 42 /// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros. 43 /// 44 /// # Examples 45 /// 46 /// The following is an example of using a condvar with a mutex: 47 /// 48 /// ``` 49 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex}; 50 /// 51 /// #[pin_data] 52 /// pub struct Example { 53 /// #[pin] 54 /// value: Mutex<u32>, 55 /// 56 /// #[pin] 57 /// value_changed: CondVar, 58 /// } 59 /// 60 /// /// Waits for `e.value` to become `v`. 61 /// fn wait_for_value(e: &Example, v: u32) { 62 /// let mut guard = e.value.lock(); 63 /// while *guard != v { 64 /// e.value_changed.wait(&mut guard); 65 /// } 66 /// } 67 /// 68 /// /// Increments `e.value` and notifies all potential waiters. 69 /// fn increment(e: &Example) { 70 /// *e.value.lock() += 1; 71 /// e.value_changed.notify_all(); 72 /// } 73 /// 74 /// /// Allocates a new boxed `Example`. 75 /// fn new_example() -> Result<Pin<KBox<Example>>> { 76 /// KBox::pin_init(pin_init!(Example { 77 /// value <- new_mutex!(0), 78 /// value_changed <- new_condvar!(), 79 /// }), GFP_KERNEL) 80 /// } 81 /// ``` 82 /// 83 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h 84 #[pin_data] 85 pub struct CondVar { 86 #[pin] 87 pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>, 88 89 /// A condvar needs to be pinned because it contains a [`struct list_head`] that is 90 /// self-referential, so it cannot be safely moved once it is initialised. 91 /// 92 /// [`struct list_head`]: srctree/include/linux/types.h 93 #[pin] 94 _pin: PhantomPinned, 95 } 96 97 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread. 98 unsafe impl Send for CondVar {} 99 100 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads 101 // concurrently. 102 unsafe impl Sync for CondVar {} 103 104 impl CondVar { 105 /// Constructs a new condvar initialiser. new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>106 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> { 107 pin_init!(Self { 108 _pin: PhantomPinned, 109 // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have 110 // static lifetimes so they live indefinitely. 111 wait_queue_head <- Opaque::ffi_init(|slot| unsafe { 112 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr()) 113 }), 114 }) 115 } 116 wait_internal<T: ?Sized, B: Backend>( &self, wait_state: c_int, guard: &mut Guard<'_, T, B>, timeout_in_jiffies: c_long, ) -> c_long117 fn wait_internal<T: ?Sized, B: Backend>( 118 &self, 119 wait_state: c_int, 120 guard: &mut Guard<'_, T, B>, 121 timeout_in_jiffies: c_long, 122 ) -> c_long { 123 let wait = Opaque::<bindings::wait_queue_entry>::uninit(); 124 125 // SAFETY: `wait` points to valid memory. 126 unsafe { bindings::init_wait(wait.get()) }; 127 128 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 129 unsafe { 130 bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state) 131 }; 132 133 // SAFETY: Switches to another thread. The timeout can be any number. 134 let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) }); 135 136 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 137 unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) }; 138 139 ret 140 } 141 142 /// Releases the lock and waits for a notification in uninterruptible mode. 143 /// 144 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 145 /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by 146 /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up 147 /// spuriously. wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>)148 pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) { 149 self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 150 } 151 152 /// Releases the lock and waits for a notification in interruptible mode. 153 /// 154 /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may 155 /// wake up due to signals. It may also wake up spuriously. 156 /// 157 /// Returns whether there is a signal pending. 158 #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"] wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool159 pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool { 160 self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 161 crate::current!().signal_pending() 162 } 163 164 /// Releases the lock and waits for a notification in interruptible and freezable mode. 165 /// 166 /// The process is allowed to be frozen during this sleep. You must not hold any locks while 167 /// this operation is ongoing, and there is a lockdep assertion for this. Freezing a task that 168 /// holds a lock can trivially deadlock vs another task that needs that lock to complete before 169 /// it too can hit freezable. 170 #[must_use = "wait returns if a signal is pending, so the caller must check the return value"] wait_interruptible_freezable<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, ) -> bool171 pub fn wait_interruptible_freezable<T: ?Sized, B: Backend>( 172 &self, 173 guard: &mut Guard<'_, T, B>, 174 ) -> bool { 175 self.wait_internal( 176 TASK_INTERRUPTIBLE | TASK_FREEZABLE, 177 guard, 178 MAX_SCHEDULE_TIMEOUT, 179 ); 180 crate::current!().signal_pending() 181 } 182 183 /// Releases the lock and waits for a notification in interruptible mode. 184 /// 185 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 186 /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or 187 /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal. 188 #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"] wait_interruptible_timeout<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, jiffies: Jiffies, ) -> CondVarTimeoutResult189 pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>( 190 &self, 191 guard: &mut Guard<'_, T, B>, 192 jiffies: Jiffies, 193 ) -> CondVarTimeoutResult { 194 let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT); 195 let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies); 196 197 match (res as Jiffies, crate::current!().signal_pending()) { 198 (jiffies, true) => CondVarTimeoutResult::Signal { jiffies }, 199 (0, false) => CondVarTimeoutResult::Timeout, 200 (jiffies, false) => CondVarTimeoutResult::Woken { jiffies }, 201 } 202 } 203 204 /// Calls the kernel function to notify the appropriate number of threads. notify(&self, count: c_int)205 fn notify(&self, count: c_int) { 206 // SAFETY: `wait_queue_head` points to valid memory. 207 unsafe { 208 bindings::__wake_up( 209 self.wait_queue_head.get(), 210 TASK_NORMAL, 211 count, 212 ptr::null_mut(), 213 ) 214 }; 215 } 216 217 /// Calls the kernel function to notify one thread synchronously. 218 /// 219 /// This method behaves like `notify_one`, except that it hints to the scheduler that the 220 /// current thread is about to go to sleep, so it should schedule the target thread on the same 221 /// CPU. notify_sync(&self)222 pub fn notify_sync(&self) { 223 // SAFETY: `wait_queue_head` points to valid memory. 224 unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) }; 225 } 226 227 /// Wakes a single waiter up, if any. 228 /// 229 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 230 /// completely (as opposed to automatically waking up the next waiter). notify_one(&self)231 pub fn notify_one(&self) { 232 self.notify(1); 233 } 234 235 /// Wakes all waiters up, if any. 236 /// 237 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 238 /// completely (as opposed to automatically waking up the next waiter). notify_all(&self)239 pub fn notify_all(&self) { 240 self.notify(0); 241 } 242 } 243 244 /// The return type of `wait_timeout`. 245 pub enum CondVarTimeoutResult { 246 /// The timeout was reached. 247 Timeout, 248 /// Somebody woke us up. 249 Woken { 250 /// Remaining sleep duration. 251 jiffies: Jiffies, 252 }, 253 /// A signal occurred. 254 Signal { 255 /// Remaining sleep duration. 256 jiffies: Jiffies, 257 }, 258 } 259