• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23 
24 #include "fsl_sai.h"
25 #include "fsl_utils.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
29 		       FSL_SAI_CSR_FEIE)
30 
31 static const unsigned int fsl_sai_rates[] = {
32 	8000, 11025, 12000, 16000, 22050,
33 	24000, 32000, 44100, 48000, 64000,
34 	88200, 96000, 176400, 192000, 352800,
35 	384000, 705600, 768000, 1411200, 2822400,
36 };
37 
38 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
39 	.count = ARRAY_SIZE(fsl_sai_rates),
40 	.list = fsl_sai_rates,
41 };
42 
43 /**
44  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
45  *
46  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
47  * or Receiver's for both streams. This function is used to check if clocks of
48  * the stream's are synced by the opposite stream.
49  *
50  * @sai: SAI context
51  * @dir: stream direction
52  */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)53 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
54 {
55 	int adir = (dir == TX) ? RX : TX;
56 
57 	/* current dir in async mode while opposite dir in sync mode */
58 	return !sai->synchronous[dir] && sai->synchronous[adir];
59 }
60 
fsl_sai_get_pins_state(struct fsl_sai * sai,u32 bclk)61 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
62 {
63 	struct pinctrl_state *state = NULL;
64 
65 	if (sai->is_pdm_mode) {
66 		/* DSD512@44.1kHz, DSD512@48kHz */
67 		if (bclk >= 22579200)
68 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
69 
70 		/* Get default DSD state */
71 		if (IS_ERR_OR_NULL(state))
72 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
73 	} else {
74 		/* 706k32b2c, 768k32b2c, etc */
75 		if (bclk >= 45158400)
76 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
77 	}
78 
79 	/* Get default state */
80 	if (IS_ERR_OR_NULL(state))
81 		state = pinctrl_lookup_state(sai->pinctrl, "default");
82 
83 	return state;
84 }
85 
fsl_sai_isr(int irq,void * devid)86 static irqreturn_t fsl_sai_isr(int irq, void *devid)
87 {
88 	struct fsl_sai *sai = (struct fsl_sai *)devid;
89 	unsigned int ofs = sai->soc_data->reg_offset;
90 	struct device *dev = &sai->pdev->dev;
91 	u32 flags, xcsr, mask;
92 	irqreturn_t iret = IRQ_NONE;
93 
94 	/*
95 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
96 	 * different shifts. And we here create a mask only for those
97 	 * IRQs that we activated.
98 	 */
99 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
100 
101 	/* Tx IRQ */
102 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
103 	flags = xcsr & mask;
104 
105 	if (flags)
106 		iret = IRQ_HANDLED;
107 	else
108 		goto irq_rx;
109 
110 	if (flags & FSL_SAI_CSR_WSF)
111 		dev_dbg(dev, "isr: Start of Tx word detected\n");
112 
113 	if (flags & FSL_SAI_CSR_SEF)
114 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
115 
116 	if (flags & FSL_SAI_CSR_FEF)
117 		dev_dbg(dev, "isr: Transmit underrun detected\n");
118 
119 	if (flags & FSL_SAI_CSR_FWF)
120 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
121 
122 	if (flags & FSL_SAI_CSR_FRF)
123 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
124 
125 	flags &= FSL_SAI_CSR_xF_W_MASK;
126 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
127 
128 	if (flags)
129 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
130 
131 irq_rx:
132 	/* Rx IRQ */
133 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
134 	flags = xcsr & mask;
135 
136 	if (flags)
137 		iret = IRQ_HANDLED;
138 	else
139 		goto out;
140 
141 	if (flags & FSL_SAI_CSR_WSF)
142 		dev_dbg(dev, "isr: Start of Rx word detected\n");
143 
144 	if (flags & FSL_SAI_CSR_SEF)
145 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
146 
147 	if (flags & FSL_SAI_CSR_FEF)
148 		dev_dbg(dev, "isr: Receive overflow detected\n");
149 
150 	if (flags & FSL_SAI_CSR_FWF)
151 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
152 
153 	if (flags & FSL_SAI_CSR_FRF)
154 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
155 
156 	flags &= FSL_SAI_CSR_xF_W_MASK;
157 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
158 
159 	if (flags)
160 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
161 
162 out:
163 	return iret;
164 }
165 
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)166 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
167 				u32 rx_mask, int slots, int slot_width)
168 {
169 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
170 
171 	sai->slots = slots;
172 	sai->slot_width = slot_width;
173 
174 	return 0;
175 }
176 
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)177 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
178 				      unsigned int ratio)
179 {
180 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
181 
182 	sai->bclk_ratio = ratio;
183 
184 	return 0;
185 }
186 
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,bool tx)187 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
188 		int clk_id, unsigned int freq, bool tx)
189 {
190 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
191 	unsigned int ofs = sai->soc_data->reg_offset;
192 	u32 val_cr2 = 0;
193 
194 	switch (clk_id) {
195 	case FSL_SAI_CLK_BUS:
196 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
197 		break;
198 	case FSL_SAI_CLK_MAST1:
199 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
200 		break;
201 	case FSL_SAI_CLK_MAST2:
202 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
203 		break;
204 	case FSL_SAI_CLK_MAST3:
205 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
206 		break;
207 	default:
208 		return -EINVAL;
209 	}
210 
211 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
212 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
213 
214 	return 0;
215 }
216 
fsl_sai_set_mclk_rate(struct snd_soc_dai * dai,int clk_id,unsigned int freq)217 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
218 {
219 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
220 	int ret;
221 
222 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
223 				     sai->pll8k_clk, sai->pll11k_clk, freq);
224 
225 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
226 	if (ret < 0)
227 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
228 
229 	return ret;
230 }
231 
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)232 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
233 		int clk_id, unsigned int freq, int dir)
234 {
235 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
236 	int ret;
237 
238 	if (dir == SND_SOC_CLOCK_IN)
239 		return 0;
240 
241 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
242 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
243 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
244 			return -EINVAL;
245 		}
246 
247 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
248 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
249 			return -EINVAL;
250 		}
251 
252 		if (sai->mclk_streams == 0) {
253 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
254 			if (ret < 0)
255 				return ret;
256 		}
257 	}
258 
259 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
260 	if (ret) {
261 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
262 		return ret;
263 	}
264 
265 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
266 	if (ret)
267 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
268 
269 	return ret;
270 }
271 
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,bool tx)272 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
273 				unsigned int fmt, bool tx)
274 {
275 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
276 	unsigned int ofs = sai->soc_data->reg_offset;
277 	u32 val_cr2 = 0, val_cr4 = 0;
278 
279 	if (!sai->is_lsb_first)
280 		val_cr4 |= FSL_SAI_CR4_MF;
281 
282 	sai->is_pdm_mode = false;
283 	sai->is_dsp_mode = false;
284 	/* DAI mode */
285 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
286 	case SND_SOC_DAIFMT_I2S:
287 		/*
288 		 * Frame low, 1clk before data, one word length for frame sync,
289 		 * frame sync starts one serial clock cycle earlier,
290 		 * that is, together with the last bit of the previous
291 		 * data word.
292 		 */
293 		val_cr2 |= FSL_SAI_CR2_BCP;
294 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
295 		break;
296 	case SND_SOC_DAIFMT_LEFT_J:
297 		/*
298 		 * Frame high, one word length for frame sync,
299 		 * frame sync asserts with the first bit of the frame.
300 		 */
301 		val_cr2 |= FSL_SAI_CR2_BCP;
302 		break;
303 	case SND_SOC_DAIFMT_DSP_A:
304 		/*
305 		 * Frame high, 1clk before data, one bit for frame sync,
306 		 * frame sync starts one serial clock cycle earlier,
307 		 * that is, together with the last bit of the previous
308 		 * data word.
309 		 */
310 		val_cr2 |= FSL_SAI_CR2_BCP;
311 		val_cr4 |= FSL_SAI_CR4_FSE;
312 		sai->is_dsp_mode = true;
313 		break;
314 	case SND_SOC_DAIFMT_DSP_B:
315 		/*
316 		 * Frame high, one bit for frame sync,
317 		 * frame sync asserts with the first bit of the frame.
318 		 */
319 		val_cr2 |= FSL_SAI_CR2_BCP;
320 		sai->is_dsp_mode = true;
321 		break;
322 	case SND_SOC_DAIFMT_PDM:
323 		val_cr2 |= FSL_SAI_CR2_BCP;
324 		val_cr4 &= ~FSL_SAI_CR4_MF;
325 		sai->is_pdm_mode = true;
326 		break;
327 	case SND_SOC_DAIFMT_RIGHT_J:
328 		/* To be done */
329 	default:
330 		return -EINVAL;
331 	}
332 
333 	/* DAI clock inversion */
334 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
335 	case SND_SOC_DAIFMT_IB_IF:
336 		/* Invert both clocks */
337 		val_cr2 ^= FSL_SAI_CR2_BCP;
338 		val_cr4 ^= FSL_SAI_CR4_FSP;
339 		break;
340 	case SND_SOC_DAIFMT_IB_NF:
341 		/* Invert bit clock */
342 		val_cr2 ^= FSL_SAI_CR2_BCP;
343 		break;
344 	case SND_SOC_DAIFMT_NB_IF:
345 		/* Invert frame clock */
346 		val_cr4 ^= FSL_SAI_CR4_FSP;
347 		break;
348 	case SND_SOC_DAIFMT_NB_NF:
349 		/* Nothing to do for both normal cases */
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	/* DAI clock provider masks */
356 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
357 	case SND_SOC_DAIFMT_BP_FP:
358 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
359 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
360 		sai->is_consumer_mode[tx] = false;
361 		break;
362 	case SND_SOC_DAIFMT_BC_FC:
363 		sai->is_consumer_mode[tx] = true;
364 		break;
365 	case SND_SOC_DAIFMT_BP_FC:
366 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
367 		sai->is_consumer_mode[tx] = false;
368 		break;
369 	case SND_SOC_DAIFMT_BC_FP:
370 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
371 		sai->is_consumer_mode[tx] = true;
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
378 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
379 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
380 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
381 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
382 
383 	return 0;
384 }
385 
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)386 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
387 {
388 	int ret;
389 
390 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
391 	if (ret) {
392 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
393 		return ret;
394 	}
395 
396 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
397 	if (ret)
398 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
399 
400 	return ret;
401 }
402 
fsl_sai_set_dai_fmt_tx(struct snd_soc_dai * cpu_dai,unsigned int fmt)403 static int fsl_sai_set_dai_fmt_tx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
404 {
405 	return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
406 }
407 
fsl_sai_set_dai_fmt_rx(struct snd_soc_dai * cpu_dai,unsigned int fmt)408 static int fsl_sai_set_dai_fmt_rx(struct snd_soc_dai *cpu_dai, unsigned int fmt)
409 {
410 	return fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
411 }
412 
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)413 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
414 {
415 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
416 	unsigned int reg, ofs = sai->soc_data->reg_offset;
417 	unsigned long clk_rate;
418 	u32 savediv = 0, ratio, bestdiff = freq;
419 	int adir = tx ? RX : TX;
420 	int dir = tx ? TX : RX;
421 	u32 id;
422 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
423 
424 	/* Don't apply to consumer mode */
425 	if (sai->is_consumer_mode[tx])
426 		return 0;
427 
428 	/*
429 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
430 	 * And given that MQS use case has to use MCLK1 though two clocks
431 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
432 	 */
433 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
434 
435 	for (; id < FSL_SAI_MCLK_MAX; id++) {
436 		int diff;
437 
438 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
439 		if (!clk_rate)
440 			continue;
441 
442 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
443 		if (!ratio || ratio > 512)
444 			continue;
445 		if (ratio == 1 && !support_1_1_ratio)
446 			continue;
447 		if ((ratio & 1) && ratio > 1)
448 			continue;
449 
450 		diff = abs((long)clk_rate - ratio * freq);
451 
452 		/*
453 		 * Drop the source that can not be
454 		 * divided into the required rate.
455 		 */
456 		if (diff != 0 && clk_rate / diff < 1000)
457 			continue;
458 
459 		dev_dbg(dai->dev,
460 			"ratio %d for freq %dHz based on clock %ldHz\n",
461 			ratio, freq, clk_rate);
462 
463 
464 		if (diff < bestdiff) {
465 			savediv = ratio;
466 			sai->mclk_id[tx] = id;
467 			bestdiff = diff;
468 		}
469 
470 		if (diff == 0)
471 			break;
472 	}
473 
474 	if (savediv == 0) {
475 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
476 				tx ? 'T' : 'R', freq);
477 		return -EINVAL;
478 	}
479 
480 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
481 			sai->mclk_id[tx], savediv, bestdiff);
482 
483 	/*
484 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
485 	 *    set TCR2 register for playback.
486 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
487 	 *    and capture.
488 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
489 	 *    and capture.
490 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
491 	 *    ignore it.
492 	 */
493 	if (fsl_sai_dir_is_synced(sai, adir))
494 		reg = FSL_SAI_xCR2(!tx, ofs);
495 	else if (!sai->synchronous[dir])
496 		reg = FSL_SAI_xCR2(tx, ofs);
497 	else
498 		return 0;
499 
500 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
501 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
502 
503 	if (savediv == 1) {
504 		regmap_update_bits(sai->regmap, reg,
505 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
506 				   FSL_SAI_CR2_BYP);
507 		if (fsl_sai_dir_is_synced(sai, adir))
508 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
509 					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
510 		else
511 			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
512 					   FSL_SAI_CR2_BCI, 0);
513 	} else {
514 		regmap_update_bits(sai->regmap, reg,
515 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
516 				   savediv / 2 - 1);
517 	}
518 
519 	return 0;
520 }
521 
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)522 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
523 		struct snd_pcm_hw_params *params,
524 		struct snd_soc_dai *cpu_dai)
525 {
526 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
527 	unsigned int ofs = sai->soc_data->reg_offset;
528 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
529 	unsigned int channels = params_channels(params);
530 	struct snd_dmaengine_dai_dma_data *dma_params;
531 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
532 	u32 word_width = params_width(params);
533 	int trce_mask = 0, dl_cfg_idx = 0;
534 	int dl_cfg_cnt = sai->dl_cfg_cnt;
535 	u32 dl_type = FSL_SAI_DL_I2S;
536 	u32 val_cr4 = 0, val_cr5 = 0;
537 	u32 slots = (channels == 1) ? 2 : channels;
538 	u32 slot_width = word_width;
539 	int adir = tx ? RX : TX;
540 	u32 pins, bclk;
541 	u32 watermark;
542 	int ret, i;
543 
544 	if (sai->slot_width)
545 		slot_width = sai->slot_width;
546 
547 	if (sai->slots)
548 		slots = sai->slots;
549 	else if (sai->bclk_ratio)
550 		slots = sai->bclk_ratio / slot_width;
551 
552 	pins = DIV_ROUND_UP(channels, slots);
553 
554 	/*
555 	 * PDM mode, channels are independent
556 	 * each channels are on one dataline/FIFO.
557 	 */
558 	if (sai->is_pdm_mode) {
559 		pins = channels;
560 		dl_type = FSL_SAI_DL_PDM;
561 	}
562 
563 	for (i = 0; i < dl_cfg_cnt; i++) {
564 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
565 			dl_cfg_idx = i;
566 			break;
567 		}
568 	}
569 
570 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
571 		dev_err(cpu_dai->dev, "channel not supported\n");
572 		return -EINVAL;
573 	}
574 
575 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
576 
577 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
578 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
579 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
580 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
581 			if (ret) {
582 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
583 				return ret;
584 			}
585 		}
586 	}
587 
588 	if (!sai->is_consumer_mode[tx]) {
589 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
590 		if (ret)
591 			return ret;
592 
593 		/* Do not enable the clock if it is already enabled */
594 		if (!(sai->mclk_streams & BIT(substream->stream))) {
595 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
596 			if (ret)
597 				return ret;
598 
599 			sai->mclk_streams |= BIT(substream->stream);
600 		}
601 	}
602 
603 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
604 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
605 
606 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
607 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
608 
609 	if (sai->is_lsb_first || sai->is_pdm_mode)
610 		val_cr5 |= FSL_SAI_CR5_FBT(0);
611 	else
612 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
613 
614 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
615 
616 	/* Set to avoid channel swap */
617 	val_cr4 |= FSL_SAI_CR4_FCONT;
618 
619 	/* Set to output mode to avoid tri-stated data pins */
620 	if (tx)
621 		val_cr4 |= FSL_SAI_CR4_CHMOD;
622 
623 	/*
624 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
625 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
626 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
627 	 */
628 
629 	if (!sai->is_consumer_mode[tx] && fsl_sai_dir_is_synced(sai, adir)) {
630 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
631 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
632 				   FSL_SAI_CR4_CHMOD_MASK,
633 				   val_cr4);
634 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
635 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
636 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
637 	}
638 
639 	/*
640 	 * Combine mode has limation:
641 	 * - Can't used for singel dataline/FIFO case except the FIFO0
642 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
643 	 *   are successive and start from FIFO0
644 	 *
645 	 * So for common usage, all multi fifo case disable the combine mode.
646 	 */
647 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
648 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
649 				   FSL_SAI_CR4_FCOMB_MASK, 0);
650 	else
651 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
652 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
653 
654 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
655 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
656 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
657 
658 	if (sai->is_multi_fifo_dma) {
659 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
660 		if (tx) {
661 			sai->audio_config[tx].n_fifos_dst = pins;
662 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
663 		} else {
664 			sai->audio_config[tx].n_fifos_src = pins;
665 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
666 		}
667 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
668 		dma_params->peripheral_config = &sai->audio_config[tx];
669 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
670 
671 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
672 				 (dma_params->maxburst - 1);
673 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
674 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
675 				   watermark);
676 	}
677 
678 	/* Find a proper tcre setting */
679 	for (i = 0; i < sai->soc_data->pins; i++) {
680 		trce_mask = (1 << (i + 1)) - 1;
681 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
682 			break;
683 	}
684 
685 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
686 			   FSL_SAI_CR3_TRCE_MASK,
687 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
688 
689 	/*
690 	 * When the TERE and FSD_MSTR enabled before configuring the word width
691 	 * There will be no frame sync clock issue, because word width impact
692 	 * the generation of frame sync clock.
693 	 *
694 	 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
695 	 * We need to disable FSD_MSTR before configuring word width, then enable
696 	 * FSD_MSTR bit for this specific case.
697 	 */
698 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
699 	    !sai->is_consumer_mode[tx])
700 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
701 				   FSL_SAI_CR4_FSD_MSTR, 0);
702 
703 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
704 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
705 			   FSL_SAI_CR4_CHMOD_MASK | FSL_SAI_CR4_FCONT_MASK,
706 			   val_cr4);
707 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
708 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
709 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
710 
711 	/* Enable FSD_MSTR after configuring word width */
712 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
713 	    !sai->is_consumer_mode[tx])
714 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
715 				   FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
716 
717 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
718 		     ~0UL - ((1 << min(channels, slots)) - 1));
719 
720 	return 0;
721 }
722 
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)723 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
724 		struct snd_soc_dai *cpu_dai)
725 {
726 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
727 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
728 	unsigned int ofs = sai->soc_data->reg_offset;
729 
730 	/* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
731 	regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
732 
733 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
734 			   FSL_SAI_CR3_TRCE_MASK, 0);
735 
736 	if (!sai->is_consumer_mode[tx] &&
737 	    sai->mclk_streams & BIT(substream->stream)) {
738 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
739 		sai->mclk_streams &= ~BIT(substream->stream);
740 	}
741 
742 	return 0;
743 }
744 
fsl_sai_config_disable(struct fsl_sai * sai,int dir)745 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
746 {
747 	unsigned int ofs = sai->soc_data->reg_offset;
748 	bool tx = dir == TX;
749 	u32 xcsr, count = 100, mask;
750 
751 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
752 		mask = FSL_SAI_CSR_TERE;
753 	else
754 		mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
755 
756 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
757 			   mask, 0);
758 
759 	/* TERE will remain set till the end of current frame */
760 	do {
761 		udelay(10);
762 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
763 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
764 
765 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
766 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
767 
768 	/*
769 	 * For sai master mode, after several open/close sai,
770 	 * there will be no frame clock, and can't recover
771 	 * anymore. Add software reset to fix this issue.
772 	 * This is a hardware bug, and will be fix in the
773 	 * next sai version.
774 	 *
775 	 * In consumer mode, this can happen even after a
776 	 * single open/close, especially if both tx and rx
777 	 * are running concurrently.
778 	 */
779 	/* Software Reset */
780 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
781 	/* Clear SR bit to finish the reset */
782 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR, 0);
783 }
784 
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)785 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
786 		struct snd_soc_dai *cpu_dai)
787 {
788 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
789 	unsigned int ofs = sai->soc_data->reg_offset;
790 
791 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
792 	int adir = tx ? RX : TX;
793 	int dir = tx ? TX : RX;
794 	u32 xcsr;
795 
796 	/*
797 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
798 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
799 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
800 	 */
801 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
802 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
803 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
804 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
805 
806 	/*
807 	 * It is recommended that the transmitter is the last enabled
808 	 * and the first disabled.
809 	 */
810 	switch (cmd) {
811 	case SNDRV_PCM_TRIGGER_START:
812 	case SNDRV_PCM_TRIGGER_RESUME:
813 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
814 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
815 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
816 
817 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
818 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
819 		/*
820 		 * Enable the opposite direction for synchronous mode
821 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
822 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
823 		 *
824 		 * RM recommends to enable RE after TE for case 1 and to enable
825 		 * TE after RE for case 2, but we here may not always guarantee
826 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
827 		 * TE after RE, which is against what RM recommends but should
828 		 * be safe to do, judging by years of testing results.
829 		 */
830 		if (fsl_sai_dir_is_synced(sai, adir))
831 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
832 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
833 
834 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
835 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
836 		break;
837 	case SNDRV_PCM_TRIGGER_STOP:
838 	case SNDRV_PCM_TRIGGER_SUSPEND:
839 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
840 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
841 				   FSL_SAI_CSR_FRDE, 0);
842 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
843 				   FSL_SAI_CSR_xIE_MASK, 0);
844 
845 		/* Check if the opposite FRDE is also disabled */
846 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
847 
848 		/*
849 		 * If opposite stream provides clocks for synchronous mode and
850 		 * it is inactive, disable it before disabling the current one
851 		 */
852 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
853 			fsl_sai_config_disable(sai, adir);
854 
855 		/*
856 		 * Disable current stream if either of:
857 		 * 1. current stream doesn't provide clocks for synchronous mode
858 		 * 2. current stream provides clocks for synchronous mode but no
859 		 *    more stream is active.
860 		 */
861 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
862 			fsl_sai_config_disable(sai, dir);
863 
864 		break;
865 	default:
866 		return -EINVAL;
867 	}
868 
869 	return 0;
870 }
871 
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)872 static int fsl_sai_startup(struct snd_pcm_substream *substream,
873 		struct snd_soc_dai *cpu_dai)
874 {
875 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
876 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
877 	int ret;
878 
879 	/*
880 	 * EDMA controller needs period size to be a multiple of
881 	 * tx/rx maxburst
882 	 */
883 	if (sai->soc_data->use_edma)
884 		snd_pcm_hw_constraint_step(substream->runtime, 0,
885 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
886 					   tx ? sai->dma_params_tx.maxburst :
887 					   sai->dma_params_rx.maxburst);
888 
889 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
890 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
891 
892 	return ret;
893 }
894 
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)895 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
896 {
897 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
898 	unsigned int ofs = sai->soc_data->reg_offset;
899 
900 	/* Software Reset for both Tx and Rx */
901 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
902 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
903 	/* Clear SR bit to finish the reset */
904 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
905 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
906 
907 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
908 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
909 			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
910 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
911 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
912 			   sai->dma_params_rx.maxburst - 1);
913 
914 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
915 				&sai->dma_params_rx);
916 
917 	return 0;
918 }
919 
920 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
921 	.probe		= fsl_sai_dai_probe,
922 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
923 	.set_sysclk	= fsl_sai_set_dai_sysclk,
924 	.set_fmt	= fsl_sai_set_dai_fmt,
925 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
926 	.hw_params	= fsl_sai_hw_params,
927 	.hw_free	= fsl_sai_hw_free,
928 	.trigger	= fsl_sai_trigger,
929 	.startup	= fsl_sai_startup,
930 };
931 
932 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_tx_ops = {
933 	.probe		= fsl_sai_dai_probe,
934 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
935 	.set_sysclk	= fsl_sai_set_dai_sysclk,
936 	.set_fmt	= fsl_sai_set_dai_fmt_tx,
937 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
938 	.hw_params	= fsl_sai_hw_params,
939 	.hw_free	= fsl_sai_hw_free,
940 	.trigger	= fsl_sai_trigger,
941 	.startup	= fsl_sai_startup,
942 };
943 
944 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_rx_ops = {
945 	.probe		= fsl_sai_dai_probe,
946 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
947 	.set_sysclk	= fsl_sai_set_dai_sysclk,
948 	.set_fmt	= fsl_sai_set_dai_fmt_rx,
949 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
950 	.hw_params	= fsl_sai_hw_params,
951 	.hw_free	= fsl_sai_hw_free,
952 	.trigger	= fsl_sai_trigger,
953 	.startup	= fsl_sai_startup,
954 };
955 
fsl_sai_dai_resume(struct snd_soc_component * component)956 static int fsl_sai_dai_resume(struct snd_soc_component *component)
957 {
958 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
959 	struct device *dev = &sai->pdev->dev;
960 	int ret;
961 
962 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
963 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
964 		if (ret) {
965 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
966 			return ret;
967 		}
968 	}
969 
970 	return 0;
971 }
972 
973 static struct snd_soc_dai_driver fsl_sai_dai_template[] = {
974 	{
975 		.name = "sai-tx-rx",
976 		.playback = {
977 			.stream_name = "CPU-Playback",
978 			.channels_min = 1,
979 			.channels_max = 32,
980 			.rate_min = 8000,
981 			.rate_max = 2822400,
982 			.rates = SNDRV_PCM_RATE_KNOT,
983 			.formats = FSL_SAI_FORMATS,
984 		},
985 		.capture = {
986 			.stream_name = "CPU-Capture",
987 			.channels_min = 1,
988 			.channels_max = 32,
989 			.rate_min = 8000,
990 			.rate_max = 2822400,
991 			.rates = SNDRV_PCM_RATE_KNOT,
992 			.formats = FSL_SAI_FORMATS,
993 		},
994 		.ops = &fsl_sai_pcm_dai_ops,
995 	},
996 	{
997 		.name = "sai-tx",
998 		.playback = {
999 			.stream_name = "SAI-Playback",
1000 			.channels_min = 1,
1001 			.channels_max = 32,
1002 			.rate_min = 8000,
1003 			.rate_max = 2822400,
1004 			.rates = SNDRV_PCM_RATE_KNOT,
1005 			.formats = FSL_SAI_FORMATS,
1006 		},
1007 		.ops = &fsl_sai_pcm_dai_tx_ops,
1008 	},
1009 	{
1010 		.name = "sai-rx",
1011 		.capture = {
1012 			.stream_name = "SAI-Capture",
1013 			.channels_min = 1,
1014 			.channels_max = 32,
1015 			.rate_min = 8000,
1016 			.rate_max = 2822400,
1017 			.rates = SNDRV_PCM_RATE_KNOT,
1018 			.formats = FSL_SAI_FORMATS,
1019 		},
1020 		.ops = &fsl_sai_pcm_dai_rx_ops,
1021 	},
1022 };
1023 
1024 static const struct snd_soc_component_driver fsl_component = {
1025 	.name			= "fsl-sai",
1026 	.resume			= fsl_sai_dai_resume,
1027 	.legacy_dai_naming	= 1,
1028 };
1029 
1030 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
1031 	{FSL_SAI_TCR1(0), 0},
1032 	{FSL_SAI_TCR2(0), 0},
1033 	{FSL_SAI_TCR3(0), 0},
1034 	{FSL_SAI_TCR4(0), 0},
1035 	{FSL_SAI_TCR5(0), 0},
1036 	{FSL_SAI_TDR0, 0},
1037 	{FSL_SAI_TDR1, 0},
1038 	{FSL_SAI_TDR2, 0},
1039 	{FSL_SAI_TDR3, 0},
1040 	{FSL_SAI_TDR4, 0},
1041 	{FSL_SAI_TDR5, 0},
1042 	{FSL_SAI_TDR6, 0},
1043 	{FSL_SAI_TDR7, 0},
1044 	{FSL_SAI_TMR, 0},
1045 	{FSL_SAI_RCR1(0), 0},
1046 	{FSL_SAI_RCR2(0), 0},
1047 	{FSL_SAI_RCR3(0), 0},
1048 	{FSL_SAI_RCR4(0), 0},
1049 	{FSL_SAI_RCR5(0), 0},
1050 	{FSL_SAI_RMR, 0},
1051 };
1052 
1053 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
1054 	{FSL_SAI_TCR1(8), 0},
1055 	{FSL_SAI_TCR2(8), 0},
1056 	{FSL_SAI_TCR3(8), 0},
1057 	{FSL_SAI_TCR4(8), 0},
1058 	{FSL_SAI_TCR5(8), 0},
1059 	{FSL_SAI_TDR0, 0},
1060 	{FSL_SAI_TDR1, 0},
1061 	{FSL_SAI_TDR2, 0},
1062 	{FSL_SAI_TDR3, 0},
1063 	{FSL_SAI_TDR4, 0},
1064 	{FSL_SAI_TDR5, 0},
1065 	{FSL_SAI_TDR6, 0},
1066 	{FSL_SAI_TDR7, 0},
1067 	{FSL_SAI_TMR, 0},
1068 	{FSL_SAI_RCR1(8), 0},
1069 	{FSL_SAI_RCR2(8), 0},
1070 	{FSL_SAI_RCR3(8), 0},
1071 	{FSL_SAI_RCR4(8), 0},
1072 	{FSL_SAI_RCR5(8), 0},
1073 	{FSL_SAI_RMR, 0},
1074 	{FSL_SAI_MCTL, 0},
1075 	{FSL_SAI_MDIV, 0},
1076 };
1077 
fsl_sai_readable_reg(struct device * dev,unsigned int reg)1078 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1079 {
1080 	struct fsl_sai *sai = dev_get_drvdata(dev);
1081 	unsigned int ofs = sai->soc_data->reg_offset;
1082 
1083 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1084 		return true;
1085 
1086 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1087 		return true;
1088 
1089 	switch (reg) {
1090 	case FSL_SAI_TFR0:
1091 	case FSL_SAI_TFR1:
1092 	case FSL_SAI_TFR2:
1093 	case FSL_SAI_TFR3:
1094 	case FSL_SAI_TFR4:
1095 	case FSL_SAI_TFR5:
1096 	case FSL_SAI_TFR6:
1097 	case FSL_SAI_TFR7:
1098 	case FSL_SAI_TMR:
1099 	case FSL_SAI_RDR0:
1100 	case FSL_SAI_RDR1:
1101 	case FSL_SAI_RDR2:
1102 	case FSL_SAI_RDR3:
1103 	case FSL_SAI_RDR4:
1104 	case FSL_SAI_RDR5:
1105 	case FSL_SAI_RDR6:
1106 	case FSL_SAI_RDR7:
1107 	case FSL_SAI_RFR0:
1108 	case FSL_SAI_RFR1:
1109 	case FSL_SAI_RFR2:
1110 	case FSL_SAI_RFR3:
1111 	case FSL_SAI_RFR4:
1112 	case FSL_SAI_RFR5:
1113 	case FSL_SAI_RFR6:
1114 	case FSL_SAI_RFR7:
1115 	case FSL_SAI_RMR:
1116 	case FSL_SAI_MCTL:
1117 	case FSL_SAI_MDIV:
1118 	case FSL_SAI_VERID:
1119 	case FSL_SAI_PARAM:
1120 	case FSL_SAI_TTCTN:
1121 	case FSL_SAI_RTCTN:
1122 	case FSL_SAI_TTCTL:
1123 	case FSL_SAI_TBCTN:
1124 	case FSL_SAI_TTCAP:
1125 	case FSL_SAI_RTCTL:
1126 	case FSL_SAI_RBCTN:
1127 	case FSL_SAI_RTCAP:
1128 		return true;
1129 	default:
1130 		return false;
1131 	}
1132 }
1133 
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)1134 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1135 {
1136 	struct fsl_sai *sai = dev_get_drvdata(dev);
1137 	unsigned int ofs = sai->soc_data->reg_offset;
1138 
1139 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1140 		return true;
1141 
1142 	/* Set VERID and PARAM be volatile for reading value in probe */
1143 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1144 		return true;
1145 
1146 	switch (reg) {
1147 	case FSL_SAI_TFR0:
1148 	case FSL_SAI_TFR1:
1149 	case FSL_SAI_TFR2:
1150 	case FSL_SAI_TFR3:
1151 	case FSL_SAI_TFR4:
1152 	case FSL_SAI_TFR5:
1153 	case FSL_SAI_TFR6:
1154 	case FSL_SAI_TFR7:
1155 	case FSL_SAI_RFR0:
1156 	case FSL_SAI_RFR1:
1157 	case FSL_SAI_RFR2:
1158 	case FSL_SAI_RFR3:
1159 	case FSL_SAI_RFR4:
1160 	case FSL_SAI_RFR5:
1161 	case FSL_SAI_RFR6:
1162 	case FSL_SAI_RFR7:
1163 	case FSL_SAI_RDR0:
1164 	case FSL_SAI_RDR1:
1165 	case FSL_SAI_RDR2:
1166 	case FSL_SAI_RDR3:
1167 	case FSL_SAI_RDR4:
1168 	case FSL_SAI_RDR5:
1169 	case FSL_SAI_RDR6:
1170 	case FSL_SAI_RDR7:
1171 		return true;
1172 	default:
1173 		return false;
1174 	}
1175 }
1176 
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)1177 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1178 {
1179 	struct fsl_sai *sai = dev_get_drvdata(dev);
1180 	unsigned int ofs = sai->soc_data->reg_offset;
1181 
1182 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1183 		return true;
1184 
1185 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1186 		return true;
1187 
1188 	switch (reg) {
1189 	case FSL_SAI_TDR0:
1190 	case FSL_SAI_TDR1:
1191 	case FSL_SAI_TDR2:
1192 	case FSL_SAI_TDR3:
1193 	case FSL_SAI_TDR4:
1194 	case FSL_SAI_TDR5:
1195 	case FSL_SAI_TDR6:
1196 	case FSL_SAI_TDR7:
1197 	case FSL_SAI_TMR:
1198 	case FSL_SAI_RMR:
1199 	case FSL_SAI_MCTL:
1200 	case FSL_SAI_MDIV:
1201 	case FSL_SAI_TTCTL:
1202 	case FSL_SAI_RTCTL:
1203 		return true;
1204 	default:
1205 		return false;
1206 	}
1207 }
1208 
1209 static struct regmap_config fsl_sai_regmap_config = {
1210 	.reg_bits = 32,
1211 	.reg_stride = 4,
1212 	.val_bits = 32,
1213 	.fast_io = true,
1214 
1215 	.max_register = FSL_SAI_RMR,
1216 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1217 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1218 	.readable_reg = fsl_sai_readable_reg,
1219 	.volatile_reg = fsl_sai_volatile_reg,
1220 	.writeable_reg = fsl_sai_writeable_reg,
1221 	.cache_type = REGCACHE_FLAT,
1222 };
1223 
fsl_sai_check_version(struct device * dev)1224 static int fsl_sai_check_version(struct device *dev)
1225 {
1226 	struct fsl_sai *sai = dev_get_drvdata(dev);
1227 	unsigned char ofs = sai->soc_data->reg_offset;
1228 	unsigned int val;
1229 	int ret;
1230 
1231 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1232 		return 0;
1233 
1234 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1235 	if (ret < 0)
1236 		return ret;
1237 
1238 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1239 
1240 	sai->verid.version = val &
1241 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1242 	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1243 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1244 
1245 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1246 	if (ret < 0)
1247 		return ret;
1248 
1249 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1250 
1251 	/* Max slots per frame, power of 2 */
1252 	sai->param.slot_num = 1 <<
1253 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1254 
1255 	/* Words per fifo, power of 2 */
1256 	sai->param.fifo_depth = 1 <<
1257 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1258 
1259 	/* Number of datalines implemented */
1260 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Calculate the offset between first two datalines, don't
1267  * different offset in one case.
1268  */
fsl_sai_calc_dl_off(unsigned long dl_mask)1269 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1270 {
1271 	int fbidx, nbidx, offset;
1272 
1273 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1274 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1275 	offset = nbidx - fbidx - 1;
1276 
1277 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1278 }
1279 
1280 /*
1281  * read the fsl,dataline property from dts file.
1282  * It has 3 value for each configuration, first one means the type:
1283  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1284  * dataline mask for 'tx'. for example
1285  *
1286  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1287  *
1288  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1289  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1290  *
1291  */
fsl_sai_read_dlcfg(struct fsl_sai * sai)1292 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1293 {
1294 	struct platform_device *pdev = sai->pdev;
1295 	struct device_node *np = pdev->dev.of_node;
1296 	struct device *dev = &pdev->dev;
1297 	int ret, elems, i, index, num_cfg;
1298 	char *propname = "fsl,dataline";
1299 	struct fsl_sai_dl_cfg *cfg;
1300 	unsigned long dl_mask;
1301 	unsigned int soc_dl;
1302 	u32 rx, tx, type;
1303 
1304 	elems = of_property_count_u32_elems(np, propname);
1305 
1306 	if (elems <= 0) {
1307 		elems = 0;
1308 	} else if (elems % 3) {
1309 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1310 		return -EINVAL;
1311 	}
1312 
1313 	num_cfg = elems / 3;
1314 	/*  Add one more for default value */
1315 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1316 	if (!cfg)
1317 		return -ENOMEM;
1318 
1319 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1320 	soc_dl = BIT(sai->soc_data->pins) - 1;
1321 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1322 	cfg[0].pins[0] = sai->soc_data->pins;
1323 	cfg[0].mask[0] = soc_dl;
1324 	cfg[0].start_off[0] = 0;
1325 	cfg[0].next_off[0] = 0;
1326 
1327 	cfg[0].pins[1] = sai->soc_data->pins;
1328 	cfg[0].mask[1] = soc_dl;
1329 	cfg[0].start_off[1] = 0;
1330 	cfg[0].next_off[1] = 0;
1331 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1332 		/*
1333 		 * type of dataline
1334 		 * 0 means default mode
1335 		 * 1 means I2S mode
1336 		 * 2 means PDM mode
1337 		 */
1338 		ret = of_property_read_u32_index(np, propname, index++, &type);
1339 		if (ret)
1340 			return -EINVAL;
1341 
1342 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1343 		if (ret)
1344 			return -EINVAL;
1345 
1346 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1347 		if (ret)
1348 			return -EINVAL;
1349 
1350 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1351 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1352 			return -EINVAL;
1353 		}
1354 
1355 		rx = rx & soc_dl;
1356 		tx = tx & soc_dl;
1357 
1358 		cfg[i].type = type;
1359 		cfg[i].pins[0] = hweight8(rx);
1360 		cfg[i].mask[0] = rx;
1361 		dl_mask = rx;
1362 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1363 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1364 
1365 		cfg[i].pins[1] = hweight8(tx);
1366 		cfg[i].mask[1] = tx;
1367 		dl_mask = tx;
1368 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1369 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1370 	}
1371 
1372 	sai->dl_cfg = cfg;
1373 	sai->dl_cfg_cnt = num_cfg + 1;
1374 	return 0;
1375 }
1376 
1377 static int fsl_sai_runtime_suspend(struct device *dev);
1378 static int fsl_sai_runtime_resume(struct device *dev);
1379 
fsl_sai_probe(struct platform_device * pdev)1380 static int fsl_sai_probe(struct platform_device *pdev)
1381 {
1382 	struct device_node *np = pdev->dev.of_node;
1383 	struct device *dev = &pdev->dev;
1384 	struct fsl_sai *sai;
1385 	struct regmap *gpr;
1386 	void __iomem *base;
1387 	char tmp[8];
1388 	int irq, ret, i;
1389 	int index;
1390 	u32 dmas[4];
1391 
1392 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1393 	if (!sai)
1394 		return -ENOMEM;
1395 
1396 	sai->pdev = pdev;
1397 	sai->soc_data = of_device_get_match_data(dev);
1398 
1399 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1400 
1401 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1402 	if (IS_ERR(base))
1403 		return PTR_ERR(base);
1404 
1405 	if (sai->soc_data->reg_offset == 8) {
1406 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1407 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1408 		fsl_sai_regmap_config.num_reg_defaults =
1409 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1410 	}
1411 
1412 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1413 	if (IS_ERR(sai->regmap)) {
1414 		dev_err(dev, "regmap init failed\n");
1415 		return PTR_ERR(sai->regmap);
1416 	}
1417 
1418 	sai->bus_clk = devm_clk_get(dev, "bus");
1419 	/* Compatible with old DTB cases */
1420 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1421 		sai->bus_clk = devm_clk_get(dev, "sai");
1422 	if (IS_ERR(sai->bus_clk)) {
1423 		dev_err(dev, "failed to get bus clock: %ld\n",
1424 				PTR_ERR(sai->bus_clk));
1425 		/* -EPROBE_DEFER */
1426 		return PTR_ERR(sai->bus_clk);
1427 	}
1428 
1429 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1430 		sprintf(tmp, "mclk%d", i);
1431 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1432 		if (IS_ERR(sai->mclk_clk[i])) {
1433 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1434 					i, PTR_ERR(sai->mclk_clk[i]));
1435 			sai->mclk_clk[i] = NULL;
1436 		}
1437 	}
1438 
1439 	if (sai->soc_data->mclk0_is_mclk1)
1440 		sai->mclk_clk[0] = sai->mclk_clk[1];
1441 	else
1442 		sai->mclk_clk[0] = sai->bus_clk;
1443 
1444 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1445 				&sai->pll11k_clk);
1446 
1447 	/* Use Multi FIFO mode depending on the support from SDMA script */
1448 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1449 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1450 		sai->is_multi_fifo_dma = true;
1451 
1452 	/* read dataline mask for rx and tx*/
1453 	ret = fsl_sai_read_dlcfg(sai);
1454 	if (ret < 0) {
1455 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1456 		return ret;
1457 	}
1458 
1459 	irq = platform_get_irq(pdev, 0);
1460 	if (irq < 0)
1461 		return irq;
1462 
1463 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1464 			       np->name, sai);
1465 	if (ret) {
1466 		dev_err(dev, "failed to claim irq %u\n", irq);
1467 		return ret;
1468 	}
1469 
1470 	memcpy(&sai->cpu_dai_drv, fsl_sai_dai_template,
1471 	       sizeof(*fsl_sai_dai_template) * ARRAY_SIZE(fsl_sai_dai_template));
1472 
1473 	/* Sync Tx with Rx as default by following old DT binding */
1474 	sai->synchronous[RX] = true;
1475 	sai->synchronous[TX] = false;
1476 	sai->cpu_dai_drv[0].symmetric_rate = 1;
1477 	sai->cpu_dai_drv[0].symmetric_channels = 1;
1478 	sai->cpu_dai_drv[0].symmetric_sample_bits = 1;
1479 
1480 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1481 	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1482 		/* error out if both synchronous and asynchronous are present */
1483 		dev_err(dev, "invalid binding for synchronous mode\n");
1484 		return -EINVAL;
1485 	}
1486 
1487 	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1488 		/* Sync Rx with Tx */
1489 		sai->synchronous[RX] = false;
1490 		sai->synchronous[TX] = true;
1491 	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1492 		/* Discard all settings for asynchronous mode */
1493 		sai->synchronous[RX] = false;
1494 		sai->synchronous[TX] = false;
1495 		sai->cpu_dai_drv[0].symmetric_rate = 0;
1496 		sai->cpu_dai_drv[0].symmetric_channels = 0;
1497 		sai->cpu_dai_drv[0].symmetric_sample_bits = 0;
1498 	}
1499 
1500 	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1501 
1502 	if (sai->mclk_direction_output &&
1503 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1504 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1505 		if (IS_ERR(gpr)) {
1506 			dev_err(dev, "cannot find iomuxc registers\n");
1507 			return PTR_ERR(gpr);
1508 		}
1509 
1510 		index = of_alias_get_id(np, "sai");
1511 		if (index < 0)
1512 			return index;
1513 
1514 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1515 				   MCLK_DIR(index));
1516 	}
1517 
1518 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1519 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1520 	sai->dma_params_rx.maxburst =
1521 		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1522 	sai->dma_params_tx.maxburst =
1523 		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1524 
1525 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1526 
1527 	platform_set_drvdata(pdev, sai);
1528 	pm_runtime_enable(dev);
1529 	if (!pm_runtime_enabled(dev)) {
1530 		ret = fsl_sai_runtime_resume(dev);
1531 		if (ret)
1532 			goto err_pm_disable;
1533 	}
1534 
1535 	ret = pm_runtime_resume_and_get(dev);
1536 	if (ret < 0)
1537 		goto err_pm_get_sync;
1538 
1539 	/* Get sai version */
1540 	ret = fsl_sai_check_version(dev);
1541 	if (ret < 0)
1542 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1543 
1544 	/* Select MCLK direction */
1545 	if (sai->mclk_direction_output &&
1546 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1547 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1548 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1549 	}
1550 
1551 	ret = pm_runtime_put_sync(dev);
1552 	if (ret < 0 && ret != -ENOSYS)
1553 		goto err_pm_get_sync;
1554 
1555 	/*
1556 	 * Register platform component before registering cpu dai for there
1557 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1558 	 */
1559 	if (sai->soc_data->use_imx_pcm) {
1560 		ret = imx_pcm_dma_init(pdev);
1561 		if (ret) {
1562 			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1563 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1564 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1565 			goto err_pm_get_sync;
1566 		}
1567 	} else {
1568 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1569 		if (ret) {
1570 			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1571 			goto err_pm_get_sync;
1572 		}
1573 	}
1574 
1575 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1576 					      sai->cpu_dai_drv, ARRAY_SIZE(fsl_sai_dai_template));
1577 	if (ret)
1578 		goto err_pm_get_sync;
1579 
1580 	return ret;
1581 
1582 err_pm_get_sync:
1583 	if (!pm_runtime_status_suspended(dev))
1584 		fsl_sai_runtime_suspend(dev);
1585 err_pm_disable:
1586 	pm_runtime_disable(dev);
1587 
1588 	return ret;
1589 }
1590 
fsl_sai_remove(struct platform_device * pdev)1591 static void fsl_sai_remove(struct platform_device *pdev)
1592 {
1593 	pm_runtime_disable(&pdev->dev);
1594 	if (!pm_runtime_status_suspended(&pdev->dev))
1595 		fsl_sai_runtime_suspend(&pdev->dev);
1596 }
1597 
1598 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1599 	.use_imx_pcm = false,
1600 	.use_edma = false,
1601 	.fifo_depth = 32,
1602 	.pins = 1,
1603 	.reg_offset = 0,
1604 	.mclk0_is_mclk1 = false,
1605 	.flags = 0,
1606 	.max_register = FSL_SAI_RMR,
1607 };
1608 
1609 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1610 	.use_imx_pcm = true,
1611 	.use_edma = false,
1612 	.fifo_depth = 32,
1613 	.pins = 1,
1614 	.reg_offset = 0,
1615 	.mclk0_is_mclk1 = true,
1616 	.flags = 0,
1617 	.max_register = FSL_SAI_RMR,
1618 };
1619 
1620 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1621 	.use_imx_pcm = true,
1622 	.use_edma = false,
1623 	.fifo_depth = 16,
1624 	.pins = 2,
1625 	.reg_offset = 8,
1626 	.mclk0_is_mclk1 = false,
1627 	.flags = PMQOS_CPU_LATENCY,
1628 	.max_register = FSL_SAI_RMR,
1629 };
1630 
1631 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1632 	.use_imx_pcm = true,
1633 	.use_edma = false,
1634 	.fifo_depth = 128,
1635 	.pins = 8,
1636 	.reg_offset = 8,
1637 	.mclk0_is_mclk1 = false,
1638 	.flags = 0,
1639 	.max_register = FSL_SAI_RMR,
1640 };
1641 
1642 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1643 	.use_imx_pcm = true,
1644 	.use_edma = true,
1645 	.fifo_depth = 64,
1646 	.pins = 4,
1647 	.reg_offset = 0,
1648 	.mclk0_is_mclk1 = false,
1649 	.flags = 0,
1650 	.max_register = FSL_SAI_RMR,
1651 };
1652 
1653 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1654 	.use_imx_pcm = true,
1655 	.use_edma = false,
1656 	.fifo_depth = 128,
1657 	.reg_offset = 8,
1658 	.mclk0_is_mclk1 = false,
1659 	.pins = 8,
1660 	.flags = 0,
1661 	.max_register = FSL_SAI_MCTL,
1662 };
1663 
1664 static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1665 	.use_imx_pcm = true,
1666 	.use_edma = false,
1667 	.fifo_depth = 128,
1668 	.reg_offset = 8,
1669 	.mclk0_is_mclk1 = false,
1670 	.pins = 8,
1671 	.flags = 0,
1672 	.max_register = FSL_SAI_MDIV,
1673 };
1674 
1675 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1676 	.use_imx_pcm = true,
1677 	.use_edma = false,
1678 	.fifo_depth = 128,
1679 	.reg_offset = 8,
1680 	.mclk0_is_mclk1 = false,
1681 	.pins = 8,
1682 	.flags = 0,
1683 	.max_register = FSL_SAI_MDIV,
1684 	.mclk_with_tere = true,
1685 };
1686 
1687 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1688 	.use_imx_pcm = true,
1689 	.use_edma = true,
1690 	.fifo_depth = 16,
1691 	.reg_offset = 8,
1692 	.mclk0_is_mclk1 = false,
1693 	.pins = 4,
1694 	.flags = PMQOS_CPU_LATENCY,
1695 	.max_register = FSL_SAI_RTCAP,
1696 };
1697 
1698 static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1699 	.use_imx_pcm = true,
1700 	.use_edma = true,
1701 	.fifo_depth = 128,
1702 	.reg_offset = 8,
1703 	.mclk0_is_mclk1 = false,
1704 	.pins = 4,
1705 	.flags = 0,
1706 	.max_register = FSL_SAI_MCTL,
1707 	.max_burst = {8, 8},
1708 };
1709 
1710 static const struct fsl_sai_soc_data fsl_sai_imx95_data = {
1711 	.use_imx_pcm = true,
1712 	.use_edma = true,
1713 	.fifo_depth = 128,
1714 	.reg_offset = 8,
1715 	.mclk0_is_mclk1 = false,
1716 	.pins = 8,
1717 	.flags = 0,
1718 	.max_register = FSL_SAI_MCTL,
1719 	.max_burst = {8, 8},
1720 };
1721 
1722 static const struct of_device_id fsl_sai_ids[] = {
1723 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1724 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1725 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1726 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1727 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1728 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1729 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1730 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1731 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1732 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1733 	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1734 	{ .compatible = "fsl,imx95-sai", .data = &fsl_sai_imx95_data },
1735 	{ /* sentinel */ }
1736 };
1737 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1738 
fsl_sai_runtime_suspend(struct device * dev)1739 static int fsl_sai_runtime_suspend(struct device *dev)
1740 {
1741 	struct fsl_sai *sai = dev_get_drvdata(dev);
1742 
1743 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1744 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1745 
1746 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1747 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1748 
1749 	clk_disable_unprepare(sai->bus_clk);
1750 
1751 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1752 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1753 
1754 	regcache_cache_only(sai->regmap, true);
1755 
1756 	return 0;
1757 }
1758 
fsl_sai_runtime_resume(struct device * dev)1759 static int fsl_sai_runtime_resume(struct device *dev)
1760 {
1761 	struct fsl_sai *sai = dev_get_drvdata(dev);
1762 	unsigned int ofs = sai->soc_data->reg_offset;
1763 	int ret;
1764 
1765 	ret = clk_prepare_enable(sai->bus_clk);
1766 	if (ret) {
1767 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1768 		return ret;
1769 	}
1770 
1771 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1772 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1773 		if (ret)
1774 			goto disable_bus_clk;
1775 	}
1776 
1777 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1778 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1779 		if (ret)
1780 			goto disable_tx_clk;
1781 	}
1782 
1783 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1784 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1785 
1786 	regcache_cache_only(sai->regmap, false);
1787 	regcache_mark_dirty(sai->regmap);
1788 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1789 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, FSL_SAI_CSR_SR);
1790 	usleep_range(1000, 2000);
1791 	regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR, 0);
1792 	regmap_update_bits(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR, 0);
1793 
1794 	ret = regcache_sync(sai->regmap);
1795 	if (ret)
1796 		goto disable_rx_clk;
1797 
1798 	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1799 		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1800 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1801 
1802 	return 0;
1803 
1804 disable_rx_clk:
1805 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1806 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1807 disable_tx_clk:
1808 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1809 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1810 disable_bus_clk:
1811 	clk_disable_unprepare(sai->bus_clk);
1812 
1813 	return ret;
1814 }
1815 
1816 static const struct dev_pm_ops fsl_sai_pm_ops = {
1817 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1818 			   fsl_sai_runtime_resume, NULL)
1819 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1820 				pm_runtime_force_resume)
1821 };
1822 
1823 static struct platform_driver fsl_sai_driver = {
1824 	.probe = fsl_sai_probe,
1825 	.remove = fsl_sai_remove,
1826 	.driver = {
1827 		.name = "fsl-sai",
1828 		.pm = &fsl_sai_pm_ops,
1829 		.of_match_table = fsl_sai_ids,
1830 	},
1831 };
1832 module_platform_driver(fsl_sai_driver);
1833 
1834 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1835 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1836 MODULE_ALIAS("platform:fsl-sai");
1837 MODULE_LICENSE("GPL");
1838