Home
last modified time | relevance | path

Searched refs:np (Results 1 – 25 of 1950) sorted by relevance

12345678910>>...78

/third_party/mindspore/tests/ut/python/ops/
Dtest_math_ops_check.py17 import numpy as np namespace
34 …self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1…
45 …self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1…
85 …'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float…
91 'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)],
97 'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)],
104 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
110 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
117 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
123 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
[all …]
Dtest_nn_ops_check.py16 import numpy as np namespace
67 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
72 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
83 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
94 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
105 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
116 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
127 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
144 …'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float…
145 Tensor(np.ones([5, 3]).astype(np.float32)), None, None],
[all …]
Dtest_ops.py19 import numpy as np namespace
92 … self.input_x = Parameter(Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32)))
416 def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
419 self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
429 def __init__(self, dtype=np.float32, use_locking=False):
432 … self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype)), name="ref")
442 def __init__(self, dtype=np.float32, use_locking=False):
445 … self.ref = Parameter(Tensor(np.array([[-1.0, 2.0, 3.0], [-4.0, 1.0, 6.0]], dtype)), name="ref")
455 def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
458 self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)), name="ref")
[all …]
/third_party/mindspore/tests/st/ops/cpu/
Dtest_cast_op.py16 import numpy as np namespace
41 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool)))
42 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float16)))
43 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32)))
44 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float64)))
45 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int8)))
46 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int16)))
47 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32)))
48 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int64)))
49 tensor_to_cast.append(Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.uint8)))
[all …]
Dtest_resize_bilinear_op.py15 import numpy as np namespace
33 def test_resize_nn_grayscale_integer_ratio_half(datatype=np.float16):
34 input_tensor = Tensor(np.array(
40 expected_output = Tensor(np.array([[[[0.1, 0.1333, 0.1666, 0.2, 0.2333, 0.2666, 0.3, 0.3, 0.3],
49 ).astype(np.float16))
50 error = np.ones(shape=[9, 9]) * 1.0e-6
52 assert np.all(abs(diff) < error)
57 expected_output = Tensor(np.array([[[[0.1]]]]).astype(np.float16))
58 error = np.ones(shape=[1, 1]) * 1.0e-6
60 assert np.all(abs(diff) < error)
[all …]
Dtest_shift_op.py15 import numpy as np namespace
65 def numpy_shift(array: np.ndarray, periods: int, axis: int, fill_value=np.nan) -> np.ndarray:
86 result = np.empty_like(array)
93 def compare(arr: np.ndarray, periods: int, axis: int, fill_value=np.nan):
102 assert np.allclose(numpy_result, mindspore_result, equal_nan=True)
109 … [(np.float32, 0.0), (np.float32, 5.3), (np.float32, -5.5), (np.float32, np.nan),
110 … (np.float64, 0.0), (np.float64, 5.3), (np.float64, -5.5), (np.float64, np.nan),
111 (np.int32, 0), (np.int32, 1), (np.int32, 5), (np.int32, -4),
112 (np.int64, 0), (np.int64, 1), (np.int64, 5), (np.int64, -4),
113 (np.bool_, True), (np.bool_, False)])
[all …]
Dtest_arithmetic_op.py15 import numpy as np namespace
76 x = np.random.rand(2, 3, 4, 4).astype(np.float32)
77 y = np.random.rand(4, 1).astype(np.float32)
81 assert np.all(output.asnumpy() == expect_output)
88 prop = 1 if np.random.random() < 0.5 else -1
89 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
90 y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
91 x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
92 y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
93 x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
[all …]
Dtest_argminwithvalue_op.py16 import numpy as np namespace
40 x = np.array([[1., 20., 5.],
43 [-0.5, 25, 100]]).astype(np.float32)
47 expect0 = np.array([3, 1, 0]).astype(np.int32)
48 expect1 = np.array([-0.5, 8., 5.]).astype(np.float32)
49 error = np.ones(shape=expect1.shape) * 1.0e-6
50 assert np.all(output0.asnumpy() == expect0)
51 assert np.all(np.abs(output1.asnumpy() - expect1) < error)
56 expect0 = np.array([[3, 1, 0]]).astype(np.int32)
57 expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float32)
[all …]
Dtest_arithmetic_self_op.py15 import numpy as np namespace
84 x = np.array([1, 2, 3]).astype(np.int16)
87 expect_output = np.array([1, 4, 9]).astype(np.int16)
89 assert np.all(output.asnumpy() == expect_output)
91 x = np.array([1, 2, 3]).astype(np.int32)
94 expect_output = np.array([1, 4, 9]).astype(np.int32)
96 assert np.all(output.asnumpy() == expect_output)
98 x = np.array([1, 2, 3]).astype(np.int64)
101 expect_output = np.array([1, 4, 9]).astype(np.int64)
103 assert np.all(output.asnumpy() == expect_output)
[all …]
Dtest_scatter_arithmetic_op.py16 import numpy as np namespace
55 inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
56 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
57 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
59 expected = np.array([[6., 8., 10.],
61 np.testing.assert_array_almost_equal(output.asnumpy(), expected)
68 inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
69 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
70 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
74 expected = np.array([[6., 8., 10.],
[all …]
/third_party/mindspore/tests/st/ops/gpu/
Dtest_fake_quant_perchannel.py16 import numpy as np namespace
44 x = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
45 min_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
46 max_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
47 expect = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
52 error = np.ones(shape=expect.shape) * 1.0e-5
56 assert np.all(np.abs(diff) < error)
65 x = np.array([-0.1, 0.0, 63.75, 63.8]).astype(np.float32)
66 min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32)
67 max_val = np.array([63.65, 63.65, 63.65, 63.65]).astype(np.float32)
[all …]
Dtest_fake_quant_perlayer.py16 import numpy as np namespace
52 x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).reshape(2, 3).astype(np.float32)
53 min_val = np.array([0]).reshape(1).astype(np.float32)
54 max_val = np.array([0]).reshape(1).astype(np.float32)
55 expect = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).astype(np.float32)
60 error = np.ones(shape=expect.shape) * 1.0e-5
64 assert np.all(np.abs(diff) < error)
74 x = np.array([-10.1, -10.0, -9.9, -9.75, 53.75, 53.8]).reshape(2, 3).astype(np.float32)
75 min_val = np.array([-10.0]).reshape(1).astype(np.float32)
76 max_val = np.array([53.75]).reshape(1).astype(np.float32)
[all …]
Dtest_scatter_func_op.py16 import numpy as np namespace
108 inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
109 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
110 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
114 expected = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]])
115 np.testing.assert_array_almost_equal(output.asnumpy(), expected)
119 expected = np.array([[6.0, 8.0, 10.0], [12.0, 14.0, 16.0]])
120 np.testing.assert_array_almost_equal(output.asnumpy(), expected)
124 expected = np.array([[-6.0, -8.0, -10.0], [-12.0, -14.0, -16.0]])
125 np.testing.assert_array_almost_equal(output.asnumpy(), expected)
[all …]
Dtest_resize_bilinear_op.py15 import numpy as np namespace
37 def test_resize_nn_grayscale_integer_ratio_half(datatype=np.float16):
38 input_tensor = Tensor(np.array(
44 expected_output = Tensor(np.array([[[[0.1, 0.1333, 0.1666, 0.2, 0.2333, 0.2666, 0.3, 0.3, 0.3],
53 0.8994, 0.8994, 0.8994]]]]).astype(np.float16))
54 error = np.ones(shape=[9, 9]) * 1.0e-6
56 assert np.all(abs(diff) < error)
61 expected_output = Tensor(np.array([[[[0.1]]]]).astype(np.float16))
62 error = np.ones(shape=[1, 1]) * 1.0e-6
64 assert np.all(abs(diff) < error)
[all …]
Dtest_fake_quant_perchannel_grad.py16 import numpy as np namespace
41 dout = np.random.uniform(-1, 1, size=[4]).astype('float32')
42 x = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
43 min_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
44 max_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32)
50 error = np.ones(shape=expect.shape) * 1.0e-5
55 assert np.all(np.abs(diff) < error)
63 dout = np.random.uniform(-1, 1, size=[4]).astype('float32')
64 x = np.array([-0.1, 0.0, 63.75, 63.8]).astype(np.float32)
65 min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32)
[all …]
Dtest_nll_loss.py16 import numpy as np namespace
51 np.array([[0.53, 0.74, -2.12], [1.29, -0.34, -1.13]]).astype(nptype_input))
53 target = Tensor(np.array([0, 1]).astype(np.int32))
55 weight = Tensor(np.array([0.45, -0.32, 1.21]).astype(nptype_weight))
62 expected_tot_weight = np.array(0.129999995)
65 expected_loss = np.array([-0.238499984, -0.108800001])
67 expected_loss = np.array(-2.67153859)
69 expected_loss = np.array(-0.347299993)
71 if nptype_input == np.float32 and nptype_weight == np.float32:
73 elif nptype_input == np.float16 or nptype_weight == np.float16:
[all …]
Dtest_layer_norm_grad_grad_op.py16 import numpy as np namespace
25 np.random.seed(0)
46 mean = np.mean(x, axis=tuple(norm_axis), keepdims=True)
47 var = np.var(x, axis=tuple(norm_axis), keepdims=True)
50 …dg = np.sum(dy * np.power(var + epsilon, -0.5) * (x - mean), axis=tuple(param_axis), keepdims=True)
51 db = np.sum(dy, axis=tuple(param_axis), keepdims=True)
53 …sum1 = np.sum((-0.5) * dy * gamma * (x - mean) * np.power(var + epsilon, -1.5), axis=tuple(norm_ax…
55 sum2 = np.sum(dy * gamma, axis=tuple(norm_axis), keepdims=True)
56 sum3 = np.sum(-2.0 * (x - mean), axis=tuple(norm_axis), keepdims=True)
58 dx1 = dy * gamma * np.power(var + epsilon, -0.5)
[all …]
Dtest_lstm_op.py16 import numpy as np namespace
41 …input_np = np.array([[[0.6755, -1.6607, 0.1367, -0.9209, -1.7088, 0.3953, 2.7120, 0.1103, 0.1504, …
55 -0.4313]]]).astype(np.float32)
60 … Tensor(np.ones((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32)),
64 … Tensor(np.ones((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32)),
67 wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01, 2.3627e-01, 3.7844e-01,
82 … -6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape(
85 whh = np.array([[-0.4820, -0.2350],
92 [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1])
94 …bih = np.array([-0.2862, 0.0034, 0.2059, -0.6544, 0.3244, -0.2472, 0.0852, -0.3050]).astype(np.flo…
[all …]
/third_party/mindspore/tests/syntax/simple_expression/
Dtest_assignment_ops.py16 import numpy as np namespace
39 x = Tensor(np.ones([3, 3]).astype(np.bool_))
40 y = Tensor(np.zeros([3, 3]).astype(np.bool_))
44 output_expect = np.ones([3, 3]).astype(np.bool_)
46 assert np.all(output == output_expect)
50 x = Tensor(np.ones([3, 3]).astype(np.int8))
51 y = Tensor(np.zeros([3, 3]).astype(np.int8))
55 output_expect = np.ones([3, 3]).astype(np.int8)
57 assert np.all(output == output_expect)
61 x = Tensor(np.ones([3, 3]).astype(np.uint8))
[all …]
Dtest_math_ops.py16 import numpy as np namespace
47 input_x = Tensor(np.ones(shape=[3])).astype(np.int8)
48 input_y = Tensor(np.zeros(shape=[3])).astype(np.int8)
52 expect = np.ones(shape=[3])
53 assert np.all(result1.asnumpy() == expect)
54 assert np.all(result2.asnumpy() == expect)
58 input_x = Tensor(np.ones(shape=[3])).astype(np.int16)
59 input_y = Tensor(np.zeros(shape=[3])).astype(np.int16)
63 expect = np.ones(shape=[3])
64 assert np.all(result1.asnumpy() == expect)
[all …]
/third_party/mindspore/tests/ut/python/mindrecord/
Dtest_mindrecord_exception.py19 import numpy as np namespace
472 … = [{"filename": "001.jpg", "label": 43, "score": 0.8, "mask": np.array([3, 6, 9], dtype=np.int64),
473 "segments": np.array([[5.0, 1.6], [65.2, 8.3]], dtype=np.float32),
475 … {"filename": "002.jpg", "label": 91, "score": 5.4, "mask": np.array([1, 4, 7], dtype=np.int64),
476 "segments": np.array([[5.1, 9.1], [2.0, 65.4]], dtype=np.float32),
478 … {"filename": "003.jpg", "label": 61, "score": 6.4, "mask": np.array([7, 6, 3], dtype=np.int64),
479 "segments": np.array([[0.0, 5.6], [3.0, 16.3]], dtype=np.float32),
481 … {"filename": "004.jpg", "label": 29, "score": 8.1, "mask": np.array([2, 8, 0], dtype=np.int64),
482 "segments": np.array([[5.9, 7.2], [4.0, 89.0]], dtype=np.float32),
484 … {"filename": "005.jpg", "label": 78, "score": 7.7, "mask": np.array([3, 1, 2], dtype=np.int64),
[all …]
/third_party/mindspore/tests/st/gradient/
Dtest_jvp_graph.py17 import numpy as np namespace
51 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
52 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
54 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32))
55 expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32))
57 assert np.allclose(primal.asnumpy(), expect_primal.asnumpy())
58 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy())
65 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
66 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
68 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32))
[all …]
Dtest_jvp_pynative.py17 import numpy as np namespace
50 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
51 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
53 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32))
54 expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32))
56 assert np.allclose(primal.asnumpy(), expect_primal.asnumpy())
57 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy())
64 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
65 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32))
67 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32))
[all …]
/third_party/mindspore/tests/st/ops/ascend/test_aicpu_ops/
Dtest_meshgrid.py15 import numpy as np namespace
36 x = np.random.randn(4,) > 0
37 y = np.random.randn(3,) > 0
38 z = np.random.randn(6,) > 0
47 np_output = np.meshgrid(x, y, z, indexing=indexing)
48 assert np.array_equal(output[0].asnumpy(), np_output[0])
49 assert np.array_equal(output[1].asnumpy(), np_output[1])
50 assert np.array_equal(output[2].asnumpy(), np_output[2])
54 x = np.random.randn(4,).astype(np.int8)
55 y = np.random.randn(3,).astype(np.int8)
[all …]
/third_party/mindspore/tests/ut/python/pynative_mode/vm/
Dtest_vm.py16 import numpy as np namespace
23 input_data = np.array([[[[-4., -3., 1., 9.],
26 [-2., -1., -2., -15.]]]]).astype(np.float32)
37 input_data = np.array([[[[1., 2, 3, 4],
40 [13, 14, 15, 16]]]]).astype(np.float32)
50 input_data = np.random.randint(0, 255, [1, 3, 224, 224])
59 x = np.array([[[
65 [2, 4, 5, 2, 3, 9]]]]).astype(np.float32)
66 weight = np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)
68 expect_out = np.array([[[
[all …]

12345678910>>...78