/third_party/mindspore/tests/ |
D | ops_common.py | 226 predict = self.network(x1)[self.output_index] 227 return predict 230 predict = self.network(x1, x2)[self.output_index] 231 return predict 234 predict = self.network(x1, x2, x3)[self.output_index] 235 return predict 238 predict = self.network(x1, x2, x3, x4)[self.output_index] 239 return predict 242 predict = self.network(x1, x2, x3, x4, x5)[self.output_index] 243 return predict [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_bce_with_logits_loss.py | 31 def construct(self, predict, target, weight, pos_weight): argument 32 return self.loss(predict, target, weight, pos_weight) 42 predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) 46 output = loss(predict, target, weight, pos_weight) 52 predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) 56 output = loss(predict, target, weight, pos_weight) 63 predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float16)) 67 output = loss(predict, target, weight, pos_weight) 79 predict = Tensor(np.arange(6).reshape(2, 3).astype(np.float32)) 83 output = loss(predict, target, weight, pos_weight) [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
D | bce_with_logits_loss_impl.cu | 58 __global__ void BCEWithLogitsLossMain(size_t size, const T *predict, const T *target, const T *shap… in BCEWithLogitsLossMain() argument 61 T max_value = -predict[pos]; in BCEWithLogitsLossMain() 64 output[pos] = (static_cast<T>(1) - target[pos]) * predict[pos] + in BCEWithLogitsLossMain() 65 log_weight * (log(exp(-max_value) + exp(-predict[pos] - max_value)) + max_value); in BCEWithLogitsLossMain() 71 __global__ void BCEWithLogitsLossMain(size_t size, const half *predict, const half *target, in BCEWithLogitsLossMain() argument 74 half max_value = -predict[pos]; in BCEWithLogitsLossMain() 77 output[pos] = (static_cast<half>(1) - target[pos]) * predict[pos] + in BCEWithLogitsLossMain() 78 … log_weight * (hlog(hexp(-max_value) + hexp(-predict[pos] - max_value)) + max_value); in BCEWithLogitsLossMain() 92 void CalBCEWithLogitsLoss(const size_t input_size, const T *predict, const T *target, const size_t … in CalBCEWithLogitsLoss() argument 104 …ogitsLossMain<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, predict, target, in CalBCEWithLogitsLoss() [all …]
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_full_batch.py | 32 def __init__(self, predict, label, length=3): argument 34 self.predict = predict 46 return self.predict, self.label 76 predict = Tensor(np.ones([256, 128]), dtype=ms.float32) 78 dataset = Dataset(predict, label, 2) 102 predict = Tensor(np.ones([256, 128]), dtype=ms.float32) 104 dataset = Dataset(predict, label, 2)
|
D | test_dataset_interface.py | 34 def __init__(self, predict, label, length=3): argument 36 self.predict = predict 48 return self.predict, self.label 78 predict = Tensor(np.ones([32, 128]), dtype=ms.float32) 80 dataset = Dataset(predict, label, 2) 127 predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32) 132 train_net(predict, sens) 171 predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32) 174 net(predict)
|
D | test_bool_grad.py | 31 def __init__(self, predict, label, length=3): argument 33 self.predict = predict 45 return self.predict, self.label 70 predict = Tensor(np.ones([32, 64]), dtype=ms.float32) 72 dataset = Dataset(predict, label, 2)
|
D | test_prelu_cell.py | 35 def __init__(self, predict, label, length=3, input_num=2): argument 37 self.predict = predict 51 return (self.predict, self.label) 52 return (self.predict,) 106 predict = Tensor(np.ones([32, 256]), dtype=ms.float32) 108 dataset = Dataset(predict, label, 2)
|
D | test_transpose.py | 30 def __init__(self, predict, label, length=3): argument 32 self.predict = predict 44 return self.predict, self.label 78 predict = Tensor(np.ones([32, 128]), dtype=ms.float32) 80 dataset = Dataset(predict, label, 2)
|
D | test_auto_parallel_double_subgraphs.py | 54 predict = self.net(x) 55 loss1 = self.sum(predict, -1) 56 loss2 = self.mean(predict, -1) 67 predict = self.network(x)[self.output_index] 68 return predict 130 def __init__(self, predict, label, length=3): argument 131 self.predict = predict 143 return self.predict
|
D | test_one_dev.py | 38 def __init__(self, predict, label, length=3): argument 40 self.predict = predict 52 return self.predict, self.label 109 predict = Tensor(np.ones([32, 128]), dtype=ms.float32) 111 dataset = Dataset(predict, label, 2)
|
D | test_reshape.py | 43 def __init__(self, predict, label, length=3, input_num=2): argument 45 self.predict = predict 59 return (self.predict, self.label) 60 return (self.predict,) 92 predict = Tensor(np.ones([32, 512, 7, 7]), dtype=ms.float32) 94 dataset = Dataset(predict, label, 2) 190 predict = self.network(x) 191 return self.loss(predict) 431 predict = Tensor(np.ones([batch_size, 512, 7, 7]), dtype=ms.float32) 433 dataset = Dataset(predict, label, 2, input_num=1) [all …]
|
D | test_loss_scale.py | 114 def __init__(self, predict, label, length=3): argument 116 self.predict = predict 128 return self.predict, self.label 183 predict = Tensor(np.ones([64, 64]), dtype=ms.float32) 185 dataset = DatasetLenet(predict, label) 196 predict = Tensor(np.ones([64, 64]), dtype=ms.float32) 198 dataset = DatasetLenet(predict, label)
|
D | test_batchnorm_batch_parallel.py | 40 def __init__(self, predict, label, length=3): argument 42 self.predict = predict 54 return self.predict, self.label 131 predict = Tensor(np.ones([batch_size, 3, 224, 224]), dtype=ms.float32) 134 dataset = DatasetLenet(predict, label, 2)
|
D | test_auto_parallel_onehot.py | 38 def __init__(self, predict, label, length=3): argument 40 self.predict = predict 52 return self.predict, self.label 65 predict = self.network(x, y, b) 66 return self.loss(predict)
|
D | test_parallel_transformer.py | 77 predict, _, _ = self.network(x1, x2, x3, x4, x5) 78 predict = P.Reshape()(predict, (-1, F.shape(predict)[-1])) 79 return self.loss(predict, y, mask) 93 predict, _, _ = self.network(x1, x2, x3, x4, x5) 94 return self.loss(predict) 348 predict, _ = self.network(x1, x2) 349 return self.loss(predict) 384 predict, _, _ = self.network(x1, x2, x3, x4) 385 return self.loss(predict) 424 predict, _ = self.network(x1) [all …]
|
D | test_broadcast_dict.py | 58 predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01) 59 _ = network(predict) 73 predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01) 74 _ = network(predict)
|
D | test_bias_add.py | 40 def __init__(self, predict, label, length=3): argument 41 self.predict = predict 53 return self.predict, self.label
|
D | test_topk.py | 27 def __init__(self, predict, label, length=3): argument 29 self.predict = predict 41 return self.predict, self.label
|
D | test_gathernd.py | 27 def __init__(self, predict, label, length=3): argument 29 self.predict = predict 41 return self.predict, self.label
|
/third_party/mindspore/tests/ut/python/model/ |
D | test_lenet.py | 53 predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) 56 _cell_graph_executor.compile(net, predict, label) 60 predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) 63 _cell_graph_executor.compile(net, predict) 67 predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) 71 _cell_graph_executor.compile(net, predict, label)
|
/third_party/mindspore/tests/ut/python/communication/ |
D | test_data_parallel_lenet.py | 59 def __init__(self, predict, label, length=3): argument 60 self.predict = predict 72 return self.predict, self.label 84 predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) 86 DatasetLenet(predict, label, 2)
|
/third_party/flutter/skia/third_party/externals/libwebp/src/enc/ |
D | predictor_enc.c | 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, in NearLosslessComponent() argument 152 const int residual = (value - predict) & 0xff; in NearLosslessComponent() 153 const int boundary_residual = (boundary - predict) & 0xff; in NearLosslessComponent() 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, in NearLossless() argument 197 return VP8LSubPixels(value, predict); in NearLossless() 205 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, in NearLossless() 214 new_green = ((predict >> 8) + g) & 0xff; in NearLossless() 221 (predict >> 16) & 0xff, 0xff - new_green, in NearLossless() [all …]
|
/third_party/skia/third_party/externals/libwebp/src/enc/ |
D | predictor_enc.c | 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, in NearLosslessComponent() argument 152 const int residual = (value - predict) & 0xff; in NearLosslessComponent() 153 const int boundary_residual = (boundary - predict) & 0xff; in NearLosslessComponent() 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, in NearLossless() argument 197 return VP8LSubPixels(value, predict); in NearLossless() 205 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, in NearLossless() 214 new_green = ((predict >> 8) + g) & 0xff; in NearLossless() 221 (predict >> 16) & 0xff, 0xff - new_green, in NearLossless() [all …]
|
/third_party/mindspore/mindspore/core/ops/grad/ |
D | soft_margin_loss_grad.cc | 32 …auto predict = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kInputIndex0]->BuildShap… in SoftMarginLossGradInferShape() local 35 …CheckAndConvertUtils::Check("logits shape", predict, kEqual, "labels shape", label, op_name, Value… in SoftMarginLossGradInferShape() 37 …CheckAndConvertUtils::Check("logits shape", predict, kEqual, "dout shape", dout, op_name, ValueErr… in SoftMarginLossGradInferShape() 39 return std::make_shared<abstract::Shape>(predict); in SoftMarginLossGradInferShape()
|
/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_pynative_model.py | 60 predict = self.network(x) 61 return self.loss(predict, label) 79 predict = Tensor(np.ones([1, 64]).astype(np.float32)) 82 out = net.construct(predict, label) 100 predict = self.network(x) 101 return self.loss(predict, label)
|