• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <opencv2/opencv.hpp>
17 #include <opencv2/imgproc/types_c.h>
18 #include <fstream>
19 
20 #include "common/common.h"
21 #include "lite_cv/lite_mat.h"
22 #include "lite_cv/image_process.h"
23 #include "minddata/dataset/kernels/image/resize_cubic_op.h"
24 
25 using namespace mindspore::dataset;
26 class MindDataImageProcess : public UT::Common {
27  public:
28   MindDataImageProcess() {}
29 
30   void SetUp() {}
31 };
32 
33 void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
34   int cv_h = cv_mat.rows;
35   int cv_w = cv_mat.cols;
36   int cv_c = cv_mat.channels();
37   int lite_h = lite_mat.height_;
38   int lite_w = lite_mat.width_;
39   int lite_c = lite_mat.channel_;
40   ASSERT_TRUE(cv_h == lite_h);
41   ASSERT_TRUE(cv_w == lite_w);
42   ASSERT_TRUE(cv_c == lite_c);
43 }
44 
45 void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
46   bool ret;
47   LiteMat lite_mat_resize;
48   ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
49   ASSERT_TRUE(ret == true);
50   LiteMat lite_mat_convert_float;
51   ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
52   ASSERT_TRUE(ret == true);
53 
54   LiteMat lite_mat_crop;
55   ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
56   ASSERT_TRUE(ret == true);
57   std::vector<float> means = {0.485, 0.456, 0.406};
58   std::vector<float> stds = {0.229, 0.224, 0.225};
59   SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
60   return;
61 }
62 
63 cv::Mat cv3CImageProcess(cv::Mat &image) {
64   cv::Mat resize_256_image;
65   cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
66   cv::Mat float_256_image;
67   resize_256_image.convertTo(float_256_image, CV_32FC3);
68 
69   cv::Mat roi_224_image;
70   cv::Rect roi;
71   roi.x = 16;
72   roi.y = 16;
73   roi.width = 224;
74   roi.height = 224;
75 
76   float_256_image(roi).copyTo(roi_224_image);
77 
78   float meanR = 0.485;
79   float meanG = 0.456;
80   float meanB = 0.406;
81   float varR = 0.229;
82   float varG = 0.224;
83   float varB = 0.225;
84   cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
85   cv::Scalar var = cv::Scalar(varR, varG, varB);
86 
87   cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
88   cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
89 
90   cv::Mat imgR1 = roi_224_image - imgMean;
91   cv::Mat imgR2 = imgR1 / imgVar;
92   return imgR2;
93 }
94 
95 void AccuracyComparison(const std::vector<std::vector<double>> &expect, LiteMat &value) {
96   for (int i = 0; i < expect.size(); i++) {
97     for (int j = 0; j < expect[0].size(); j++) {
98       double middle = std::fabs(expect[i][j] - value.ptr<double>(i)[j]);
99       ASSERT_TRUE(middle <= 0.005);
100     }
101   }
102 }
103 
104 TEST_F(MindDataImageProcess, testRGB) {
105   std::string filename = "data/dataset/apple.jpg";
106   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
107 
108   cv::Mat rgba_mat;
109   cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
110 
111   bool ret = false;
112   LiteMat lite_mat_rgb;
113   ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb);
114   ASSERT_TRUE(ret == true);
115 
116   cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_);
117 }
118 
119 TEST_F(MindDataImageProcess, testLoadByMemPtr) {
120   std::string filename = "data/dataset/apple.jpg";
121   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
122 
123   cv::Mat rgba_mat;
124   cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
125 
126   bool ret = false;
127   int width = rgba_mat.cols;
128   int height = rgba_mat.rows;
129   uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar));
130   for (int i = 0; i < height; i++) {
131     const uchar *current = rgba_mat.ptr<uchar>(i);
132     for (int j = 0; j < width; j++) {
133       p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0];
134       p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1];
135       p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2];
136     }
137   }
138 
139   LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8);
140   LiteMat lite_mat_resize;
141   ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256);
142   ASSERT_TRUE(ret == true);
143   LiteMat lite_mat_convert_float;
144   ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
145   ASSERT_TRUE(ret == true);
146 
147   LiteMat lite_mat_crop;
148   ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
149   ASSERT_TRUE(ret == true);
150   std::vector<float> means = {0.485, 0.456, 0.406};
151   std::vector<float> stds = {0.229, 0.224, 0.225};
152   LiteMat lite_norm_mat_cut;
153   ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
154 
155   int pad_width = lite_norm_mat_cut.width_ + 20;
156   int pad_height = lite_norm_mat_cut.height_ + 20;
157   float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float));
158 
159   LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32);
160   ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
161   cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad);
162   free(p_rgb);
163   free(p_rgb_pad);
164 }
165 
166 TEST_F(MindDataImageProcess, test3C) {
167   std::string filename = "data/dataset/apple.jpg";
168   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
169   cv::Mat cv_image = cv3CImageProcess(image);
170 
171   // convert to RGBA for Android bitmap(rgba)
172   cv::Mat rgba_mat;
173   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
174 
175   bool ret = false;
176   LiteMat lite_mat_bgr;
177   ret =
178     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
179   ASSERT_TRUE(ret == true);
180   LiteMat lite_norm_mat_cut;
181   Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
182 
183   cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
184   CompareMat(cv_image, lite_norm_mat_cut);
185 }
186 
187 TEST_F(MindDataImageProcess, testCubic3C) {
188   std::string filename = "data/dataset/apple.jpg";
189   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
190   cv::Mat rgb_mat;
191   cv::cvtColor(image, rgb_mat, CV_BGR2RGB);
192 
193   LiteMat imIn, imOut;
194   int32_t output_width = 24;
195   int32_t output_height = 24;
196   imIn.Init(rgb_mat.cols, rgb_mat.rows, rgb_mat.channels(), rgb_mat.data, LDataType::UINT8);
197   imOut.Init(output_width, output_height, 3, LDataType::UINT8);
198 
199   bool ret = ResizeCubic(imIn, imOut, output_width, output_height);
200 
201   ASSERT_TRUE(ret == true);
202   return;
203 }
204 
205 bool ReadYUV(const char *filename, int w, int h, uint8_t **data) {
206   FILE *f = fopen(filename, "rb");
207   if (f == nullptr) {
208     return false;
209   }
210   fseek(f, 0, SEEK_END);
211   int size = ftell(f);
212   int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2);
213   if (size != expect_size) {
214     fclose(f);
215     return false;
216   }
217   fseek(f, 0, SEEK_SET);
218   *data = (uint8_t *)malloc(size);
219   size_t re = fread(*data, 1, size, f);
220   if (re != size) {
221     fclose(f);
222     return false;
223   }
224   fclose(f);
225   return true;
226 }
227 
228 TEST_F(MindDataImageProcess, TestRGBA2GRAY) {
229   std::string filename = "data/dataset/apple.jpg";
230   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
231   cv::Mat gray_image;
232   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
233 
234   cv::Mat rgba_mat;
235   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
236   bool ret = false;
237   LiteMat lite_mat_gray;
238   ret =
239     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
240   ASSERT_TRUE(ret == true);
241 
242   double distance = 0.f;
243   int total_size = gray_image.cols * gray_image.rows * gray_image.channels();
244   for (int i = 0; i < total_size; i++) {
245     distance += pow((uint8_t)gray_image.data[i] - ((uint8_t *)lite_mat_gray)[i], 2);
246   }
247   distance = sqrt(distance / total_size);
248   EXPECT_EQ(distance, 0.0f);
249 }
250 
251 TEST_F(MindDataImageProcess, testNV21ToBGR) {
252   //  ffmpeg -i ./data/dataset/apple.jpg  -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv
253   const char *filename = "data/dataset/yuv/test_nv21.yuv";
254   int w = 1024;
255   int h = 800;
256   uint8_t *yuv_data = nullptr;
257   bool ret = ReadYUV(filename, w, h, &yuv_data);
258   ASSERT_TRUE(ret == true);
259 
260   cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1, yuv_data);
261   cv::Mat rgbimage;
262 
263   cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21);
264 
265   LiteMat lite_mat_bgr;
266 
267   ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr);
268   ASSERT_TRUE(ret == true);
269   cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
270   free(yuv_data);
271 }
272 
273 TEST_F(MindDataImageProcess, testNV12ToBGR) {
274   //  ffmpeg -i ./data/dataset/apple.jpg  -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv
275   const char *filename = "data/dataset/yuv/test_nv12.yuv";
276   int w = 1024;
277   int h = 800;
278   uint8_t *yuv_data = nullptr;
279   bool ret = ReadYUV(filename, w, h, &yuv_data);
280   ASSERT_TRUE(ret == true);
281 
282   cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
283   memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
284   cv::Mat rgbimage;
285 
286   cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12);
287   LiteMat lite_mat_bgr;
288   ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr);
289   ASSERT_TRUE(ret == true);
290   cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
291   free(yuv_data);
292 }
293 
294 TEST_F(MindDataImageProcess, testExtractChannel) {
295   std::string filename = "data/dataset/apple.jpg";
296   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
297   cv::Mat dst_image;
298   cv::extractChannel(src_image, dst_image, 2);
299   // convert to RGBA for Android bitmap(rgba)
300   cv::Mat rgba_mat;
301   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
302 
303   bool ret = false;
304   LiteMat lite_mat_bgr;
305   ret =
306     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
307   ASSERT_TRUE(ret == true);
308 
309   LiteMat lite_B;
310   ret = ExtractChannel(lite_mat_bgr, lite_B, 0);
311   ASSERT_TRUE(ret == true);
312 
313   LiteMat lite_R;
314   ret = ExtractChannel(lite_mat_bgr, lite_R, 2);
315   ASSERT_TRUE(ret == true);
316   cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_);
317   // cv::imwrite("./test_lite_r.jpg", dst_imageR);
318 }
319 
320 TEST_F(MindDataImageProcess, testSplit) {
321   std::string filename = "data/dataset/apple.jpg";
322   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
323   std::vector<cv::Mat> dst_images;
324   cv::split(src_image, dst_images);
325   // convert to RGBA for Android bitmap(rgba)
326   cv::Mat rgba_mat;
327   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
328 
329   bool ret = false;
330   LiteMat lite_mat_bgr;
331   ret =
332     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
333   ASSERT_TRUE(ret == true);
334   std::vector<LiteMat> lite_all;
335   ret = Split(lite_mat_bgr, lite_all);
336   ASSERT_TRUE(ret == true);
337   ASSERT_TRUE(lite_all.size() == 3);
338   LiteMat lite_r = lite_all[2];
339   cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
340 }
341 
342 TEST_F(MindDataImageProcess, testMerge) {
343   std::string filename = "data/dataset/apple.jpg";
344   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
345   std::vector<cv::Mat> dst_images;
346   cv::split(src_image, dst_images);
347   // convert to RGBA for Android bitmap(rgba)
348   cv::Mat rgba_mat;
349   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
350 
351   bool ret = false;
352   LiteMat lite_mat_bgr;
353   ret =
354     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
355   ASSERT_TRUE(ret == true);
356   std::vector<LiteMat> lite_all;
357   ret = Split(lite_mat_bgr, lite_all);
358   ASSERT_TRUE(ret == true);
359   ASSERT_TRUE(lite_all.size() == 3);
360   LiteMat lite_r = lite_all[2];
361   cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
362 
363   LiteMat merge_mat;
364   EXPECT_TRUE(Merge(lite_all, merge_mat));
365   EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_);
366   EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_);
367   EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_);
368 }
369 
370 void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
371   LiteMat lite_mat_resize;
372   int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
373   ASSERT_TRUE(ret == true);
374   LiteMat lite_mat_convert_float;
375   ret = ConvertTo(lite_mat_resize, lite_mat_convert_float);
376   ASSERT_TRUE(ret == true);
377   LiteMat lite_mat_cut;
378   ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
379   ASSERT_TRUE(ret == true);
380   std::vector<float> means = {0.485};
381   std::vector<float> stds = {0.229};
382   ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
383   ASSERT_TRUE(ret == true);
384   return;
385 }
386 
387 cv::Mat cv1CImageProcess(cv::Mat &image) {
388   cv::Mat gray_image;
389   cv::cvtColor(image, gray_image, CV_BGR2GRAY);
390 
391   cv::Mat resize_256_image;
392   cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
393   cv::Mat float_256_image;
394   resize_256_image.convertTo(float_256_image, CV_32FC3);
395 
396   cv::Mat roi_224_image;
397   cv::Rect roi;
398   roi.x = 16;
399   roi.y = 16;
400   roi.width = 224;
401   roi.height = 224;
402 
403   float_256_image(roi).copyTo(roi_224_image);
404 
405   float meanR = 0.485;
406   float varR = 0.229;
407   cv::Scalar mean = cv::Scalar(meanR);
408   cv::Scalar var = cv::Scalar(varR);
409 
410   cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
411   cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
412 
413   cv::Mat imgR1 = roi_224_image - imgMean;
414   cv::Mat imgR2 = imgR1 / imgVar;
415   return imgR2;
416 }
417 
418 TEST_F(MindDataImageProcess, test1C) {
419   std::string filename = "data/dataset/apple.jpg";
420   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
421   cv::Mat cv_image = cv1CImageProcess(image);
422 
423   // convert to RGBA for Android bitmap(rgba)
424   cv::Mat rgba_mat;
425   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
426 
427   LiteMat lite_mat_bgr;
428   bool ret =
429     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
430   ASSERT_TRUE(ret == true);
431   LiteMat lite_norm_mat_cut;
432   Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
433   cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
434   CompareMat(cv_image, lite_norm_mat_cut);
435 }
436 
437 TEST_F(MindDataImageProcess, TestPadd) {
438   std::string filename = "data/dataset/apple.jpg";
439   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
440 
441   int left = 10;
442   int right = 20;
443   int top = 30;
444   int bottom = 40;
445   cv::Mat b_image;
446   cv::Scalar color = cv::Scalar(255, 255, 255);
447   cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
448   cv::Mat rgba_mat;
449   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
450 
451   LiteMat lite_mat_bgr;
452   bool ret =
453     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
454   ASSERT_TRUE(ret == true);
455   LiteMat makeborder;
456   ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
457   ASSERT_TRUE(ret == true);
458   size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
459   double distance = 0.0f;
460   for (size_t i = 0; i < total_size; i++) {
461     distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
462   }
463   distance = sqrt(distance / total_size);
464   EXPECT_EQ(distance, 0.0f);
465 }
466 
467 TEST_F(MindDataImageProcess, TestPadZero) {
468   std::string filename = "data/dataset/apple.jpg";
469   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
470 
471   int left = 0;
472   int right = 0;
473   int top = 0;
474   int bottom = 0;
475   cv::Mat b_image;
476   cv::Scalar color = cv::Scalar(255, 255, 255);
477   cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
478   cv::Mat rgba_mat;
479   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
480 
481   LiteMat lite_mat_bgr;
482   bool ret =
483     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
484   ASSERT_TRUE(ret == true);
485   LiteMat makeborder;
486   ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
487   ASSERT_TRUE(ret == true);
488   size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
489   double distance = 0.0f;
490   for (size_t i = 0; i < total_size; i++) {
491     distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
492   }
493   distance = sqrt(distance / total_size);
494   EXPECT_EQ(distance, 0.0f);
495 }
496 
497 TEST_F(MindDataImageProcess, TestPadReplicate) {
498   std::string filename = "data/dataset/apple.jpg";
499   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
500 
501   int left = 20;
502   int right = 20;
503   int top = 20;
504   int bottom = 20;
505   cv::Mat b_image;
506   cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REPLICATE);
507 
508   cv::Mat rgba_mat;
509   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
510   LiteMat lite_mat_bgr;
511   bool ret =
512     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
513   ASSERT_TRUE(ret == true);
514 
515   LiteMat makeborder;
516   ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REPLICATE);
517   ASSERT_TRUE(ret == true);
518 
519   size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
520   double distance = 0.0f;
521   for (size_t i = 0; i < total_size; i++) {
522     distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
523   }
524   distance = sqrt(distance / total_size);
525   EXPECT_EQ(distance, 0.0f);
526 }
527 
528 TEST_F(MindDataImageProcess, TestPadReflect101) {
529   std::string filename = "data/dataset/apple.jpg";
530   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
531 
532   int left = 20;
533   int right = 20;
534   int top = 20;
535   int bottom = 20;
536   cv::Mat b_image;
537   cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REFLECT_101);
538 
539   cv::Mat rgba_mat;
540   cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
541   LiteMat lite_mat_bgr;
542   bool ret =
543     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
544   ASSERT_TRUE(ret == true);
545 
546   LiteMat makeborder;
547   ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REFLECT_101);
548   ASSERT_TRUE(ret == true);
549 
550   size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
551   double distance = 0.0f;
552   for (size_t i = 0; i < total_size; i++) {
553     distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
554   }
555   distance = sqrt(distance / total_size);
556   EXPECT_EQ(distance, 0.0f);
557 }
558 
559 TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
560   std::string benchmark = "data/dataset/testLite/default_boxes.bin";
561   BoxesConfig config;
562   config.img_shape = {300, 300};
563   config.num_default = {3, 6, 6, 6, 6, 6};
564   config.feature_size = {19, 10, 5, 3, 2, 1};
565   config.min_scale = 0.2;
566   config.max_scale = 0.95;
567   config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
568   config.steps = {16, 32, 64, 100, 150, 300};
569   config.prior_scaling = {0.1, 0.2};
570 
571   int rows = 1917;
572   int cols = 4;
573   std::vector<double> benchmark_boxes(rows * cols);
574   std::ifstream in(benchmark, std::ios::in | std::ios::binary);
575   in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
576   in.close();
577 
578   std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
579   EXPECT_EQ(default_boxes.size(), rows);
580   EXPECT_EQ(default_boxes[0].size(), cols);
581 
582   double distance = 0.0f;
583   for (int i = 0; i < rows; i++) {
584     for (int j = 0; j < cols; j++) {
585       distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
586     }
587   }
588   distance = sqrt(distance);
589   EXPECT_LT(distance, 1e-5);
590 }
591 
592 TEST_F(MindDataImageProcess, TestApplyNms) {
593   std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
594   std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
595   std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
596   ASSERT_TRUE(keep[0] == 3);
597   ASSERT_TRUE(keep[1] == 0);
598   ASSERT_TRUE(keep[2] == 1);
599 }
600 
601 TEST_F(MindDataImageProcess, TestAffineInput) {
602   LiteMat src(3, 3);
603   LiteMat dst;
604   double M[6] = {1};
605   EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0)));
606   EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0)));
607   EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0)));
608 }
609 
610 TEST_F(MindDataImageProcess, TestAffine) {
611   // The input matrix
612   // 0 0 1 0 0
613   // 0 0 1 0 0
614   // 2 2 3 2 2
615   // 0 0 1 0 0
616   // 0 0 1 0 0
617   size_t rows = 5;
618   size_t cols = 5;
619   LiteMat src(rows, cols);
620   for (size_t i = 0; i < rows; i++) {
621     for (size_t j = 0; j < cols; j++) {
622       if (i == 2 && j == 2) {
623         static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
624       } else if (i == 2) {
625         static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
626       } else if (j == 2) {
627         static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
628       } else {
629         static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
630       }
631     }
632   }
633 
634   // Expect output matrix
635   // 0 0 2 0 0
636   // 0 0 2 0 0
637   // 1 1 3 1 1
638   // 0 0 2 0 0
639   // 0 0 2 0 0
640   LiteMat expect(rows, cols);
641   for (size_t i = 0; i < rows; i++) {
642     for (size_t j = 0; j < cols; j++) {
643       if (i == 2 && j == 2) {
644         static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
645       } else if (i == 2) {
646         static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
647       } else if (j == 2) {
648         static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
649       } else {
650         static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
651       }
652     }
653   }
654 
655   double angle = 90.0f;
656   cv::Point2f center(rows / 2, cols / 2);
657   cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
658   double M[6];
659   for (size_t i = 0; i < 6; i++) {
660     M[i] = rotate_matrix.at<double>(i);
661   }
662   LiteMat dst;
663   EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0)));
664 
665   for (size_t i = 0; i < rows; i++) {
666     for (size_t j = 0; j < cols; j++) {
667       EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
668                 static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
669     }
670   }
671 }
672 
673 TEST_F(MindDataImageProcess, TestSubtractUint8) {
674   const size_t cols = 4;
675   // Test uint8
676   LiteMat src1_uint8(1, cols);
677   LiteMat src2_uint8(1, cols);
678   LiteMat expect_uint8(1, cols);
679   for (size_t i = 0; i < cols; i++) {
680     static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 3;
681     static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 2;
682     static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 1;
683   }
684   LiteMat dst_uint8;
685   EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8));
686   for (size_t i = 0; i < cols; i++) {
687     EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
688               static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
689   }
690 }
691 
692 TEST_F(MindDataImageProcess, TestSubtractInt8) {
693   const size_t cols = 4;
694   // Test int8
695   LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
696   LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
697   LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
698   for (size_t i = 0; i < cols; i++) {
699     static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 2;
700     static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = 3;
701     static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -1;
702   }
703   LiteMat dst_int8;
704   EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8));
705   for (size_t i = 0; i < cols; i++) {
706     EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
707   }
708 }
709 
710 TEST_F(MindDataImageProcess, TestSubtractUInt16) {
711   const size_t cols = 4;
712   // Test uint16
713   LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
714   LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
715   LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
716   for (size_t i = 0; i < cols; i++) {
717     static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 2;
718     static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 3;
719     static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 0;
720   }
721   LiteMat dst_uint16;
722   EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16));
723   for (size_t i = 0; i < cols; i++) {
724     EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
725               static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
726   }
727 }
728 
729 TEST_F(MindDataImageProcess, TestSubtractInt16) {
730   const size_t cols = 4;
731   // Test int16
732   LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
733   LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
734   LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
735   for (size_t i = 0; i < cols; i++) {
736     static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 2;
737     static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = 3;
738     static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -1;
739   }
740   LiteMat dst_int16;
741   EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16));
742   for (size_t i = 0; i < cols; i++) {
743     EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
744               static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
745   }
746 }
747 
748 TEST_F(MindDataImageProcess, TestSubtractUInt32) {
749   const size_t cols = 4;
750   // Test uint16
751   LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
752   LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
753   LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
754   for (size_t i = 0; i < cols; i++) {
755     static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 2;
756     static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 3;
757     static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 0;
758   }
759   LiteMat dst_uint32;
760   EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32));
761   for (size_t i = 0; i < cols; i++) {
762     EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
763               static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
764   }
765 }
766 
767 TEST_F(MindDataImageProcess, TestSubtractInt32) {
768   const size_t cols = 4;
769   // Test int32
770   LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
771   LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
772   LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
773   for (size_t i = 0; i < cols; i++) {
774     static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2;
775     static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = 4;
776     static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -2;
777   }
778   LiteMat dst_int32;
779   EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32));
780   for (size_t i = 0; i < cols; i++) {
781     EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
782               static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
783   }
784 }
785 
786 TEST_F(MindDataImageProcess, TestSubtractFloat) {
787   const size_t cols = 4;
788   // Test float
789   LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
790   LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
791   LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
792   for (size_t i = 0; i < cols; i++) {
793     static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 3.4;
794     static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = 5.7;
795     static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -2.3;
796   }
797   LiteMat dst_float;
798   EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float));
799   for (size_t i = 0; i < cols; i++) {
800     EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
801                     static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
802   }
803 }
804 
805 TEST_F(MindDataImageProcess, TestDivideUint8) {
806   const size_t cols = 4;
807   // Test uint8
808   LiteMat src1_uint8(1, cols);
809   LiteMat src2_uint8(1, cols);
810   LiteMat expect_uint8(1, cols);
811   for (size_t i = 0; i < cols; i++) {
812     static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
813     static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
814     static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 2;
815   }
816   LiteMat dst_uint8;
817   EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8));
818   for (size_t i = 0; i < cols; i++) {
819     EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
820               static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
821   }
822 }
823 
824 TEST_F(MindDataImageProcess, TestDivideInt8) {
825   const size_t cols = 4;
826   // Test int8
827   LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
828   LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
829   LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
830   for (size_t i = 0; i < cols; i++) {
831     static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 8;
832     static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = -4;
833     static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -2;
834   }
835   LiteMat dst_int8;
836   EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8));
837   for (size_t i = 0; i < cols; i++) {
838     EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
839   }
840 }
841 
842 TEST_F(MindDataImageProcess, TestDivideUInt16) {
843   const size_t cols = 4;
844   // Test uint16
845   LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
846   LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
847   LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
848   for (size_t i = 0; i < cols; i++) {
849     static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 40000;
850     static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 20000;
851     static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 2;
852   }
853   LiteMat dst_uint16;
854   EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16));
855   for (size_t i = 0; i < cols; i++) {
856     EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
857               static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
858   }
859 }
860 
861 TEST_F(MindDataImageProcess, TestDivideInt16) {
862   const size_t cols = 4;
863   // Test int16
864   LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
865   LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
866   LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
867   for (size_t i = 0; i < cols; i++) {
868     static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 30000;
869     static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = -3;
870     static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -10000;
871   }
872   LiteMat dst_int16;
873   EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16));
874   for (size_t i = 0; i < cols; i++) {
875     EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
876               static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
877   }
878 }
879 
880 TEST_F(MindDataImageProcess, TestDivideUInt32) {
881   const size_t cols = 4;
882   // Test uint16
883   LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
884   LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
885   LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
886   for (size_t i = 0; i < cols; i++) {
887     static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 4000000000;
888     static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 4;
889     static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 1000000000;
890   }
891   LiteMat dst_uint32;
892   EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32));
893   for (size_t i = 0; i < cols; i++) {
894     EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
895               static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
896   }
897 }
898 
899 TEST_F(MindDataImageProcess, TestDivideInt32) {
900   const size_t cols = 4;
901   // Test int32
902   LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
903   LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
904   LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
905   for (size_t i = 0; i < cols; i++) {
906     static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2000000000;
907     static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = -2;
908     static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -1000000000;
909   }
910   LiteMat dst_int32;
911   EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32));
912   for (size_t i = 0; i < cols; i++) {
913     EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
914               static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
915   }
916 }
917 
918 TEST_F(MindDataImageProcess, TestDivideFloat) {
919   const size_t cols = 4;
920   // Test float
921   LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
922   LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
923   LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
924   for (size_t i = 0; i < cols; i++) {
925     static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 12.34f;
926     static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
927     static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -6.17f;
928   }
929   LiteMat dst_float;
930   EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float));
931   for (size_t i = 0; i < cols; i++) {
932     EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
933                     static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
934   }
935 }
936 
937 TEST_F(MindDataImageProcess, TestMultiplyUint8) {
938   const size_t cols = 4;
939   // Test uint8
940   LiteMat src1_uint8(1, cols);
941   LiteMat src2_uint8(1, cols);
942   LiteMat expect_uint8(1, cols);
943   for (size_t i = 0; i < cols; i++) {
944     static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
945     static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
946     static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 32;
947   }
948   LiteMat dst_uint8;
949   EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8));
950   for (size_t i = 0; i < cols; i++) {
951     EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
952               static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
953   }
954 }
955 
956 TEST_F(MindDataImageProcess, TestMultiplyUInt16) {
957   const size_t cols = 4;
958   // Test int16
959   LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16));
960   LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16));
961   LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16));
962   for (size_t i = 0; i < cols; i++) {
963     static_cast<UINT16_C1 *>(src1_int16.data_ptr_)[i] = 60000;
964     static_cast<UINT16_C1 *>(src2_int16.data_ptr_)[i] = 2;
965     static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i] = 65535;
966   }
967   LiteMat dst_int16;
968   EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16));
969   for (size_t i = 0; i < cols; i++) {
970     EXPECT_EQ(static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i].c1,
971               static_cast<UINT16_C1 *>(dst_int16.data_ptr_)[i].c1);
972   }
973 }
974 
975 TEST_F(MindDataImageProcess, TestMultiplyFloat) {
976   const size_t cols = 4;
977   // Test float
978   LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
979   LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
980   LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
981   for (size_t i = 0; i < cols; i++) {
982     static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 30.0f;
983     static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
984     static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -60.0f;
985   }
986   LiteMat dst_float;
987   EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float));
988   for (size_t i = 0; i < cols; i++) {
989     EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
990                     static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
991   }
992 }
993 
994 TEST_F(MindDataImageProcess, TestExtractChannel) {
995   LiteMat lite_single;
996   LiteMat lite_mat = LiteMat(1, 4, 3, LDataType::UINT16);
997 
998   EXPECT_FALSE(ExtractChannel(lite_mat, lite_single, 0));
999   EXPECT_TRUE(lite_single.IsEmpty());
1000 }
1001 TEST_F(MindDataImageProcess, testROI3C) {
1002   std::string filename = "data/dataset/apple.jpg";
1003   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1004 
1005   cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
1006 
1007   cv::imwrite("./cv_roi.jpg", cv_roi);
1008 
1009   bool ret = false;
1010   LiteMat lite_mat_bgr;
1011   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1012   EXPECT_TRUE(ret);
1013   LiteMat lite_roi;
1014 
1015   ret = lite_mat_bgr.GetROI(500, 500, 3000, 1500, lite_roi);
1016   EXPECT_TRUE(ret);
1017 
1018   LiteMat lite_roi_save(3000, 1500, lite_roi.channel_, LDataType::UINT8);
1019 
1020   for (size_t i = 0; i < lite_roi.height_; i++) {
1021     const unsigned char *ptr = lite_roi.ptr<unsigned char>(i);
1022     size_t image_size = lite_roi.width_ * lite_roi.channel_ * sizeof(unsigned char);
1023     unsigned char *dst_ptr = (unsigned char *)lite_roi_save.data_ptr_ + image_size * i;
1024     (void)memcpy(dst_ptr, ptr, image_size);
1025   }
1026 
1027   cv::Mat dst_imageR(lite_roi_save.height_, lite_roi_save.width_, CV_8UC3, lite_roi_save.data_ptr_);
1028   cv::imwrite("./lite_roi.jpg", dst_imageR);
1029 }
1030 
1031 TEST_F(MindDataImageProcess, testROI3CFalse) {
1032   std::string filename = "data/dataset/apple.jpg";
1033   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1034 
1035   cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
1036 
1037   cv::imwrite("./cv_roi.jpg", cv_roi);
1038 
1039   bool ret = false;
1040   LiteMat lite_mat_bgr;
1041   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1042   EXPECT_TRUE(ret);
1043   LiteMat lite_roi;
1044 
1045   ret = lite_mat_bgr.GetROI(500, 500, 1200, -100, lite_roi);
1046   EXPECT_FALSE(ret);
1047 }
1048 
1049 TEST_F(MindDataImageProcess, testROI1C) {
1050   std::string filename = "data/dataset/apple.jpg";
1051   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1052 
1053   cv::Mat gray_image;
1054   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1055   cv::Mat cv_roi_gray = cv::Mat(gray_image, cv::Rect(500, 500, 3000, 1500));
1056 
1057   cv::imwrite("./cv_roi_gray.jpg", cv_roi_gray);
1058 
1059   cv::Mat rgba_mat;
1060   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1061   bool ret = false;
1062   LiteMat lite_mat_gray;
1063   ret =
1064     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1065   EXPECT_TRUE(ret);
1066   LiteMat lite_roi_gray;
1067 
1068   ret = lite_mat_gray.GetROI(500, 500, 3000, 1500, lite_roi_gray);
1069   EXPECT_TRUE(ret);
1070 
1071   LiteMat lite_roi_gray_save(3000, 1500, lite_roi_gray.channel_, LDataType::UINT8);
1072 
1073   for (size_t i = 0; i < lite_roi_gray.height_; i++) {
1074     const unsigned char *ptr = lite_roi_gray.ptr<unsigned char>(i);
1075     size_t image_size = lite_roi_gray.width_ * lite_roi_gray.channel_ * sizeof(unsigned char);
1076     unsigned char *dst_ptr = (unsigned char *)lite_roi_gray_save.data_ptr_ + image_size * i;
1077     (void)memcpy(dst_ptr, ptr, image_size);
1078   }
1079 
1080   cv::Mat dst_imageR(lite_roi_gray_save.height_, lite_roi_gray_save.width_, CV_8UC1, lite_roi_gray_save.data_ptr_);
1081   cv::imwrite("./lite_roi.jpg", dst_imageR);
1082 }
1083 
1084 // warp
1085 TEST_F(MindDataImageProcess, testWarpAffineBGR) {
1086   std::string filename = "data/dataset/apple.jpg";
1087   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1088   cv::Point2f srcTri[3];
1089   cv::Point2f dstTri[3];
1090   srcTri[0] = cv::Point2f(0, 0);
1091   srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
1092   srcTri[2] = cv::Point2f(0, src_image.rows - 1);
1093 
1094   dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
1095   dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
1096   dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
1097 
1098   cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
1099   ;
1100   cv::Mat warp_dstImage;
1101   cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
1102   cv::imwrite("./warpAffine_cv_bgr.png", warp_dstImage);
1103 
1104   bool ret = false;
1105   LiteMat lite_mat_bgr;
1106   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1107   EXPECT_TRUE(ret);
1108   double *mat_ptr = warp_mat.ptr<double>(0);
1109   LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
1110 
1111   LiteMat lite_warp;
1112   std::vector<uint8_t> borderValues;
1113   borderValues.push_back(0);
1114   borderValues.push_back(0);
1115   borderValues.push_back(0);
1116   ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
1117                            PADD_BORDER_CONSTANT, borderValues);
1118   EXPECT_TRUE(ret);
1119 
1120   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
1121   cv::imwrite("./warpAffine_lite_bgr.png", dst_imageR);
1122 }
1123 
1124 TEST_F(MindDataImageProcess, testWarpAffineBGRScale) {
1125   std::string filename = "data/dataset/apple.jpg";
1126   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1127   cv::Point2f srcTri[3];
1128   cv::Point2f dstTri[3];
1129   srcTri[0] = cv::Point2f(10, 20);
1130   srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
1131   srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
1132 
1133   dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
1134   dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
1135   dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
1136 
1137   cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
1138   ;
1139   cv::Mat warp_dstImage;
1140   cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
1141   cv::imwrite("./warpAffine_cv_bgr_scale.png", warp_dstImage);
1142 
1143   bool ret = false;
1144   LiteMat lite_mat_bgr;
1145   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1146   EXPECT_TRUE(ret);
1147   double *mat_ptr = warp_mat.ptr<double>(0);
1148   LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
1149 
1150   LiteMat lite_warp;
1151   std::vector<uint8_t> borderValues;
1152   borderValues.push_back(0);
1153   borderValues.push_back(0);
1154   borderValues.push_back(0);
1155   ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
1156                            PADD_BORDER_CONSTANT, borderValues);
1157   EXPECT_TRUE(ret);
1158 
1159   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
1160   cv::imwrite("./warpAffine_lite_bgr_scale.png", dst_imageR);
1161 }
1162 
1163 TEST_F(MindDataImageProcess, testWarpAffineBGRResize) {
1164   std::string filename = "data/dataset/apple.jpg";
1165   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1166   cv::Point2f srcTri[3];
1167   cv::Point2f dstTri[3];
1168   srcTri[0] = cv::Point2f(10, 20);
1169   srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
1170   srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
1171 
1172   dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
1173   dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
1174   dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
1175 
1176   cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
1177   ;
1178   cv::Mat warp_dstImage;
1179   cv::warpAffine(src_image, warp_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
1180   cv::imwrite("./warpAffine_cv_bgr_resize.png", warp_dstImage);
1181 
1182   bool ret = false;
1183   LiteMat lite_mat_bgr;
1184   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1185   EXPECT_TRUE(ret);
1186   double *mat_ptr = warp_mat.ptr<double>(0);
1187   LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
1188 
1189   LiteMat lite_warp;
1190   std::vector<uint8_t> borderValues;
1191   borderValues.push_back(0);
1192   borderValues.push_back(0);
1193   borderValues.push_back(0);
1194   ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
1195                            PADD_BORDER_CONSTANT, borderValues);
1196   EXPECT_TRUE(ret);
1197 
1198   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
1199   cv::imwrite("./warpAffine_lite_bgr_resize.png", dst_imageR);
1200 }
1201 
1202 TEST_F(MindDataImageProcess, testWarpAffineGray) {
1203   std::string filename = "data/dataset/apple.jpg";
1204   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1205 
1206   cv::Mat gray_image;
1207   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1208 
1209   cv::Point2f srcTri[3];
1210   cv::Point2f dstTri[3];
1211   srcTri[0] = cv::Point2f(0, 0);
1212   srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
1213   srcTri[2] = cv::Point2f(0, src_image.rows - 1);
1214 
1215   dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
1216   dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
1217   dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
1218 
1219   cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
1220   ;
1221   cv::Mat warp_gray_dstImage;
1222   cv::warpAffine(gray_image, warp_gray_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
1223   cv::imwrite("./warpAffine_cv_gray.png", warp_gray_dstImage);
1224 
1225   cv::Mat rgba_mat;
1226   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1227   bool ret = false;
1228   LiteMat lite_mat_gray;
1229   ret =
1230     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1231   EXPECT_TRUE(ret);
1232   double *mat_ptr = warp_mat.ptr<double>(0);
1233   LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
1234 
1235   LiteMat lite_warp;
1236   std::vector<uint8_t> borderValues;
1237   borderValues.push_back(0);
1238   ret = WarpAffineBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300,
1239                            PADD_BORDER_CONSTANT, borderValues);
1240   EXPECT_TRUE(ret);
1241 
1242   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
1243   cv::imwrite("./warpAffine_lite_gray.png", dst_imageR);
1244 }
1245 
1246 TEST_F(MindDataImageProcess, testWarpPerspectiveBGRResize) {
1247   std::string filename = "data/dataset/apple.jpg";
1248   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1249   cv::Point2f srcQuad[4], dstQuad[4];
1250   srcQuad[0].x = 0;
1251   srcQuad[0].y = 0;
1252   srcQuad[1].x = src_image.cols - 1.;
1253   srcQuad[1].y = 0;
1254   srcQuad[2].x = 0;
1255   srcQuad[2].y = src_image.rows - 1;
1256   srcQuad[3].x = src_image.cols - 1;
1257   srcQuad[3].y = src_image.rows - 1;
1258 
1259   dstQuad[0].x = src_image.cols * 0.05;
1260   dstQuad[0].y = src_image.rows * 0.33;
1261   dstQuad[1].x = src_image.cols * 0.9;
1262   dstQuad[1].y = src_image.rows * 0.25;
1263   dstQuad[2].x = src_image.cols * 0.2;
1264   dstQuad[2].y = src_image.rows * 0.7;
1265   dstQuad[3].x = src_image.cols * 0.8;
1266   dstQuad[3].y = src_image.rows * 0.9;
1267 
1268   cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
1269   cv::Mat warp_dstImage;
1270   cv::warpPerspective(src_image, warp_dstImage, ptran, cv::Size(src_image.cols + 200, src_image.rows - 300));
1271   cv::imwrite("./warpPerspective_cv_bgr.png", warp_dstImage);
1272 
1273   bool ret = false;
1274   LiteMat lite_mat_bgr;
1275   ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
1276   EXPECT_TRUE(ret);
1277   double *mat_ptr = ptran.ptr<double>(0);
1278   LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
1279 
1280   LiteMat lite_warp;
1281   std::vector<uint8_t> borderValues;
1282   borderValues.push_back(0);
1283   borderValues.push_back(0);
1284   borderValues.push_back(0);
1285   ret = WarpPerspectiveBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
1286                                 PADD_BORDER_CONSTANT, borderValues);
1287   EXPECT_TRUE(ret);
1288 
1289   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
1290   cv::imwrite("./warpPerspective_lite_bgr.png", dst_imageR);
1291 }
1292 
1293 TEST_F(MindDataImageProcess, testWarpPerspectiveGrayResize) {
1294   std::string filename = "data/dataset/apple.jpg";
1295   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1296 
1297   cv::Mat gray_image;
1298   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1299 
1300   cv::Point2f srcQuad[4], dstQuad[4];
1301   srcQuad[0].x = 0;
1302   srcQuad[0].y = 0;
1303   srcQuad[1].x = src_image.cols - 1.;
1304   srcQuad[1].y = 0;
1305   srcQuad[2].x = 0;
1306   srcQuad[2].y = src_image.rows - 1;
1307   srcQuad[3].x = src_image.cols - 1;
1308   srcQuad[3].y = src_image.rows - 1;
1309 
1310   dstQuad[0].x = src_image.cols * 0.05;
1311   dstQuad[0].y = src_image.rows * 0.33;
1312   dstQuad[1].x = src_image.cols * 0.9;
1313   dstQuad[1].y = src_image.rows * 0.25;
1314   dstQuad[2].x = src_image.cols * 0.2;
1315   dstQuad[2].y = src_image.rows * 0.7;
1316   dstQuad[3].x = src_image.cols * 0.8;
1317   dstQuad[3].y = src_image.rows * 0.9;
1318 
1319   cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
1320   cv::Mat warp_dstImage;
1321   cv::warpPerspective(gray_image, warp_dstImage, ptran, cv::Size(gray_image.cols + 200, gray_image.rows - 300));
1322   cv::imwrite("./warpPerspective_cv_gray.png", warp_dstImage);
1323 
1324   cv::Mat rgba_mat;
1325   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1326   bool ret = false;
1327   LiteMat lite_mat_gray;
1328   ret =
1329     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1330   EXPECT_TRUE(ret);
1331   double *mat_ptr = ptran.ptr<double>(0);
1332   LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
1333 
1334   LiteMat lite_warp;
1335   std::vector<uint8_t> borderValues;
1336   borderValues.push_back(0);
1337   ret = WarpPerspectiveBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200,
1338                                 lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues);
1339   EXPECT_TRUE(ret);
1340 
1341   cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
1342   cv::imwrite("./warpPerspective_lite_gray.png", dst_imageR);
1343 }
1344 
1345 TEST_F(MindDataImageProcess, testGetRotationMatrix2D) {
1346   std::vector<std::vector<double>> expect_matrix = {{0.250000, 0.433013, -0.116025}, {-0.433013, 0.250000, 1.933013}};
1347 
1348   double angle = 60.0;
1349   double scale = 0.5;
1350 
1351   LiteMat M;
1352   bool ret = false;
1353   ret = GetRotationMatrix2D(1.0f, 2.0f, angle, scale, M);
1354   EXPECT_TRUE(ret);
1355   AccuracyComparison(expect_matrix, M);
1356 }
1357 
1358 TEST_F(MindDataImageProcess, testGetPerspectiveTransform) {
1359   std::vector<std::vector<double>> expect_matrix = {
1360     {1.272113, 3.665216, -788.484287}, {-0.394146, 3.228247, -134.009780}, {-0.001460, 0.006414, 1}};
1361 
1362   std::vector<Point> src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)};
1363   std::vector<Point> dst = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)};
1364 
1365   LiteMat M;
1366   bool ret = false;
1367   ret = GetPerspectiveTransform(src, dst, M);
1368   EXPECT_TRUE(ret);
1369   AccuracyComparison(expect_matrix, M);
1370 }
1371 
1372 TEST_F(MindDataImageProcess, testGetPerspectiveTransformFail) {
1373   std::vector<Point> src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)};
1374   std::vector<Point> dst = {Point(100, 100), Point(500, 30)};
1375 
1376   LiteMat M;
1377   bool ret = GetPerspectiveTransform(src, dst, M);
1378   EXPECT_FALSE(ret);
1379 
1380   std::vector<Point> src1 = {Point(360, 125), Point(615, 125)};
1381   std::vector<Point> dst2 = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)};
1382 
1383   LiteMat M1;
1384   bool ret1 = GetPerspectiveTransform(src, dst, M1);
1385   EXPECT_FALSE(ret1);
1386 }
1387 
1388 TEST_F(MindDataImageProcess, testGetAffineTransform) {
1389   std::vector<std::vector<double>> expect_matrix = {{0.400000, 0.066667, 16.666667}, {0.000000, 0.333333, 23.333333}};
1390 
1391   std::vector<Point> src = {Point(50, 50), Point(200, 50), Point(50, 200)};
1392   std::vector<Point> dst = {Point(40, 40), Point(100, 40), Point(50, 90)};
1393 
1394   LiteMat M;
1395   bool ret = false;
1396   ret = GetAffineTransform(src, dst, M);
1397   EXPECT_TRUE(ret);
1398   AccuracyComparison(expect_matrix, M);
1399 }
1400 
1401 TEST_F(MindDataImageProcess, testGetAffineTransformFail) {
1402   std::vector<Point> src = {Point(50, 50), Point(200, 50)};
1403   std::vector<Point> dst = {Point(40, 40), Point(100, 40), Point(50, 90)};
1404 
1405   LiteMat M;
1406   bool ret = GetAffineTransform(src, dst, M);
1407   EXPECT_FALSE(ret);
1408 
1409   std::vector<Point> src1 = {Point(50, 50), Point(200, 50), Point(50, 200)};
1410   std::vector<Point> dst1 = {Point(40, 40), Point(100, 40)};
1411 
1412   LiteMat M1;
1413   bool ret1 = GetAffineTransform(src1, dst1, M1);
1414   EXPECT_FALSE(ret1);
1415 }
1416 
1417 TEST_F(MindDataImageProcess, TestConv2D8U) {
1418   LiteMat lite_mat_src;
1419   lite_mat_src.Init(3, 3, 1, LDataType::UINT8);
1420   uint8_t *src_ptr = lite_mat_src;
1421   for (int i = 0; i < 9; i++) {
1422     src_ptr[i] = i % 3;
1423   }
1424   LiteMat kernel;
1425   kernel.Init(3, 3, 1, LDataType::FLOAT32);
1426   float *kernel_ptr = kernel;
1427   for (int i = 0; i < 9; i++) {
1428     kernel_ptr[i] = i % 2;
1429   }
1430   LiteMat lite_mat_dst;
1431   bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::UINT8);
1432   ASSERT_TRUE(ret == true);
1433 
1434   std::vector<uint8_t> expected_result = {2, 4, 6, 2, 4, 6, 2, 4, 6};
1435 
1436   size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1437   float distance = 0.0f;
1438   for (size_t i = 0; i < total_size; i++) {
1439     distance += pow(((uint8_t *)lite_mat_dst)[i] - expected_result[i], 2);
1440   }
1441   distance = sqrt(distance / total_size);
1442   EXPECT_EQ(distance, 0.0f);
1443 }
1444 
1445 TEST_F(MindDataImageProcess, TestConv2D32F) {
1446   LiteMat lite_mat_src;
1447   lite_mat_src.Init(2, 2, 1, LDataType::FLOAT32);
1448   float *src_ptr = lite_mat_src;
1449   for (int i = 0; i < 4; i++) {
1450     src_ptr[i] = static_cast<float>(i) / 2;
1451   }
1452   LiteMat kernel;
1453   kernel.Init(2, 2, 1, LDataType::FLOAT32);
1454   float *kernel_ptr = kernel;
1455   for (int i = 0; i < 4; i++) {
1456     kernel_ptr[i] = static_cast<float>(i);
1457   }
1458   LiteMat lite_mat_dst;
1459   bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::FLOAT32);
1460   ASSERT_TRUE(ret == true);
1461 
1462   std::vector<float> expected_result = {2.f, 3.f, 6.f, 7.f};
1463 
1464   size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1465   float distance = 0.0f;
1466   for (size_t i = 0; i < total_size; i++) {
1467     distance += pow(((float *)lite_mat_dst)[i] - expected_result[i], 2);
1468   }
1469   distance = sqrt(distance / total_size);
1470   EXPECT_EQ(distance, 0.0f);
1471 }
1472 
1473 TEST_F(MindDataImageProcess, TestGaussianBlurSize35) {
1474   std::string filename = "data/dataset/apple.jpg";
1475   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1476 
1477   cv::Mat dst_image;
1478   cv::GaussianBlur(src_image, dst_image, cv::Size(3, 5), 3, 3);
1479 
1480   cv::Mat rgba_mat;
1481   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1482 
1483   LiteMat lite_mat_bgr;
1484   bool ret =
1485     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
1486   ASSERT_TRUE(ret == true);
1487 
1488   LiteMat lite_mat_dst;
1489   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 5}, 3, 3);
1490   ASSERT_TRUE(ret == true);
1491 
1492   size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1493   double distance = 0.0f;
1494   for (size_t i = 0; i < total_size; i++) {
1495     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1496   }
1497   distance = sqrt(distance / total_size);
1498   EXPECT_LE(distance, 1.0f);
1499 }
1500 
1501 TEST_F(MindDataImageProcess, TestGaussianBlurSize13) {
1502   std::string filename = "data/dataset/apple.jpg";
1503   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1504 
1505   cv::Mat dst_image;
1506   cv::GaussianBlur(src_image, dst_image, cv::Size(1, 3), 3);
1507 
1508   cv::Mat rgba_mat;
1509   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1510 
1511   LiteMat lite_mat_bgr;
1512   bool ret =
1513     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
1514   ASSERT_TRUE(ret == true);
1515 
1516   LiteMat lite_mat_dst;
1517   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {1, 3}, 3);
1518   ASSERT_TRUE(ret == true);
1519 
1520   size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1521   double distance = 0.0f;
1522   for (size_t i = 0; i < total_size; i++) {
1523     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1524   }
1525   distance = sqrt(distance / total_size);
1526   EXPECT_LE(distance, 1.0f);
1527 }
1528 
1529 TEST_F(MindDataImageProcess, TestGaussianBlurInvalidParams) {
1530   std::string filename = "data/dataset/apple.jpg";
1531   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1532   cv::Mat rgba_mat;
1533   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1534 
1535   LiteMat lite_mat_bgr;
1536   bool ret =
1537     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
1538   ASSERT_TRUE(ret == true);
1539 
1540   LiteMat lite_mat_dst;
1541 
1542   // even size
1543   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4}, 3);
1544   ASSERT_TRUE(ret == false);
1545 
1546   // ksize.size() != 2
1547   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4, 5}, 3);
1548   ASSERT_TRUE(ret == false);
1549 
1550   // size less or equal to 0
1551   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {0, 3}, 3);
1552   ASSERT_TRUE(ret == false);
1553 
1554   // sigmaX less or equal to 0
1555   ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 3}, 0);
1556   ASSERT_TRUE(ret == false);
1557 }
1558 
1559 TEST_F(MindDataImageProcess, TestCannySize3) {
1560   std::string filename = "data/dataset/apple.jpg";
1561   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1562   cv::Mat gray_image;
1563   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1564   cv::Mat dst_image;
1565   cv::Canny(gray_image, dst_image, 100, 200, 3);
1566 
1567   cv::Mat rgba_mat;
1568   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1569   bool ret = false;
1570   LiteMat lite_mat_gray;
1571   ret =
1572     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1573   ASSERT_TRUE(ret == true);
1574 
1575   LiteMat lite_mat_dst;
1576   ret = Canny(lite_mat_gray, lite_mat_dst, 100, 200, 3);
1577   ASSERT_TRUE(ret == true);
1578 
1579   int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1580   double distance = 0.0f;
1581   for (int i = 0; i < total_size; i++) {
1582     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1583   }
1584   distance = sqrt(distance / total_size);
1585   EXPECT_EQ(distance, 0.0f);
1586 }
1587 
1588 TEST_F(MindDataImageProcess, TestCannySize5) {
1589   std::string filename = "data/dataset/apple.jpg";
1590   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1591   cv::Mat gray_image;
1592   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1593   cv::Mat dst_image;
1594   cv::Canny(gray_image, dst_image, 200, 300, 5);
1595 
1596   cv::Mat rgba_mat;
1597   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1598   bool ret = false;
1599   LiteMat lite_mat_gray;
1600   ret =
1601     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1602   ASSERT_TRUE(ret == true);
1603 
1604   LiteMat lite_mat_dst;
1605   ret = Canny(lite_mat_gray, lite_mat_dst, 200, 300, 5);
1606   ASSERT_TRUE(ret == true);
1607 
1608   int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1609   double distance = 0.0f;
1610   for (int i = 0; i < total_size; i++) {
1611     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1612   }
1613   distance = sqrt(distance / total_size);
1614   EXPECT_EQ(distance, 0.0f);
1615 }
1616 
1617 TEST_F(MindDataImageProcess, TestCannySize7) {
1618   std::string filename = "data/dataset/apple.jpg";
1619   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1620   cv::Mat gray_image;
1621   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1622   cv::Mat dst_image;
1623   cv::Canny(gray_image, dst_image, 110, 220, 7);
1624 
1625   cv::Mat rgba_mat;
1626   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1627   bool ret = false;
1628   LiteMat lite_mat_gray;
1629   ret =
1630     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1631   ASSERT_TRUE(ret == true);
1632 
1633   LiteMat lite_mat_dst;
1634   ret = Canny(lite_mat_gray, lite_mat_dst, 110, 220, 7);
1635   ASSERT_TRUE(ret == true);
1636 
1637   int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1638   double distance = 0.0f;
1639   for (int i = 0; i < total_size; i++) {
1640     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1641   }
1642   distance = sqrt(distance / total_size);
1643   EXPECT_EQ(distance, 0.0f);
1644 }
1645 
1646 TEST_F(MindDataImageProcess, TestCannyL2) {
1647   std::string filename = "data/dataset/apple.jpg";
1648   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1649   cv::Mat gray_image;
1650   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1651   cv::Mat dst_image;
1652   cv::Canny(gray_image, dst_image, 50, 150, 3, true);
1653 
1654   cv::Mat rgba_mat;
1655   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1656   bool ret = false;
1657   LiteMat lite_mat_gray;
1658   ret =
1659     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1660   ASSERT_TRUE(ret == true);
1661 
1662   LiteMat lite_mat_dst;
1663   ret = Canny(lite_mat_gray, lite_mat_dst, 50, 150, 3, true);
1664   ASSERT_TRUE(ret == true);
1665 
1666   int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
1667   double distance = 0.0f;
1668   for (int i = 0; i < total_size; i++) {
1669     distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
1670   }
1671 
1672   distance = sqrt(distance / total_size);
1673   EXPECT_EQ(distance, 0.0f);
1674 }
1675 
1676 TEST_F(MindDataImageProcess, TestCannyInvalidParams) {
1677   std::string filename = "data/dataset/apple.jpg";
1678   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1679 
1680   cv::Mat rgba_mat;
1681   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1682 
1683   bool ret = false;
1684   LiteMat lite_mat_bgr;
1685   ret =
1686     InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
1687   ASSERT_TRUE(ret == true);
1688 
1689   // channel is not 1
1690   LiteMat lite_mat_dst;
1691   ret = Canny(lite_mat_bgr, lite_mat_dst, 70, 210, 3);
1692   ASSERT_TRUE(ret == false);
1693 
1694   LiteMat lite_mat_gray;
1695   ret =
1696     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1697   ASSERT_TRUE(ret == true);
1698 
1699   // low_thresh less than 0
1700   ret = Canny(lite_mat_gray, lite_mat_dst, -5, 230, 3);
1701   ASSERT_TRUE(ret == false);
1702 
1703   // high_thresh less than low_thresh
1704   ret = Canny(lite_mat_gray, lite_mat_dst, 250, 130, 3);
1705   ASSERT_TRUE(ret == false);
1706 
1707   // even size
1708   ret = Canny(lite_mat_gray, lite_mat_dst, 60, 180, 4);
1709   ASSERT_TRUE(ret == false);
1710 
1711   // size less than 3 or large than 7
1712   ret = Canny(lite_mat_gray, lite_mat_dst, 10, 190, 9);
1713   ASSERT_TRUE(ret == false);
1714 }
1715 
1716 TEST_F(MindDataImageProcess, TestSobel) {
1717   std::string filename = "data/dataset/apple.jpg";
1718   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1719   cv::Mat gray_image;
1720   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1721 
1722   cv::Mat sobel_image_x;
1723   cv::Mat sobel_image_y;
1724   cv::Sobel(gray_image, sobel_image_x, CV_32F, 1, 0, 3, 1, 0, cv::BORDER_REPLICATE);
1725   cv::Sobel(gray_image, sobel_image_y, CV_32F, 0, 1, 3, 1, 0, cv::BORDER_REPLICATE);
1726 
1727   cv::Mat sobel_cv_x, sobel_cv_y;
1728   sobel_image_x.convertTo(sobel_cv_x, CV_8UC1);
1729   sobel_image_y.convertTo(sobel_cv_y, CV_8UC1);
1730 
1731   cv::Mat rgba_mat;
1732   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1733   bool ret = false;
1734   LiteMat lite_mat_gray;
1735   ret =
1736     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1737   ASSERT_TRUE(ret == true);
1738   LiteMat lite_mat_x;
1739   LiteMat lite_mat_y;
1740   Sobel(lite_mat_gray, lite_mat_x, 1, 0, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE);
1741   Sobel(lite_mat_gray, lite_mat_y, 0, 1, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE);
1742   ASSERT_TRUE(ret == true);
1743 
1744   cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_);
1745   cv::Mat dst_imageY(lite_mat_y.height_, lite_mat_y.width_, CV_32FC1, lite_mat_y.data_ptr_);
1746   cv::Mat sobel_ms_x, sobel_ms_y;
1747   dst_imageX.convertTo(sobel_ms_x, CV_8UC1);
1748   dst_imageY.convertTo(sobel_ms_y, CV_8UC1);
1749 
1750   size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_;
1751   float distance_x = 0.0f, distance_y = 0.0f;
1752   for (int i = 0; i < total_size; i++) {
1753     distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2);
1754     distance_y += pow((uint8_t)sobel_cv_y.data[i] - (uint8_t)sobel_ms_y.data[i], 2);
1755   }
1756   distance_x = sqrt(distance_x / total_size);
1757   distance_y = sqrt(distance_y / total_size);
1758   EXPECT_EQ(distance_x, 0.0f);
1759   EXPECT_EQ(distance_y, 0.0f);
1760 }
1761 
1762 TEST_F(MindDataImageProcess, TestSobelFlag) {
1763   std::string filename = "data/dataset/apple.jpg";
1764   cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1765   cv::Mat gray_image;
1766   cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
1767 
1768   cv::Mat sobel_image_x;
1769   cv::Sobel(gray_image, sobel_image_x, CV_32F, 3, 1, 5, 1, 0, cv::BORDER_REPLICATE);
1770 
1771   cv::Mat sobel_cv_x;
1772   sobel_image_x.convertTo(sobel_cv_x, CV_8UC1);
1773 
1774   cv::Mat rgba_mat;
1775   cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
1776   bool ret = false;
1777   LiteMat lite_mat_gray;
1778   ret =
1779     InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
1780   ASSERT_TRUE(ret == true);
1781   LiteMat lite_mat_x;
1782   Sobel(lite_mat_gray, lite_mat_x, 3, 1, 5, 1, PaddBorderType::PADD_BORDER_REPLICATE);
1783   ASSERT_TRUE(ret == true);
1784 
1785   cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_);
1786   cv::Mat sobel_ms_x;
1787   dst_imageX.convertTo(sobel_ms_x, CV_8UC1);
1788 
1789   size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_;
1790   float distance_x = 0.0f;
1791   for (int i = 0; i < total_size; i++) {
1792     distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2);
1793   }
1794   distance_x = sqrt(distance_x / total_size);
1795   EXPECT_EQ(distance_x, 0.0f);
1796 }
1797 
1798 TEST_F(MindDataImageProcess, testConvertRgbToBgr) {
1799   std::string filename = "data/dataset/apple.jpg";
1800   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1801   cv::Mat rgb_mat1;
1802 
1803   cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
1804 
1805   LiteMat lite_mat_rgb;
1806   lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1807   LiteMat lite_mat_bgr;
1808   bool ret = ConvertRgbToBgr(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_bgr);
1809   ASSERT_TRUE(ret == true);
1810 
1811   cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC1, lite_mat_bgr.data_ptr_);
1812   cv::imwrite("./mindspore_image.jpg", dst_image);
1813   CompareMat(image, lite_mat_bgr);
1814 }
1815 
1816 TEST_F(MindDataImageProcess, testConvertRgbToBgrFail) {
1817   std::string filename = "data/dataset/apple.jpg";
1818   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1819   cv::Mat rgb_mat1;
1820 
1821   cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
1822 
1823   // The width and height of the output image is different from the original image.
1824   LiteMat lite_mat_rgb;
1825   lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1826   LiteMat lite_mat_bgr;
1827   bool ret = ConvertRgbToBgr(lite_mat_rgb, LDataType::UINT8, 1000, 1000, lite_mat_bgr);
1828   ASSERT_TRUE(ret == false);
1829 
1830   // The input lite_mat_rgb object is null.
1831   LiteMat lite_mat_rgb1;
1832   LiteMat lite_mat_bgr1;
1833   bool ret1 = ConvertRgbToBgr(lite_mat_rgb1, LDataType::UINT8, image.cols, image.rows, lite_mat_bgr1);
1834   ASSERT_TRUE(ret1 == false);
1835 }
1836 
1837 TEST_F(MindDataImageProcess, testConvertRgbToGray) {
1838   std::string filename = "data/dataset/apple.jpg";
1839   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1840   cv::Mat rgb_mat;
1841   cv::Mat rgb_mat1;
1842 
1843   cv::cvtColor(image, rgb_mat, CV_BGR2GRAY);
1844   cv::imwrite("./opencv_image.jpg", rgb_mat);
1845 
1846   cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
1847 
1848   LiteMat lite_mat_rgb;
1849   lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1850   LiteMat lite_mat_gray;
1851   bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_gray);
1852   ASSERT_TRUE(ret == true);
1853 
1854   cv::Mat dst_image(lite_mat_gray.height_, lite_mat_gray.width_, CV_8UC1, lite_mat_gray.data_ptr_);
1855   cv::imwrite("./mindspore_image.jpg", dst_image);
1856   CompareMat(rgb_mat, lite_mat_gray);
1857 }
1858 
1859 TEST_F(MindDataImageProcess, testConvertRgbToGrayFail) {
1860   std::string filename = "data/dataset/apple.jpg";
1861   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1862   cv::Mat rgb_mat;
1863   cv::Mat rgb_mat1;
1864 
1865   cv::cvtColor(image, rgb_mat, CV_BGR2GRAY);
1866   cv::imwrite("./opencv_image.jpg", rgb_mat);
1867 
1868   cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
1869 
1870   // The width and height of the output image is different from the original image.
1871   LiteMat lite_mat_rgb;
1872   lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1873   LiteMat lite_mat_gray;
1874   bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, 1000, 1000, lite_mat_gray);
1875   ASSERT_TRUE(ret == false);
1876 
1877   // The input lite_mat_rgb object is null.
1878   LiteMat lite_mat_rgb1;
1879   LiteMat lite_mat_gray1;
1880   bool ret1 = ConvertRgbToGray(lite_mat_rgb1, LDataType::UINT8, image.cols, image.rows, lite_mat_gray1);
1881   ASSERT_TRUE(ret1 == false);
1882 
1883   // The channel of output image object is not 1.
1884   LiteMat lite_mat_rgb2;
1885   lite_mat_rgb2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1886   LiteMat lite_mat_gray2;
1887   lite_mat_gray2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
1888   bool ret2 = ConvertRgbToGray(lite_mat_rgb2, LDataType::UINT8, image.cols, image.rows, lite_mat_gray2);
1889   ASSERT_TRUE(ret2 == false);
1890 }
1891 
1892 TEST_F(MindDataImageProcess, testResizePreserveARWithFillerv) {
1893   std::string filename = "data/dataset/apple.jpg";
1894   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1895 
1896   LiteMat lite_mat_rgb;
1897   lite_mat_rgb.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
1898   LiteMat lite_mat_resize;
1899   float ratioShiftWShiftH[3] = {0};
1900   float invM[2][3] = {{0, 0, 0}, {0, 0, 0}};
1901   int h = 1000;
1902   int w = 1000;
1903   bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0);
1904   ASSERT_TRUE(ret == true);
1905   cv::Mat dst_image(lite_mat_resize.height_, lite_mat_resize.width_, CV_32FC3, lite_mat_resize.data_ptr_);
1906   cv::imwrite("./mindspore_image.jpg", dst_image);
1907 }
1908 
1909 TEST_F(MindDataImageProcess, testResizePreserveARWithFillervFail) {
1910   std::string filename = "data/dataset/apple.jpg";
1911   cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
1912 
1913   // The input lite_mat_rgb object is null.
1914   LiteMat lite_mat_rgb;
1915   LiteMat lite_mat_resize;
1916   float ratioShiftWShiftH[3] = {0};
1917   float invM[2][3] = {{0, 0, 0}, {0, 0, 0}};
1918   int h = 1000;
1919   int w = 1000;
1920   bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0);
1921   ASSERT_TRUE(ret == false);
1922 
1923   // The channel of input lite_mat_rgb object is not 3.
1924   LiteMat lite_mat_rgb1;
1925   lite_mat_rgb1.Init(image.cols, image.rows, 1, image.data, LDataType::UINT8);
1926   LiteMat lite_mat_resize1;
1927   float ratioShiftWShiftH1[3] = {0};
1928   float invM1[2][3] = {{0, 0, 0}, {0, 0, 0}};
1929   int h1 = 1000;
1930   int w1 = 1000;
1931   bool ret1 = ResizePreserveARWithFiller(lite_mat_rgb1, lite_mat_resize1, h1, w1, &ratioShiftWShiftH1, &invM1, 0);
1932   ASSERT_TRUE(ret1 == false);
1933 
1934   // The ratioShiftWShiftH2 and invM2 is null.
1935   LiteMat lite_mat_rgb2;
1936   lite_mat_rgb2.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
1937   LiteMat lite_mat_resize2;
1938   int h2 = 1000;
1939   int w2 = 1000;
1940   bool ret2 = ResizePreserveARWithFiller(lite_mat_rgb2, lite_mat_resize2, h2, w2, nullptr, nullptr, 0);
1941   ASSERT_TRUE(ret2 == false);
1942 
1943   // The width and height of the output image is less than or equal to 0.
1944   LiteMat lite_mat_rgb3;
1945   lite_mat_rgb3.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
1946   LiteMat lite_mat_resize3;
1947   float ratioShiftWShiftH3[3] = {0};
1948   float invM3[2][3] = {{0, 0, 0}, {0, 0, 0}};
1949   int h3 = -1000;
1950   int w3 = 1000;
1951   bool ret3 = ResizePreserveARWithFiller(lite_mat_rgb3, lite_mat_resize3, h3, w3, &ratioShiftWShiftH3, &invM3, 0);
1952   ASSERT_TRUE(ret3 == false);
1953 }
1954