• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2007.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
7 #include <boost/math/concepts/real_concept.hpp>
8 #define BOOST_TEST_MAIN
9 #include <boost/test/unit_test.hpp>
10 #include <boost/test/tools/floating_point_comparison.hpp>
11 #include <boost/math/distributions/non_central_t.hpp>
12 #include <boost/type_traits/is_floating_point.hpp>
13 #include <boost/array.hpp>
14 #include "functor.hpp"
15 #include "test_out_of_range.hpp"
16 
17 #include "handle_test_result.hpp"
18 #include "table_type.hpp"
19 
20 #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
21       {\
22       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
23       BOOST_CHECK_CLOSE(a, b, prec); \
24       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
25             {\
26          std::cerr << "Failure was at row " << i << std::endl;\
27          std::cerr << std::setprecision(35); \
28          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
29          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
30             }\
31       }
32 
33 #define BOOST_CHECK_EX(a, i) \
34       {\
35       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
36       BOOST_CHECK(a); \
37       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
38             {\
39          std::cerr << "Failure was at row " << i << std::endl;\
40          std::cerr << std::setprecision(35); \
41          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
42          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
43             }\
44       }
45 
46 template <class RealType>
naive_pdf(RealType v,RealType delta,RealType x)47 RealType naive_pdf(RealType v, RealType delta, RealType x)
48 {
49 }
50 
51 template <class RealType>
naive_mean(RealType v,RealType delta)52 RealType naive_mean(RealType v, RealType delta)
53 {
54    using boost::math::tgamma;
55    return delta * sqrt(v / 2) * tgamma((v - 1) / 2) / tgamma(v / 2);
56 }
57 
naive_mean(float v,float delta)58 float naive_mean(float v, float delta)
59 {
60    return (float)naive_mean((double)v, (double)delta);
61 }
62 
63 template <class RealType>
naive_variance(RealType v,RealType delta)64 RealType naive_variance(RealType v, RealType delta)
65 {
66    using boost::math::tgamma;
67    RealType r = tgamma((v - 1) / 2) / tgamma(v / 2);
68    r *= r;
69    r *= -delta * delta * v / 2;
70    r += (1 + delta * delta) * v / (v - 2);
71    return r;
72 }
73 
naive_variance(float v,float delta)74 float naive_variance(float v, float delta)
75 {
76    return (float)naive_variance((double)v, (double)delta);
77 }
78 
79 template <class RealType>
naive_skewness(RealType v,RealType delta)80 RealType naive_skewness(RealType v, RealType delta)
81 {
82    using boost::math::tgamma;
83    RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
84    RealType r = delta * sqrt(v) * tgamma((v - 1) / 2)
85       * (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
86       - 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
87    r /= boost::math::constants::root_two<RealType>()
88       * pow(((1 + delta*delta) * v / (-2 + v) - delta*delta*v*tgr*tgr / 2), RealType(1.5f))
89       * tgamma(v / 2);
90    return r;
91 }
92 
naive_skewness(float v,float delta)93 float naive_skewness(float v, float delta)
94 {
95    return (float)naive_skewness((double)v, (double)delta);
96 }
97 
98 template <class RealType>
naive_kurtosis_excess(RealType v,RealType delta)99 RealType naive_kurtosis_excess(RealType v, RealType delta)
100 {
101    using boost::math::tgamma;
102    RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
103    RealType r = -delta * delta * v * tgr * tgr / 2;
104    r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2 + v))
105       - 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
106    r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
107       / ((-4 + v) * (-2 + v));
108    r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
109    r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
110    return r;
111 }
112 
naive_kurtosis_excess(float v,float delta)113 float naive_kurtosis_excess(float v, float delta)
114 {
115    return (float)naive_kurtosis_excess((double)v, (double)delta);
116 }
117 
118 template <class RealType>
test_spot(RealType df,RealType ncp,RealType t,RealType P,RealType Q,RealType tol)119 void test_spot(
120    RealType df,    // Degrees of freedom
121    RealType ncp,   // non-centrality param
122    RealType t,     // T statistic
123    RealType P,     // CDF
124    RealType Q,     // Complement of CDF
125    RealType tol)   // Test tolerance
126 {
127    // An extra fudge factor for real_concept which has a less accurate tgamma:
128    RealType tolerance_tgamma_extra = std::numeric_limits<RealType>::is_specialized ? 1 : 5;
129 
130    boost::math::non_central_t_distribution<RealType> dist(df, ncp);
131    BOOST_CHECK_CLOSE(
132       cdf(dist, t), P, tol);
133 #ifndef BOOST_NO_EXCEPTIONS
134    try{
135       BOOST_CHECK_CLOSE(
136          mean(dist), naive_mean(df, ncp), tol);
137       BOOST_CHECK_CLOSE(
138          variance(dist), naive_variance(df, ncp), tol);
139       BOOST_CHECK_CLOSE(
140          skewness(dist), naive_skewness(df, ncp), tol * 10 * tolerance_tgamma_extra);
141       BOOST_CHECK_CLOSE(
142          kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
143       BOOST_CHECK_CLOSE(
144          kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
145    }
146    catch(const std::domain_error&)
147    {
148    }
149 #endif
150    /*
151    BOOST_CHECK_CLOSE(
152    pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
153    */
154    if((P < 0.99) && (Q < 0.99))
155    {
156       //
157       // We can only check this if P is not too close to 1,
158       // so that we can guarantee Q is reasonably free of error:
159       //
160       BOOST_CHECK_CLOSE(
161          cdf(complement(dist, t)), Q, tol);
162       BOOST_CHECK_CLOSE(
163          quantile(dist, P), t, tol * 10);
164       BOOST_CHECK_CLOSE(
165          quantile(complement(dist, Q)), t, tol * 10);
166       /*  Removed because can give more than one solution.
167       BOOST_CHECK_CLOSE(
168       dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
169       BOOST_CHECK_CLOSE(
170       dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
171       BOOST_CHECK_CLOSE(
172       dist.find_non_centrality(df, t, P), ncp, tol * 10);
173       BOOST_CHECK_CLOSE(
174       dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
175       */
176    }
177 }
178 
179 template <class RealType> // Any floating-point type RealType.
test_spots(RealType)180 void test_spots(RealType)
181 {
182    using namespace std;
183    //
184    // Approx limit of test data is 12 digits expressed here as a percentage:
185    //
186    RealType tolerance = (std::max)(
187       boost::math::tools::epsilon<RealType>(),
188       (RealType)5e-12f) * 100;
189    //
190    // At float precision we need to up the tolerance, since
191    // the input values are rounded off to inexact quantities
192    // the results get thrown off by a noticeable amount.
193    //
194    if(boost::math::tools::digits<RealType>() < 50)
195       tolerance *= 50;
196    if(boost::is_floating_point<RealType>::value != 1)
197       tolerance *= 20; // real_concept special functions are less accurate
198 
199    cout << "Tolerance = " << tolerance << "%." << endl;
200 
201    //
202    // Test data is taken from:
203    //
204    // Computing discrete mixtures of continuous
205    // distributions: noncentral chisquare, noncentral t
206    // and the distribution of the square of the sample
207    // multiple correlation coefficient.
208    // Denise Benton, K. Krishnamoorthy.
209    // Computational Statistics & Data Analysis 43 (2003) 249 - 267
210    //
211    test_spot(
212       static_cast<RealType>(3),   // degrees of freedom
213       static_cast<RealType>(1),   // non centrality
214       static_cast<RealType>(2.34),   // T
215       static_cast<RealType>(0.801888999613917),       // Probability of result (CDF), P
216       static_cast<RealType>(1 - 0.801888999613917),           // Q = 1 - P
217       tolerance);
218    test_spot(
219       static_cast<RealType>(126),   // degrees of freedom
220       static_cast<RealType>(-2),   // non centrality
221       static_cast<RealType>(-4.33),   // T
222       static_cast<RealType>(1.252846196792878e-2),       // Probability of result (CDF), P
223       static_cast<RealType>(1 - 1.252846196792878e-2),           // Q = 1 - P
224       tolerance);
225    test_spot(
226       static_cast<RealType>(20),   // degrees of freedom
227       static_cast<RealType>(23),   // non centrality
228       static_cast<RealType>(23),   // T
229       static_cast<RealType>(0.460134400391924),       // Probability of result (CDF), P
230       static_cast<RealType>(1 - 0.460134400391924),           // Q = 1 - P
231       tolerance);
232    test_spot(
233       static_cast<RealType>(20),   // degrees of freedom
234       static_cast<RealType>(33),   // non centrality
235       static_cast<RealType>(34),   // T
236       static_cast<RealType>(0.532008386378725),       // Probability of result (CDF), P
237       static_cast<RealType>(1 - 0.532008386378725),           // Q = 1 - P
238       tolerance);
239    test_spot(
240       static_cast<RealType>(12),   // degrees of freedom
241       static_cast<RealType>(38),   // non centrality
242       static_cast<RealType>(39),   // T
243       static_cast<RealType>(0.495868184917805),       // Probability of result (CDF), P
244       static_cast<RealType>(1 - 0.495868184917805),           // Q = 1 - P
245       tolerance);
246    test_spot(
247       static_cast<RealType>(12),   // degrees of freedom
248       static_cast<RealType>(39),   // non centrality
249       static_cast<RealType>(39),   // T
250       static_cast<RealType>(0.446304024668836),       // Probability of result (CDF), P
251       static_cast<RealType>(1 - 0.446304024668836),           // Q = 1 - P
252       tolerance);
253    test_spot(
254       static_cast<RealType>(200),   // degrees of freedom
255       static_cast<RealType>(38),   // non centrality
256       static_cast<RealType>(39),   // T
257       static_cast<RealType>(0.666194209961795),       // Probability of result (CDF), P
258       static_cast<RealType>(1 - 0.666194209961795),           // Q = 1 - P
259       tolerance);
260    test_spot(
261       static_cast<RealType>(200),   // degrees of freedom
262       static_cast<RealType>(42),   // non centrality
263       static_cast<RealType>(40),   // T
264       static_cast<RealType>(0.179292265426085),       // Probability of result (CDF), P
265       static_cast<RealType>(1 - 0.179292265426085),           // Q = 1 - P
266       tolerance);
267 
268    // From https://svn.boost.org/trac/boost/ticket/10480.
269    // Test value from Mathematica N[CDF[NoncentralStudentTDistribution[2, 4], 5], 35]:
270    test_spot(
271       static_cast<RealType>(2),   // degrees of freedom
272       static_cast<RealType>(4),   // non centrality
273       static_cast<RealType>(5),   // T
274       static_cast<RealType>(0.53202069866995310466912357978934321L),       // Probability of result (CDF), P
275       static_cast<RealType>(1 - 0.53202069866995310466912357978934321L),           // Q = 1 - P
276       tolerance);
277 
278    /* This test fails
279    "Result of tgamma is too large to represent" at naive_mean check for max and infinity.
280    if (std::numeric_limits<RealType>::has_infinity)
281    {
282    test_spot(
283    //static_cast<RealType>(std::numeric_limits<RealType>::infinity()),   // degrees of freedom
284    static_cast<RealType>((std::numeric_limits<RealType>::max)()),   // degrees of freedom
285    static_cast<RealType>(10),   // non centrality
286    static_cast<RealType>(11),   // T
287    static_cast<RealType>(0.84134474606854293),       // Probability of result (CDF), P
288    static_cast<RealType>(0.15865525393145707),           // Q = 1 - P
289    tolerance);
290    }
291    */
292 
293    boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
294    BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
295    BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
296    BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
297    BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
298 
299    // Error handling checks:
300    //check_out_of_range<boost::math::non_central_t_distribution<RealType> >(1, 1);  // Fails one check because df for this distribution *can* be infinity.
301    BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(0, 1), 0), std::domain_error);
302    BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(-1, 1), 0), std::domain_error);
303    BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), -1), std::domain_error);
304    BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), 2), std::domain_error);
305 } // template <class RealType>void test_spots(RealType)
306 
307 template <class T>
nct_cdf(T df,T nc,T x)308 T nct_cdf(T df, T nc, T x)
309 {
310    return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
311 }
312 
313 template <class T>
nct_ccdf(T df,T nc,T x)314 T nct_ccdf(T df, T nc, T x)
315 {
316    return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
317 }
318 
319 template <typename Real, typename T>
do_test_nc_t(T & data,const char * type_name,const char * test)320 void do_test_nc_t(T& data, const char* type_name, const char* test)
321 {
322    typedef Real                   value_type;
323 
324    std::cout << "Testing: " << test << std::endl;
325 
326 #ifdef NC_T_CDF_FUNCTION_TO_TEST
327    value_type(*fp1)(value_type, value_type, value_type) = NC_T_CDF_FUNCTION_TO_TEST;
328 #else
329    value_type(*fp1)(value_type, value_type, value_type) = nct_cdf;
330 #endif
331    boost::math::tools::test_result<value_type> result;
332 
333 #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CDF_FUNCTION_TO_TEST))
334    result = boost::math::tools::test_hetero<Real>(
335       data,
336       bind_func<Real>(fp1, 0, 1, 2),
337       extract_result<Real>(3));
338    handle_test_result(result, data[result.worst()], result.worst(),
339       type_name, "non central t CDF", test);
340 #endif
341 
342 #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CCDF_FUNCTION_TO_TEST))
343 #ifdef NC_T_CCDF_FUNCTION_TO_TEST
344    fp1 = NC_T_CCDF_FUNCTION_TO_TEST;
345 #else
346    fp1 = nct_ccdf;
347 #endif
348    result = boost::math::tools::test_hetero<Real>(
349       data,
350       bind_func<Real>(fp1, 0, 1, 2),
351       extract_result<Real>(4));
352    handle_test_result(result, data[result.worst()], result.worst(),
353       type_name, "non central t CDF complement", test);
354 
355    std::cout << std::endl;
356 #endif
357 }
358 
359 template <typename Real, typename T>
quantile_sanity_check(T & data,const char * type_name,const char * test)360 void quantile_sanity_check(T& data, const char* type_name, const char* test)
361 {
362 #ifndef ERROR_REPORTING_MODE
363    typedef Real                   value_type;
364 
365    //
366    // Tests with type real_concept take rather too long to run, so
367    // for now we'll disable them:
368    //
369    if(!boost::is_floating_point<value_type>::value)
370       return;
371 
372    std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
373 
374    //
375    // These sanity checks test for a round trip accuracy of one half
376    // of the bits in T, unless T is type float, in which case we check
377    // for just one decimal digit.  The problem here is the sensitivity
378    // of the functions, not their accuracy.  This test data was generated
379    // for the forward functions, which means that when it is used as
380    // the input to the inverses then it is necessarily inexact.  This rounding
381    // of the input is what makes the data unsuitable for use as an accuracy check,
382    // and also demonstrates that you can't in general round-trip these functions.
383    // It is however a useful sanity check.
384    //
385    value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
386    if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
387       precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float
388 
389    for(unsigned i = 0; i < data.size(); ++i)
390    {
391       if(data[i][3] == 0)
392       {
393          BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
394       }
395       else if(data[i][3] < 0.9999f)
396       {
397          value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
398          value_type pt = data[i][2];
399          BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
400       }
401       if(data[i][4] == 0)
402       {
403          BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
404       }
405       else if(data[i][4] < 0.9999f)
406       {
407          value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
408          value_type pt = data[i][2];
409          BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
410       }
411       if(boost::math::tools::digits<value_type>() > 50)
412       {
413          //
414          // Sanity check mode, the accuracy of
415          // the mode is at *best* the square root of the accuracy of the PDF:
416          //
417 #ifndef BOOST_NO_EXCEPTIONS
418          try{
419             value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
420             value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
421             value_type delta = (std::max)(fabs(m * sqrt(precision) * 50), sqrt(precision) * 50);
422             BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m + delta) <= p, i);
423             BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m - delta) <= p, i);
424          }
425          catch(const boost::math::evaluation_error&) {}
426 #endif
427 #if 0
428          //
429          // Sanity check degrees-of-freedom finder, don't bother at float
430          // precision though as there's not enough data in the probability
431          // values to get back to the correct degrees of freedom or
432          // non-centrality parameter:
433          //
434          try{
435             if((data[i][3] < 0.99) && (data[i][3] != 0))
436             {
437                BOOST_CHECK_CLOSE_EX(
438                   boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
439                   data[i][0], precision, i);
440                BOOST_CHECK_CLOSE_EX(
441                   boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
442                   data[i][1], precision, i);
443             }
444             if((data[i][4] < 0.99) && (data[i][4] != 0))
445             {
446                BOOST_CHECK_CLOSE_EX(
447                   boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
448                   data[i][0], precision, i);
449                BOOST_CHECK_CLOSE_EX(
450                   boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
451                   data[i][1], precision, i);
452             }
453          }
454          catch(const std::exception& e)
455          {
456             BOOST_ERROR(e.what());
457          }
458 #endif
459       }
460    }
461 #endif
462 }
463 
464 template <typename T>
test_accuracy(T,const char * type_name)465 void test_accuracy(T, const char* type_name)
466 {
467 #include "nct.ipp"
468    do_test_nc_t<T>(nct, type_name, "Non Central T");
469    quantile_sanity_check<T>(nct, type_name, "Non Central T");
470    if(std::numeric_limits<T>::is_specialized)
471    {
472       //
473       // Don't run these tests for real_concept: they take too long and don't converge
474       // without numeric_limits and lanczos support:
475       //
476 #include "nct_small_delta.ipp"
477       do_test_nc_t<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
478       quantile_sanity_check<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
479 #include "nct_asym.ipp"
480       do_test_nc_t<T>(nct_asym, type_name, "Non Central T (large parameters)");
481       quantile_sanity_check<T>(nct_asym, type_name, "Non Central T (large parameters)");
482    }
483 }
484 
485 
486 template <class RealType>
test_big_df(RealType)487 void test_big_df(RealType)
488 {
489    using namespace boost::math;
490 
491    if(typeid(RealType) != typeid(boost::math::concepts::real_concept))
492    { // Ordinary floats only.
493       // Could also test if (std::numeric_limits<RealType>::is_specialized);
494 
495       RealType tolerance = 10 * boost::math::tools::epsilon<RealType>(); // static_cast<RealType>(1e-14); //
496       std::cout.precision(17); // Note: need to reset after calling BOOST_CHECK_s
497       // due to buglet in Boost.test that fails to restore precision correctly.
498 
499       // Test for large degrees of freedom when should be same as normal.
500       RealType inf =
501          (std::numeric_limits<RealType>::has_infinity) ?
502          std::numeric_limits<RealType>::infinity()
503          :
504          boost::math::tools::max_value<RealType>();
505       RealType nan = std::numeric_limits<RealType>::quiet_NaN();
506 
507       // Tests for df = max_value and infinity.
508       RealType max_val = boost::math::tools::max_value<RealType>();
509       non_central_t_distribution<RealType> maxdf(max_val, 0);
510       BOOST_CHECK_EQUAL(maxdf.degrees_of_freedom(), max_val);
511 
512       non_central_t_distribution<RealType> infdf(inf, 0);
513       BOOST_CHECK_EQUAL(infdf.degrees_of_freedom(), inf);
514       BOOST_CHECK_EQUAL(mean(infdf), 0);
515       BOOST_CHECK_EQUAL(mean(maxdf), 0);
516       BOOST_CHECK_EQUAL(variance(infdf), 1);
517       BOOST_CHECK_EQUAL(variance(maxdf), 1);
518       BOOST_CHECK_EQUAL(skewness(infdf), 0);
519       BOOST_CHECK_EQUAL(skewness(maxdf), 0);
520       BOOST_CHECK_EQUAL(kurtosis_excess(infdf), 3);
521       BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(maxdf), static_cast<RealType>(3), tolerance);
522 
523       // Bad df examples.
524 #ifndef BOOST_NO_EXCEPTIONS
525       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-inf, 0), std::domain_error);
526       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(nan, 0), std::domain_error);
527       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-nan, 0), std::domain_error);
528 #else
529       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-inf, 0), std::domain_error);
530       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(nan, 0), std::domain_error);
531       BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-nan, 0), std::domain_error);
532 #endif
533 
534 
535       // BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), static_cast<RealType>(0.3989422804014326779399460599343818684759L), tolerance);
536       BOOST_CHECK_CLOSE_FRACTION(pdf(maxdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
537       BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
538       BOOST_CHECK_CLOSE_FRACTION(cdf(infdf, 0), boost::math::constants::half<RealType>(), tolerance);
539       BOOST_CHECK_CLOSE_FRACTION(cdf(maxdf, 0), boost::math::constants::half<RealType>(), tolerance);
540 
541       // non-centrality delta = 10
542       // Degrees of freedom = Max value and  = infinity should be very close.
543       non_central_t_distribution<RealType> maxdf10(max_val, 10);
544       non_central_t_distribution<RealType> infdf10(inf, 10);
545       BOOST_CHECK_EQUAL(infdf10.degrees_of_freedom(), inf);
546       BOOST_CHECK_EQUAL(infdf10.non_centrality(), 10);
547       BOOST_CHECK_EQUAL(mean(infdf10), 10);
548       BOOST_CHECK_CLOSE_FRACTION(mean(maxdf10), static_cast<RealType>(10), tolerance);
549 
550       BOOST_CHECK_CLOSE_FRACTION(pdf(infdf10, 11), pdf(maxdf10, 11), tolerance); //
551 
552       BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(infdf10, 11), tolerance); //
553       BOOST_CHECK_CLOSE_FRACTION(cdf(complement(maxdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
554       BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
555       std::cout.precision(17);
556       //std::cout  << "cdf(maxdf10, 11)  = " << cdf(maxdf10, 11) << ' ' << cdf(complement(maxdf10, 11)) << endl;
557       //std::cout  << "cdf(infdf10, 11)  = " << cdf(infdf10, 11) << ' ' << cdf(complement(infdf10, 11)) << endl;
558       //std::cout  << "quantile(maxdf10, 0.5)  = " << quantile(maxdf10, 0.5) << std::endl; // quantile(maxdf10, 0.5)  = 10.000000000000004
559       //std::cout  << "quantile(infdf10, 0.5) = " << ' ' << quantile(infdf10, 0.5) << std::endl; // quantile(infdf10, 0.5) =  10
560 
561       BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), static_cast<RealType>(10), tolerance);
562       BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.5), static_cast<RealType>(10), tolerance);
563 
564       BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> infdf100(inf, 100);");
565       non_central_t_distribution<RealType> infdf100(inf, 100);
566       BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> maxdf100(max_val, 100);");
567       non_central_t_distribution<RealType> maxdf100(max_val, 100);
568       BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);");
569       BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);
570       BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);");
571       BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);
572       { // Loop back.
573          RealType p = static_cast<RealType>(0.01);
574          RealType x = quantile(infdf10, p);
575          RealType c = cdf(infdf10, x);
576          BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
577       }
578     {
579        RealType q = static_cast<RealType>(0.99);
580        RealType x = quantile(complement(infdf10, q));
581        RealType c = cdf(complement(infdf10, x));
582        BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance);
583     }
584     { // Loop back.
585        RealType p = static_cast<RealType>(0.99);
586        RealType x = quantile(infdf10, p);
587        RealType c = cdf(infdf10, x);
588        BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
589     }
590     {
591        RealType q = static_cast<RealType>(0.01);
592        RealType x = quantile(complement(infdf10, q));
593        RealType c = cdf(complement(infdf10, x));
594        BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance * 2); // c{0.0100000128} and q{0.00999999978}
595     }
596 
597     //RealType cinf = quantile(infdf10, 0.25);
598     //std::cout << cinf << ' ' << cdf(infdf10, cinf) << std::endl; // 9.32551 0.25
599 
600     //RealType cmax = quantile(maxdf10, 0.25);
601     //std::cout << cmax << ' ' << cdf(maxdf10, cmax) << std::endl; //  9.32551 0.25
602 
603     //RealType cinfc = quantile(complement(infdf10, 0.75));
604     //std::cout << cinfc << ' ' << cdf(infdf10, cinfc) << std::endl; // 9.32551 0.25
605 
606     //RealType cmaxc = quantile(complement(maxdf10, 0.75));
607     //std::cout << cmaxc << ' ' << cdf(maxdf10, cmaxc) << std::endl; // 9.32551 0.25
608 
609     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), quantile(maxdf10, 0.5), tolerance); //
610     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.2), quantile(maxdf10, 0.2), tolerance); //
611     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.8), quantile(maxdf10, 0.8), tolerance); //
612 
613     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.25), quantile(complement(infdf10, 0.75)), tolerance); //
614     BOOST_CHECK_CLOSE_FRACTION(quantile(complement(infdf10, 0.5)), quantile(complement(maxdf10, 0.5)), tolerance); //
615 
616     BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.25), quantile(complement(maxdf10, 0.75)), tolerance); //
617 
618     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.99), quantile(complement(infdf10, 0.01)), tolerance); //
619     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.4), quantile(complement(infdf10, 0.6)), tolerance); //
620     BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.01), quantile(complement(infdf10, 1 - 0.01)), tolerance); //
621    }
622 } // void test_big_df(RealType)
623 
624 template <class RealType>
test_ignore_policy(RealType)625 void test_ignore_policy(RealType)
626 {
627    // Check on returns when errors are ignored.
628    if((typeid(RealType) != typeid(boost::math::concepts::real_concept))
629       && std::numeric_limits<RealType>::has_infinity
630       && std::numeric_limits<RealType>::has_quiet_NaN
631       )
632    { // Ordinary floats only.
633 
634       using namespace boost::math;
635       //   RealType inf = std::numeric_limits<RealType>::infinity();
636       RealType nan = std::numeric_limits<RealType>::quiet_NaN();
637 
638       using boost::math::policies::policy;
639       // Types of error whose action can be altered by policies:.
640       //using boost::math::policies::evaluation_error;
641       //using boost::math::policies::domain_error;
642       //using boost::math::policies::overflow_error;
643       //using boost::math::policies::underflow_error;
644       //using boost::math::policies::domain_error;
645       //using boost::math::policies::pole_error;
646 
647       //// Actions on error (in enum error_policy_type):
648       //using boost::math::policies::errno_on_error;
649       //using boost::math::policies::ignore_error;
650       //using boost::math::policies::throw_on_error;
651       //using boost::math::policies::denorm_error;
652       //using boost::math::policies::pole_error;
653       //using boost::math::policies::user_error;
654 
655       typedef policy<
656          boost::math::policies::domain_error<boost::math::policies::ignore_error>,
657          boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
658          boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
659          boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
660          boost::math::policies::pole_error<boost::math::policies::ignore_error>,
661          boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
662       > ignore_all_policy;
663 
664       typedef non_central_t_distribution<RealType, ignore_all_policy> ignore_error_non_central_t;
665 
666       // Only test NaN and infinity if type has these features (realconcept returns zero).
667       // Integers are always converted to RealType,
668       // others requires static cast to RealType from long double.
669 
670       if(std::numeric_limits<RealType>::has_quiet_NaN)
671       {
672          // Mean
673          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-nan, 0))));
674          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(+nan, 0))));
675          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-1, 0))));
676          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(0, 0))));
677          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(1, 0))));
678          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(2, nan))));
679          BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(nan, nan))));
680          BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(2, 0)))); // OK
681 
682          // Variance
683          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(nan, 0))));
684          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, nan))));
685          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, nan))));
686          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(-1, 0))));
687          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(0, 0))));
688          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, 0))));
689          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(static_cast<RealType>(1.7L), 0))));
690          BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, 0))));
691 
692          // Skewness
693          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
694          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(-1, 0))));
695          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(0, 0))));
696          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(1, 0))));
697          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(2, 0))));
698          BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(3, 0))));
699 
700          // Kurtosis
701          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
702          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(-1, 0))));
703          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(0, 0))));
704          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(1, 0))));
705          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(2, 0))));
706          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
707          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(3, 0))));
708          BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(4, 0))));
709 
710          // Kurtosis excess
711          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
712          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(-1, 0))));
713          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(0, 0))));
714          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(1, 0))));
715          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(2, 0))));
716          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
717          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(3, 0))));
718          BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(4, 0))));
719       } // has_quiet_NaN
720       BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(1 + std::numeric_limits<RealType>::epsilon(), 0))));
721       BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
722       BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
723       BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
724       BOOST_CHECK(boost::math::isfinite(skewness(ignore_error_non_central_t(3 + 3 * std::numeric_limits<RealType>::epsilon(), 0))));
725       BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(4 + 4 * std::numeric_limits<RealType>::epsilon(), 0))));
726       BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(static_cast<RealType>(4.0001L), 0))));
727 
728       // check_out_of_range<non_central_t_distribution<RealType> >(1, 0); // Fails one check because allows df = infinity.
729       check_support<non_central_t_distribution<RealType> >(non_central_t_distribution<RealType>(1, 0));
730    } // ordinary floats.
731 } // template <class RealType> void test_ignore_policy(RealType)
732