1 // (C) Copyright John Maddock 2007.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
7 #include <boost/math/concepts/real_concept.hpp>
8 #define BOOST_TEST_MAIN
9 #include <boost/test/unit_test.hpp>
10 #include <boost/test/tools/floating_point_comparison.hpp>
11 #include <boost/math/distributions/non_central_t.hpp>
12 #include <boost/type_traits/is_floating_point.hpp>
13 #include <boost/array.hpp>
14 #include "functor.hpp"
15 #include "test_out_of_range.hpp"
16
17 #include "handle_test_result.hpp"
18 #include "table_type.hpp"
19
20 #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
21 {\
22 unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
23 BOOST_CHECK_CLOSE(a, b, prec); \
24 if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
25 {\
26 std::cerr << "Failure was at row " << i << std::endl;\
27 std::cerr << std::setprecision(35); \
28 std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
29 std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
30 }\
31 }
32
33 #define BOOST_CHECK_EX(a, i) \
34 {\
35 unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
36 BOOST_CHECK(a); \
37 if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
38 {\
39 std::cerr << "Failure was at row " << i << std::endl;\
40 std::cerr << std::setprecision(35); \
41 std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
42 std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
43 }\
44 }
45
46 template <class RealType>
naive_pdf(RealType v,RealType delta,RealType x)47 RealType naive_pdf(RealType v, RealType delta, RealType x)
48 {
49 }
50
51 template <class RealType>
naive_mean(RealType v,RealType delta)52 RealType naive_mean(RealType v, RealType delta)
53 {
54 using boost::math::tgamma;
55 return delta * sqrt(v / 2) * tgamma((v - 1) / 2) / tgamma(v / 2);
56 }
57
naive_mean(float v,float delta)58 float naive_mean(float v, float delta)
59 {
60 return (float)naive_mean((double)v, (double)delta);
61 }
62
63 template <class RealType>
naive_variance(RealType v,RealType delta)64 RealType naive_variance(RealType v, RealType delta)
65 {
66 using boost::math::tgamma;
67 RealType r = tgamma((v - 1) / 2) / tgamma(v / 2);
68 r *= r;
69 r *= -delta * delta * v / 2;
70 r += (1 + delta * delta) * v / (v - 2);
71 return r;
72 }
73
naive_variance(float v,float delta)74 float naive_variance(float v, float delta)
75 {
76 return (float)naive_variance((double)v, (double)delta);
77 }
78
79 template <class RealType>
naive_skewness(RealType v,RealType delta)80 RealType naive_skewness(RealType v, RealType delta)
81 {
82 using boost::math::tgamma;
83 RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
84 RealType r = delta * sqrt(v) * tgamma((v - 1) / 2)
85 * (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
86 - 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
87 r /= boost::math::constants::root_two<RealType>()
88 * pow(((1 + delta*delta) * v / (-2 + v) - delta*delta*v*tgr*tgr / 2), RealType(1.5f))
89 * tgamma(v / 2);
90 return r;
91 }
92
naive_skewness(float v,float delta)93 float naive_skewness(float v, float delta)
94 {
95 return (float)naive_skewness((double)v, (double)delta);
96 }
97
98 template <class RealType>
naive_kurtosis_excess(RealType v,RealType delta)99 RealType naive_kurtosis_excess(RealType v, RealType delta)
100 {
101 using boost::math::tgamma;
102 RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2);
103 RealType r = -delta * delta * v * tgr * tgr / 2;
104 r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2 + v))
105 - 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
106 r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
107 / ((-4 + v) * (-2 + v));
108 r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
109 r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2;
110 return r;
111 }
112
naive_kurtosis_excess(float v,float delta)113 float naive_kurtosis_excess(float v, float delta)
114 {
115 return (float)naive_kurtosis_excess((double)v, (double)delta);
116 }
117
118 template <class RealType>
test_spot(RealType df,RealType ncp,RealType t,RealType P,RealType Q,RealType tol)119 void test_spot(
120 RealType df, // Degrees of freedom
121 RealType ncp, // non-centrality param
122 RealType t, // T statistic
123 RealType P, // CDF
124 RealType Q, // Complement of CDF
125 RealType tol) // Test tolerance
126 {
127 // An extra fudge factor for real_concept which has a less accurate tgamma:
128 RealType tolerance_tgamma_extra = std::numeric_limits<RealType>::is_specialized ? 1 : 5;
129
130 boost::math::non_central_t_distribution<RealType> dist(df, ncp);
131 BOOST_CHECK_CLOSE(
132 cdf(dist, t), P, tol);
133 #ifndef BOOST_NO_EXCEPTIONS
134 try{
135 BOOST_CHECK_CLOSE(
136 mean(dist), naive_mean(df, ncp), tol);
137 BOOST_CHECK_CLOSE(
138 variance(dist), naive_variance(df, ncp), tol);
139 BOOST_CHECK_CLOSE(
140 skewness(dist), naive_skewness(df, ncp), tol * 10 * tolerance_tgamma_extra);
141 BOOST_CHECK_CLOSE(
142 kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
143 BOOST_CHECK_CLOSE(
144 kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra);
145 }
146 catch(const std::domain_error&)
147 {
148 }
149 #endif
150 /*
151 BOOST_CHECK_CLOSE(
152 pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
153 */
154 if((P < 0.99) && (Q < 0.99))
155 {
156 //
157 // We can only check this if P is not too close to 1,
158 // so that we can guarantee Q is reasonably free of error:
159 //
160 BOOST_CHECK_CLOSE(
161 cdf(complement(dist, t)), Q, tol);
162 BOOST_CHECK_CLOSE(
163 quantile(dist, P), t, tol * 10);
164 BOOST_CHECK_CLOSE(
165 quantile(complement(dist, Q)), t, tol * 10);
166 /* Removed because can give more than one solution.
167 BOOST_CHECK_CLOSE(
168 dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
169 BOOST_CHECK_CLOSE(
170 dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
171 BOOST_CHECK_CLOSE(
172 dist.find_non_centrality(df, t, P), ncp, tol * 10);
173 BOOST_CHECK_CLOSE(
174 dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
175 */
176 }
177 }
178
179 template <class RealType> // Any floating-point type RealType.
test_spots(RealType)180 void test_spots(RealType)
181 {
182 using namespace std;
183 //
184 // Approx limit of test data is 12 digits expressed here as a percentage:
185 //
186 RealType tolerance = (std::max)(
187 boost::math::tools::epsilon<RealType>(),
188 (RealType)5e-12f) * 100;
189 //
190 // At float precision we need to up the tolerance, since
191 // the input values are rounded off to inexact quantities
192 // the results get thrown off by a noticeable amount.
193 //
194 if(boost::math::tools::digits<RealType>() < 50)
195 tolerance *= 50;
196 if(boost::is_floating_point<RealType>::value != 1)
197 tolerance *= 20; // real_concept special functions are less accurate
198
199 cout << "Tolerance = " << tolerance << "%." << endl;
200
201 //
202 // Test data is taken from:
203 //
204 // Computing discrete mixtures of continuous
205 // distributions: noncentral chisquare, noncentral t
206 // and the distribution of the square of the sample
207 // multiple correlation coefficient.
208 // Denise Benton, K. Krishnamoorthy.
209 // Computational Statistics & Data Analysis 43 (2003) 249 - 267
210 //
211 test_spot(
212 static_cast<RealType>(3), // degrees of freedom
213 static_cast<RealType>(1), // non centrality
214 static_cast<RealType>(2.34), // T
215 static_cast<RealType>(0.801888999613917), // Probability of result (CDF), P
216 static_cast<RealType>(1 - 0.801888999613917), // Q = 1 - P
217 tolerance);
218 test_spot(
219 static_cast<RealType>(126), // degrees of freedom
220 static_cast<RealType>(-2), // non centrality
221 static_cast<RealType>(-4.33), // T
222 static_cast<RealType>(1.252846196792878e-2), // Probability of result (CDF), P
223 static_cast<RealType>(1 - 1.252846196792878e-2), // Q = 1 - P
224 tolerance);
225 test_spot(
226 static_cast<RealType>(20), // degrees of freedom
227 static_cast<RealType>(23), // non centrality
228 static_cast<RealType>(23), // T
229 static_cast<RealType>(0.460134400391924), // Probability of result (CDF), P
230 static_cast<RealType>(1 - 0.460134400391924), // Q = 1 - P
231 tolerance);
232 test_spot(
233 static_cast<RealType>(20), // degrees of freedom
234 static_cast<RealType>(33), // non centrality
235 static_cast<RealType>(34), // T
236 static_cast<RealType>(0.532008386378725), // Probability of result (CDF), P
237 static_cast<RealType>(1 - 0.532008386378725), // Q = 1 - P
238 tolerance);
239 test_spot(
240 static_cast<RealType>(12), // degrees of freedom
241 static_cast<RealType>(38), // non centrality
242 static_cast<RealType>(39), // T
243 static_cast<RealType>(0.495868184917805), // Probability of result (CDF), P
244 static_cast<RealType>(1 - 0.495868184917805), // Q = 1 - P
245 tolerance);
246 test_spot(
247 static_cast<RealType>(12), // degrees of freedom
248 static_cast<RealType>(39), // non centrality
249 static_cast<RealType>(39), // T
250 static_cast<RealType>(0.446304024668836), // Probability of result (CDF), P
251 static_cast<RealType>(1 - 0.446304024668836), // Q = 1 - P
252 tolerance);
253 test_spot(
254 static_cast<RealType>(200), // degrees of freedom
255 static_cast<RealType>(38), // non centrality
256 static_cast<RealType>(39), // T
257 static_cast<RealType>(0.666194209961795), // Probability of result (CDF), P
258 static_cast<RealType>(1 - 0.666194209961795), // Q = 1 - P
259 tolerance);
260 test_spot(
261 static_cast<RealType>(200), // degrees of freedom
262 static_cast<RealType>(42), // non centrality
263 static_cast<RealType>(40), // T
264 static_cast<RealType>(0.179292265426085), // Probability of result (CDF), P
265 static_cast<RealType>(1 - 0.179292265426085), // Q = 1 - P
266 tolerance);
267
268 // From https://svn.boost.org/trac/boost/ticket/10480.
269 // Test value from Mathematica N[CDF[NoncentralStudentTDistribution[2, 4], 5], 35]:
270 test_spot(
271 static_cast<RealType>(2), // degrees of freedom
272 static_cast<RealType>(4), // non centrality
273 static_cast<RealType>(5), // T
274 static_cast<RealType>(0.53202069866995310466912357978934321L), // Probability of result (CDF), P
275 static_cast<RealType>(1 - 0.53202069866995310466912357978934321L), // Q = 1 - P
276 tolerance);
277
278 /* This test fails
279 "Result of tgamma is too large to represent" at naive_mean check for max and infinity.
280 if (std::numeric_limits<RealType>::has_infinity)
281 {
282 test_spot(
283 //static_cast<RealType>(std::numeric_limits<RealType>::infinity()), // degrees of freedom
284 static_cast<RealType>((std::numeric_limits<RealType>::max)()), // degrees of freedom
285 static_cast<RealType>(10), // non centrality
286 static_cast<RealType>(11), // T
287 static_cast<RealType>(0.84134474606854293), // Probability of result (CDF), P
288 static_cast<RealType>(0.15865525393145707), // Q = 1 - P
289 tolerance);
290 }
291 */
292
293 boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
294 BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
295 BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
296 BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
297 BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
298
299 // Error handling checks:
300 //check_out_of_range<boost::math::non_central_t_distribution<RealType> >(1, 1); // Fails one check because df for this distribution *can* be infinity.
301 BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(0, 1), 0), std::domain_error);
302 BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution<RealType>(-1, 1), 0), std::domain_error);
303 BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), -1), std::domain_error);
304 BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution<RealType>(1, 1), 2), std::domain_error);
305 } // template <class RealType>void test_spots(RealType)
306
307 template <class T>
nct_cdf(T df,T nc,T x)308 T nct_cdf(T df, T nc, T x)
309 {
310 return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
311 }
312
313 template <class T>
nct_ccdf(T df,T nc,T x)314 T nct_ccdf(T df, T nc, T x)
315 {
316 return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
317 }
318
319 template <typename Real, typename T>
do_test_nc_t(T & data,const char * type_name,const char * test)320 void do_test_nc_t(T& data, const char* type_name, const char* test)
321 {
322 typedef Real value_type;
323
324 std::cout << "Testing: " << test << std::endl;
325
326 #ifdef NC_T_CDF_FUNCTION_TO_TEST
327 value_type(*fp1)(value_type, value_type, value_type) = NC_T_CDF_FUNCTION_TO_TEST;
328 #else
329 value_type(*fp1)(value_type, value_type, value_type) = nct_cdf;
330 #endif
331 boost::math::tools::test_result<value_type> result;
332
333 #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CDF_FUNCTION_TO_TEST))
334 result = boost::math::tools::test_hetero<Real>(
335 data,
336 bind_func<Real>(fp1, 0, 1, 2),
337 extract_result<Real>(3));
338 handle_test_result(result, data[result.worst()], result.worst(),
339 type_name, "non central t CDF", test);
340 #endif
341
342 #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CCDF_FUNCTION_TO_TEST))
343 #ifdef NC_T_CCDF_FUNCTION_TO_TEST
344 fp1 = NC_T_CCDF_FUNCTION_TO_TEST;
345 #else
346 fp1 = nct_ccdf;
347 #endif
348 result = boost::math::tools::test_hetero<Real>(
349 data,
350 bind_func<Real>(fp1, 0, 1, 2),
351 extract_result<Real>(4));
352 handle_test_result(result, data[result.worst()], result.worst(),
353 type_name, "non central t CDF complement", test);
354
355 std::cout << std::endl;
356 #endif
357 }
358
359 template <typename Real, typename T>
quantile_sanity_check(T & data,const char * type_name,const char * test)360 void quantile_sanity_check(T& data, const char* type_name, const char* test)
361 {
362 #ifndef ERROR_REPORTING_MODE
363 typedef Real value_type;
364
365 //
366 // Tests with type real_concept take rather too long to run, so
367 // for now we'll disable them:
368 //
369 if(!boost::is_floating_point<value_type>::value)
370 return;
371
372 std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
373
374 //
375 // These sanity checks test for a round trip accuracy of one half
376 // of the bits in T, unless T is type float, in which case we check
377 // for just one decimal digit. The problem here is the sensitivity
378 // of the functions, not their accuracy. This test data was generated
379 // for the forward functions, which means that when it is used as
380 // the input to the inverses then it is necessarily inexact. This rounding
381 // of the input is what makes the data unsuitable for use as an accuracy check,
382 // and also demonstrates that you can't in general round-trip these functions.
383 // It is however a useful sanity check.
384 //
385 value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
386 if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
387 precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
388
389 for(unsigned i = 0; i < data.size(); ++i)
390 {
391 if(data[i][3] == 0)
392 {
393 BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
394 }
395 else if(data[i][3] < 0.9999f)
396 {
397 value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
398 value_type pt = data[i][2];
399 BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
400 }
401 if(data[i][4] == 0)
402 {
403 BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
404 }
405 else if(data[i][4] < 0.9999f)
406 {
407 value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
408 value_type pt = data[i][2];
409 BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
410 }
411 if(boost::math::tools::digits<value_type>() > 50)
412 {
413 //
414 // Sanity check mode, the accuracy of
415 // the mode is at *best* the square root of the accuracy of the PDF:
416 //
417 #ifndef BOOST_NO_EXCEPTIONS
418 try{
419 value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
420 value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
421 value_type delta = (std::max)(fabs(m * sqrt(precision) * 50), sqrt(precision) * 50);
422 BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m + delta) <= p, i);
423 BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m - delta) <= p, i);
424 }
425 catch(const boost::math::evaluation_error&) {}
426 #endif
427 #if 0
428 //
429 // Sanity check degrees-of-freedom finder, don't bother at float
430 // precision though as there's not enough data in the probability
431 // values to get back to the correct degrees of freedom or
432 // non-centrality parameter:
433 //
434 try{
435 if((data[i][3] < 0.99) && (data[i][3] != 0))
436 {
437 BOOST_CHECK_CLOSE_EX(
438 boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
439 data[i][0], precision, i);
440 BOOST_CHECK_CLOSE_EX(
441 boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
442 data[i][1], precision, i);
443 }
444 if((data[i][4] < 0.99) && (data[i][4] != 0))
445 {
446 BOOST_CHECK_CLOSE_EX(
447 boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
448 data[i][0], precision, i);
449 BOOST_CHECK_CLOSE_EX(
450 boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
451 data[i][1], precision, i);
452 }
453 }
454 catch(const std::exception& e)
455 {
456 BOOST_ERROR(e.what());
457 }
458 #endif
459 }
460 }
461 #endif
462 }
463
464 template <typename T>
test_accuracy(T,const char * type_name)465 void test_accuracy(T, const char* type_name)
466 {
467 #include "nct.ipp"
468 do_test_nc_t<T>(nct, type_name, "Non Central T");
469 quantile_sanity_check<T>(nct, type_name, "Non Central T");
470 if(std::numeric_limits<T>::is_specialized)
471 {
472 //
473 // Don't run these tests for real_concept: they take too long and don't converge
474 // without numeric_limits and lanczos support:
475 //
476 #include "nct_small_delta.ipp"
477 do_test_nc_t<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
478 quantile_sanity_check<T>(nct_small_delta, type_name, "Non Central T (small non-centrality)");
479 #include "nct_asym.ipp"
480 do_test_nc_t<T>(nct_asym, type_name, "Non Central T (large parameters)");
481 quantile_sanity_check<T>(nct_asym, type_name, "Non Central T (large parameters)");
482 }
483 }
484
485
486 template <class RealType>
test_big_df(RealType)487 void test_big_df(RealType)
488 {
489 using namespace boost::math;
490
491 if(typeid(RealType) != typeid(boost::math::concepts::real_concept))
492 { // Ordinary floats only.
493 // Could also test if (std::numeric_limits<RealType>::is_specialized);
494
495 RealType tolerance = 10 * boost::math::tools::epsilon<RealType>(); // static_cast<RealType>(1e-14); //
496 std::cout.precision(17); // Note: need to reset after calling BOOST_CHECK_s
497 // due to buglet in Boost.test that fails to restore precision correctly.
498
499 // Test for large degrees of freedom when should be same as normal.
500 RealType inf =
501 (std::numeric_limits<RealType>::has_infinity) ?
502 std::numeric_limits<RealType>::infinity()
503 :
504 boost::math::tools::max_value<RealType>();
505 RealType nan = std::numeric_limits<RealType>::quiet_NaN();
506
507 // Tests for df = max_value and infinity.
508 RealType max_val = boost::math::tools::max_value<RealType>();
509 non_central_t_distribution<RealType> maxdf(max_val, 0);
510 BOOST_CHECK_EQUAL(maxdf.degrees_of_freedom(), max_val);
511
512 non_central_t_distribution<RealType> infdf(inf, 0);
513 BOOST_CHECK_EQUAL(infdf.degrees_of_freedom(), inf);
514 BOOST_CHECK_EQUAL(mean(infdf), 0);
515 BOOST_CHECK_EQUAL(mean(maxdf), 0);
516 BOOST_CHECK_EQUAL(variance(infdf), 1);
517 BOOST_CHECK_EQUAL(variance(maxdf), 1);
518 BOOST_CHECK_EQUAL(skewness(infdf), 0);
519 BOOST_CHECK_EQUAL(skewness(maxdf), 0);
520 BOOST_CHECK_EQUAL(kurtosis_excess(infdf), 3);
521 BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(maxdf), static_cast<RealType>(3), tolerance);
522
523 // Bad df examples.
524 #ifndef BOOST_NO_EXCEPTIONS
525 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-inf, 0), std::domain_error);
526 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(nan, 0), std::domain_error);
527 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType> minfdf(-nan, 0), std::domain_error);
528 #else
529 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-inf, 0), std::domain_error);
530 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(nan, 0), std::domain_error);
531 BOOST_MATH_CHECK_THROW(non_central_t_distribution<RealType>(-nan, 0), std::domain_error);
532 #endif
533
534
535 // BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), static_cast<RealType>(0.3989422804014326779399460599343818684759L), tolerance);
536 BOOST_CHECK_CLOSE_FRACTION(pdf(maxdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
537 BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), boost::math::constants::one_div_root_two_pi<RealType>(), tolerance);
538 BOOST_CHECK_CLOSE_FRACTION(cdf(infdf, 0), boost::math::constants::half<RealType>(), tolerance);
539 BOOST_CHECK_CLOSE_FRACTION(cdf(maxdf, 0), boost::math::constants::half<RealType>(), tolerance);
540
541 // non-centrality delta = 10
542 // Degrees of freedom = Max value and = infinity should be very close.
543 non_central_t_distribution<RealType> maxdf10(max_val, 10);
544 non_central_t_distribution<RealType> infdf10(inf, 10);
545 BOOST_CHECK_EQUAL(infdf10.degrees_of_freedom(), inf);
546 BOOST_CHECK_EQUAL(infdf10.non_centrality(), 10);
547 BOOST_CHECK_EQUAL(mean(infdf10), 10);
548 BOOST_CHECK_CLOSE_FRACTION(mean(maxdf10), static_cast<RealType>(10), tolerance);
549
550 BOOST_CHECK_CLOSE_FRACTION(pdf(infdf10, 11), pdf(maxdf10, 11), tolerance); //
551
552 BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(infdf10, 11), tolerance); //
553 BOOST_CHECK_CLOSE_FRACTION(cdf(complement(maxdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
554 BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); //
555 std::cout.precision(17);
556 //std::cout << "cdf(maxdf10, 11) = " << cdf(maxdf10, 11) << ' ' << cdf(complement(maxdf10, 11)) << endl;
557 //std::cout << "cdf(infdf10, 11) = " << cdf(infdf10, 11) << ' ' << cdf(complement(infdf10, 11)) << endl;
558 //std::cout << "quantile(maxdf10, 0.5) = " << quantile(maxdf10, 0.5) << std::endl; // quantile(maxdf10, 0.5) = 10.000000000000004
559 //std::cout << "quantile(infdf10, 0.5) = " << ' ' << quantile(infdf10, 0.5) << std::endl; // quantile(infdf10, 0.5) = 10
560
561 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), static_cast<RealType>(10), tolerance);
562 BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.5), static_cast<RealType>(10), tolerance);
563
564 BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> infdf100(inf, 100);");
565 non_central_t_distribution<RealType> infdf100(inf, 100);
566 BOOST_TEST_MESSAGE("non_central_t_distribution<RealType> maxdf100(max_val, 100);");
567 non_central_t_distribution<RealType> maxdf100(max_val, 100);
568 BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);");
569 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast<RealType>(100), tolerance);
570 BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);");
571 BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast<RealType>(100), tolerance);
572 { // Loop back.
573 RealType p = static_cast<RealType>(0.01);
574 RealType x = quantile(infdf10, p);
575 RealType c = cdf(infdf10, x);
576 BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
577 }
578 {
579 RealType q = static_cast<RealType>(0.99);
580 RealType x = quantile(complement(infdf10, q));
581 RealType c = cdf(complement(infdf10, x));
582 BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance);
583 }
584 { // Loop back.
585 RealType p = static_cast<RealType>(0.99);
586 RealType x = quantile(infdf10, p);
587 RealType c = cdf(infdf10, x);
588 BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance);
589 }
590 {
591 RealType q = static_cast<RealType>(0.01);
592 RealType x = quantile(complement(infdf10, q));
593 RealType c = cdf(complement(infdf10, x));
594 BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance * 2); // c{0.0100000128} and q{0.00999999978}
595 }
596
597 //RealType cinf = quantile(infdf10, 0.25);
598 //std::cout << cinf << ' ' << cdf(infdf10, cinf) << std::endl; // 9.32551 0.25
599
600 //RealType cmax = quantile(maxdf10, 0.25);
601 //std::cout << cmax << ' ' << cdf(maxdf10, cmax) << std::endl; // 9.32551 0.25
602
603 //RealType cinfc = quantile(complement(infdf10, 0.75));
604 //std::cout << cinfc << ' ' << cdf(infdf10, cinfc) << std::endl; // 9.32551 0.25
605
606 //RealType cmaxc = quantile(complement(maxdf10, 0.75));
607 //std::cout << cmaxc << ' ' << cdf(maxdf10, cmaxc) << std::endl; // 9.32551 0.25
608
609 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), quantile(maxdf10, 0.5), tolerance); //
610 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.2), quantile(maxdf10, 0.2), tolerance); //
611 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.8), quantile(maxdf10, 0.8), tolerance); //
612
613 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.25), quantile(complement(infdf10, 0.75)), tolerance); //
614 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(infdf10, 0.5)), quantile(complement(maxdf10, 0.5)), tolerance); //
615
616 BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.25), quantile(complement(maxdf10, 0.75)), tolerance); //
617
618 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.99), quantile(complement(infdf10, 0.01)), tolerance); //
619 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.4), quantile(complement(infdf10, 0.6)), tolerance); //
620 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.01), quantile(complement(infdf10, 1 - 0.01)), tolerance); //
621 }
622 } // void test_big_df(RealType)
623
624 template <class RealType>
test_ignore_policy(RealType)625 void test_ignore_policy(RealType)
626 {
627 // Check on returns when errors are ignored.
628 if((typeid(RealType) != typeid(boost::math::concepts::real_concept))
629 && std::numeric_limits<RealType>::has_infinity
630 && std::numeric_limits<RealType>::has_quiet_NaN
631 )
632 { // Ordinary floats only.
633
634 using namespace boost::math;
635 // RealType inf = std::numeric_limits<RealType>::infinity();
636 RealType nan = std::numeric_limits<RealType>::quiet_NaN();
637
638 using boost::math::policies::policy;
639 // Types of error whose action can be altered by policies:.
640 //using boost::math::policies::evaluation_error;
641 //using boost::math::policies::domain_error;
642 //using boost::math::policies::overflow_error;
643 //using boost::math::policies::underflow_error;
644 //using boost::math::policies::domain_error;
645 //using boost::math::policies::pole_error;
646
647 //// Actions on error (in enum error_policy_type):
648 //using boost::math::policies::errno_on_error;
649 //using boost::math::policies::ignore_error;
650 //using boost::math::policies::throw_on_error;
651 //using boost::math::policies::denorm_error;
652 //using boost::math::policies::pole_error;
653 //using boost::math::policies::user_error;
654
655 typedef policy<
656 boost::math::policies::domain_error<boost::math::policies::ignore_error>,
657 boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
658 boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
659 boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
660 boost::math::policies::pole_error<boost::math::policies::ignore_error>,
661 boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
662 > ignore_all_policy;
663
664 typedef non_central_t_distribution<RealType, ignore_all_policy> ignore_error_non_central_t;
665
666 // Only test NaN and infinity if type has these features (realconcept returns zero).
667 // Integers are always converted to RealType,
668 // others requires static cast to RealType from long double.
669
670 if(std::numeric_limits<RealType>::has_quiet_NaN)
671 {
672 // Mean
673 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-nan, 0))));
674 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(+nan, 0))));
675 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-1, 0))));
676 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(0, 0))));
677 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(1, 0))));
678 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(2, nan))));
679 BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(nan, nan))));
680 BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(2, 0)))); // OK
681
682 // Variance
683 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(nan, 0))));
684 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, nan))));
685 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, nan))));
686 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(-1, 0))));
687 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(0, 0))));
688 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, 0))));
689 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(static_cast<RealType>(1.7L), 0))));
690 BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, 0))));
691
692 // Skewness
693 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
694 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(-1, 0))));
695 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(0, 0))));
696 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(1, 0))));
697 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(2, 0))));
698 BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(3, 0))));
699
700 // Kurtosis
701 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
702 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(-1, 0))));
703 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(0, 0))));
704 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(1, 0))));
705 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(2, 0))));
706 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
707 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(3, 0))));
708 BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(4, 0))));
709
710 // Kurtosis excess
711 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(std::numeric_limits<RealType>::quiet_NaN(), 0))));
712 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(-1, 0))));
713 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(0, 0))));
714 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(1, 0))));
715 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(2, 0))));
716 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
717 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(3, 0))));
718 BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(4, 0))));
719 } // has_quiet_NaN
720 BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(1 + std::numeric_limits<RealType>::epsilon(), 0))));
721 BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
722 BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(static_cast<RealType>(2.0001L), 0))));
723 BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits<RealType>::epsilon(), 0))));
724 BOOST_CHECK(boost::math::isfinite(skewness(ignore_error_non_central_t(3 + 3 * std::numeric_limits<RealType>::epsilon(), 0))));
725 BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(4 + 4 * std::numeric_limits<RealType>::epsilon(), 0))));
726 BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(static_cast<RealType>(4.0001L), 0))));
727
728 // check_out_of_range<non_central_t_distribution<RealType> >(1, 0); // Fails one check because allows df = infinity.
729 check_support<non_central_t_distribution<RealType> >(non_central_t_distribution<RealType>(1, 0));
730 } // ordinary floats.
731 } // template <class RealType> void test_ignore_policy(RealType)
732