• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import mindspore.nn as nn
16from mindspore.ops import operations as P
17
18
19class AlexNet(nn.Cell):
20    def __init__(self, num_classes=10):
21        super(AlexNet, self).__init__()
22        self.batch_size = 32
23        self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid")
24        self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same")
25        self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same")
26        self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
27        self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
28        self.relu = P.ReLU()
29        self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
30        self.flatten = nn.Flatten()
31        self.fc1 = nn.Dense(66256, 4096)
32        self.fc2 = nn.Dense(4096, 4096)
33        self.fc3 = nn.Dense(4096, num_classes)
34
35    def construct(self, x):
36        x = self.conv1(x)
37        x = self.relu(x)
38        x = self.max_pool2d(x)
39        x = self.conv2(x)
40        x = self.relu(x)
41        x = self.max_pool2d(x)
42        x = self.conv3(x)
43        x = self.relu(x)
44        x = self.conv4(x)
45        x = self.relu(x)
46        x = self.conv5(x)
47        x = self.relu(x)
48        x = self.max_pool2d(x)
49        x = self.flatten(x)
50        x = self.fc1(x)
51        x = self.relu(x)
52        x = self.fc2(x)
53        x = self.relu(x)
54        x = self.fc3(x)
55        return x
56