1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import pytest 22 23import mindspore.context as context 24import mindspore.nn as nn 25from mindspore import Tensor 26from mindspore.nn import TrainOneStepCell, WithLossCell 27from mindspore.nn.optim import Momentum 28 29context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 30 31 32class AlexNet(nn.Cell): 33 def __init__(self, num_classes=10): 34 super(AlexNet, self).__init__() 35 self.batch_size = 32 36 self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid") 37 self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same") 38 self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same") 39 self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same") 40 self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same") 41 self.relu = nn.ReLU() 42 self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid") 43 self.flatten = nn.Flatten() 44 self.fc1 = nn.Dense(6 * 6 * 256, 4096) 45 self.fc2 = nn.Dense(4096, 4096) 46 self.fc3 = nn.Dense(4096, num_classes) 47 48 def construct(self, x): 49 x = self.conv1(x) 50 x = self.relu(x) 51 x = self.max_pool2d(x) 52 x = self.conv2(x) 53 x = self.relu(x) 54 x = self.max_pool2d(x) 55 x = self.conv3(x) 56 x = self.relu(x) 57 x = self.conv4(x) 58 x = self.relu(x) 59 x = self.conv5(x) 60 x = self.relu(x) 61 x = self.max_pool2d(x) 62 x = self.flatten(x) 63 x = self.fc1(x) 64 x = self.relu(x) 65 x = self.fc2(x) 66 x = self.relu(x) 67 x = self.fc3(x) 68 return x 69 70 71@pytest.mark.level0 72@pytest.mark.platform_x86_gpu_training 73@pytest.mark.env_onecard 74def test_trainTensor(num_classes=10, epoch=15, batch_size=32): 75 net = AlexNet(num_classes) 76 lr = 0.1 77 momentum = 0.9 78 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001) 79 criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') 80 net_with_criterion = WithLossCell(net, criterion) 81 train_network = TrainOneStepCell(net_with_criterion, optimizer) 82 train_network.set_train() 83 losses = [] 84 for i in range(0, epoch): 85 data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01) 86 label = Tensor(np.ones([batch_size]).astype(np.int32)) 87 loss = train_network(data, label).asnumpy() 88 losses.append(loss) 89 assert losses[-1] < 0.01 90