• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.common.api import ms_function
22from mindspore.ops.composite import GradOperation
23
24context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
25
26
27class Grad(nn.Cell):
28    def __init__(self, network):
29        super(Grad, self).__init__()
30        self.grad = GradOperation(get_all=True, sens_param=True)
31        self.network = network
32
33    @ms_function
34    def construct(self, input_, output_grad):
35        return self.grad(self.network)(input_, output_grad)
36
37
38@pytest.mark.level0
39@pytest.mark.platform_x86_cpu
40@pytest.mark.env_onecard
41def test_net():
42    x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
43    net = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='valid')
44    out = net(Tensor(x))
45
46    out_shape = out.asnumpy().shape
47    sens = np.arange(int(np.prod(out_shape))).reshape(out_shape).astype(np.float32)
48    backword_net = Grad(net)
49    output = backword_net(Tensor(x), Tensor(sens))
50    print(len(output))
51    print(output[0].asnumpy())
52