• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20from mindspore import Tensor
21import mindspore.ops.operations._grad_ops as P
22context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
23np.random.seed(1)
24
25@pytest.mark.level0
26@pytest.mark.platform_x86_gpu_training
27@pytest.mark.env_onecard
28def test_atangrad_fp32():
29    x_np = np.random.rand(4, 2).astype(np.float32) * 10
30    dout_np = np.random.rand(4, 2).astype(np.float32) * 10
31    output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np))
32    output_np = dout_np / (1 + np.square(x_np))
33    assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
34
35@pytest.mark.level0
36@pytest.mark.platform_x86_gpu_training
37@pytest.mark.env_onecard
38def test_atangrad_fp16():
39    x_np = np.random.rand(4, 2).astype(np.float16) * 10
40    dout_np = np.random.rand(4, 2).astype(np.float16) * 10
41    output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np))
42    output_np = dout_np.astype(np.float32) / (1 + np.square(x_np.astype(np.float32)))
43    assert np.allclose(output_ms.asnumpy(), output_np.astype(np.float16), 1e-3, 1e-3)
44