• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23from mindspore.ops.operations import _inner_ops as inner
24
25class NetZerosLike(nn.Cell):
26    def __init__(self):
27        super(NetZerosLike, self).__init__()
28        self.zeros_like = P.ZerosLike()
29
30    def construct(self, x):
31        return self.zeros_like(x)
32
33
34@pytest.mark.level0
35@pytest.mark.platform_x86_gpu_training
36@pytest.mark.env_onecard
37def test_ZerosLike():
38    x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
39    x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
40
41    x0 = Tensor(x0_np)
42    x1 = Tensor(x1_np)
43
44    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
45    zeros_like = NetZerosLike()
46    output0 = zeros_like(x0)
47    expect0 = np.zeros_like(x0_np)
48    diff0 = output0.asnumpy() - expect0
49    error0 = np.ones(shape=expect0.shape) * 1.0e-5
50    assert np.all(diff0 < error0)
51    assert output0.shape == expect0.shape
52
53    output1 = zeros_like(x1)
54    expect1 = np.zeros_like(x1_np)
55    diff1 = output1.asnumpy() - expect1
56    error1 = np.ones(shape=expect1.shape) * 1.0e-5
57    assert np.all(diff1 < error1)
58    assert output1.shape == expect1.shape
59
60    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
61    zeros_like = NetZerosLike()
62    output0 = zeros_like(x0)
63    expect0 = np.zeros_like(x0_np)
64    diff0 = output0.asnumpy() - expect0
65    error0 = np.ones(shape=expect0.shape) * 1.0e-5
66    assert np.all(diff0 < error0)
67    assert output0.shape == expect0.shape
68
69    output1 = zeros_like(x1)
70    expect1 = np.zeros_like(x1_np)
71    diff1 = output1.asnumpy() - expect1
72    error1 = np.ones(shape=expect1.shape) * 1.0e-5
73    assert np.all(diff1 < error1)
74    assert output1.shape == expect1.shape
75
76
77class ZerosLikeDynamicNet(nn.Cell):
78    def __init__(self):
79        super(ZerosLikeDynamicNet, self).__init__()
80        self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
81        self.zeros_like = P.ZerosLike()
82
83    def construct(self, x):
84        converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
85        return self.zeros_like(converted_to_dynamic)
86
87
88def zeros_like_dynamic(x):
89    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
90    net = ZerosLikeDynamicNet()
91    return net(x)
92
93@pytest.mark.level1
94@pytest.mark.platform_x86_gpu_training
95@pytest.mark.env_onecard
96def test_zeros_like_dynamic_bool():
97    x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
98    output = zeros_like_dynamic(x)
99    expected = np.zeros([3, 4, 1, 2, 5])
100    np.testing.assert_array_equal(output.asnumpy(), expected)
101
102@pytest.mark.level1
103@pytest.mark.platform_x86_gpu_training
104@pytest.mark.env_onecard
105def test_zeros_like_dynamic_int8():
106    x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
107    output = zeros_like_dynamic(x)
108    expected = np.zeros([1, 4, 1, 6])
109    np.testing.assert_array_equal(output.asnumpy(), expected)
110
111@pytest.mark.level1
112@pytest.mark.platform_x86_gpu_training
113@pytest.mark.env_onecard
114def test_zeros_like_dynamic_uint8():
115    x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
116    output = zeros_like_dynamic(x)
117    expected = np.zeros([3, 2, 5])
118    np.testing.assert_array_equal(output.asnumpy(), expected)
119
120@pytest.mark.level1
121@pytest.mark.platform_x86_gpu_training
122@pytest.mark.env_onecard
123def test_zeros_like_dynamic_int32():
124    x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
125    output = zeros_like_dynamic(x)
126    expected = np.zeros([2, 2, 2, 2])
127    np.testing.assert_array_equal(output.asnumpy(), expected)
128
129@pytest.mark.level1
130@pytest.mark.platform_x86_gpu_training
131@pytest.mark.env_onecard
132def test_zeros_like_dynamic_float16():
133    x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
134    output = zeros_like_dynamic(x)
135    expected = np.zeros([3, 4, 1, 2, 5])
136    np.testing.assert_array_almost_equal(output.asnumpy(), expected)
137
138@pytest.mark.level0
139@pytest.mark.platform_x86_gpu_training
140@pytest.mark.env_onecard
141def test_zeros_like_dynamic_float32():
142    x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
143    output = zeros_like_dynamic(x)
144    expected = np.zeros([3, 7, 3])
145    np.testing.assert_array_almost_equal(output.asnumpy(), expected)
146
147@pytest.mark.level0
148@pytest.mark.platform_x86_gpu_training
149@pytest.mark.env_onecard
150def test_zeros_like_dynamic_float64():
151    x = Tensor(np.arange(2).reshape(2, 1, 1).astype(np.float64))
152    output = zeros_like_dynamic(x)
153    expected = np.zeros([2, 1, 1])
154    np.testing.assert_array_almost_equal(output.asnumpy(), expected)
155
156@pytest.mark.level0
157@pytest.mark.platform_x86_gpu_training
158@pytest.mark.env_onecard
159def test_zeros_like_dynamic_multiple_inputs():
160    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
161    net = ZerosLikeDynamicNet()
162
163    x = Tensor(np.arange(4).reshape(4).astype(np.float32))
164    output = net(x)
165    expected = np.zeros([4])
166    np.testing.assert_array_almost_equal(output.asnumpy(), expected)
167
168    x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
169    output = net(x)
170    expected = np.zeros([2, 1, 2, 2])
171    np.testing.assert_array_equal(output.asnumpy(), expected)
172
173    x = Tensor(np.arange(1).reshape(1).astype(np.float16))
174    output = net(x)
175    expected = np.zeros([1])
176    np.testing.assert_array_almost_equal(output.asnumpy(), expected)
177