• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import numpy as np
16import pytest
17
18import mindspore as ms
19from mindspore import context, Tensor, Parameter
20from mindspore.common.api import _cell_graph_executor
21from mindspore.nn import Cell, TrainOneStepCell, Momentum
22from mindspore.ops import operations as P
23
24
25class Net(Cell):
26    def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, dilation=1, group=1,
27                 strategy1=None, strategy2=None):
28        super().__init__()
29        self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size,
30                               pad_mode=pad_mode, stride=stride, dilation=dilation, group=group).shard(strategy1)
31        self.neg = P.Neg().shard(strategy2)
32        self.conv2d_weight = Parameter(conv2d_weight, "w1")
33
34    def construct(self, x, b):
35        out = self.conv2d(x, self.conv2d_weight)
36        out = self.neg(out)
37        return out
38
39
40_x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
41_x2 = Tensor(np.ones([32, 16, 10, 10]), dtype=ms.float32)
42_w0 = Tensor(np.ones([8, 16, 1, 1]), dtype=ms.float32)
43_w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32)
44_w2 = Tensor(np.ones([8, 16, 3, 3]), dtype=ms.float32)
45_w3 = Tensor(np.ones([8, 16, 5, 5]), dtype=ms.float32)
46_w4 = Tensor(np.ones([8, 8, 2, 2]), dtype=ms.float32)
47_b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
48
49
50def compile_net(net, input_x=_x):
51    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
52    train_net = TrainOneStepCell(net, optimizer)
53    train_net.set_auto_parallel()
54    train_net.set_train()
55    _cell_graph_executor.compile(train_net, input_x, _b)
56    context.reset_auto_parallel_context()
57
58
59def test_conv2d_data_parallel():
60    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
61    strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
62    strategy2 = ((8, 1, 1, 1),)
63    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
64    compile_net(net)
65
66
67def test_conv2d_data_parallel_invalid_stride():
68    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
69    strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
70    strategy2 = ((8, 1, 1, 1),)
71    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=(2, 2, 1, 1),
72              strategy1=strategy1, strategy2=strategy2)
73    with pytest.raises(RuntimeError):
74        compile_net(net)
75
76
77def test_conv2d_data_parallel_dilation():
78    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
79    strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
80    strategy2 = ((8, 1, 1, 1),)
81    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2,
82              strategy1=strategy1, strategy2=strategy2)
83    compile_net(net)
84
85
86def test_conv2d_data_parallel_group():
87    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
88    strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
89    strategy2 = ((8, 1, 1, 1),)
90    net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2,
91              strategy1=strategy1, strategy2=strategy2)
92    compile_net(net)
93
94
95def test_conv2d_model_parallel1():
96    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
97    strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1))
98    strategy2 = ((8, 1, 1, 1),)
99    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
100    compile_net(net)
101
102
103def test_conv2d_model_parallel_dilation():
104    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
105    strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1))
106    strategy2 = ((8, 1, 1, 1),)
107    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2,
108              strategy1=strategy1, strategy2=strategy2)
109    with pytest.raises(RuntimeError):
110        compile_net(net)
111
112
113def test_conv2d_model_parallel_group():
114    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
115    strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1))
116    strategy2 = ((8, 1, 1, 1),)
117    net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2,
118              strategy1=strategy1, strategy2=strategy2)
119    with pytest.raises(RuntimeError):
120        compile_net(net)
121
122
123def test_conv2d_model_parallel2():
124    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0)
125    strategy1 = ((2, 2, 2, 2), (2, 2, 1, 1))
126    strategy2 = ((32, 1, 1, 1),)
127    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
128    compile_net(net)
129
130
131def test_conv2d_model_parallel3():
132    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
133    strategy1 = ((2, 1, 1, 4), (1, 1, 1, 1))
134    strategy2 = ((2, 1, 1, 4),)
135    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
136    compile_net(net)
137
138
139def test_conv2d_auto_parallel():
140    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
141    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1)
142    compile_net(net)
143
144
145def test_conv2d_model_parallel4():
146    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0)
147    strategy1 = ((2, 2, 1, 4), (2, 2, 1, 1))
148    strategy2 = ((2, 2, 1, 4),)
149    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
150    compile_net(net)
151
152
153def test_conv2d_left_and_right_no_need_to_send():
154    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
155    strategy1 = ((2, 1, 1, 4), (1, 1, 1, 1))
156    strategy2 = ((2, 1, 1, 4),)
157    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
158    with pytest.raises(RuntimeError):
159        compile_net(net)
160
161
162def test_conv2d_kernel_size_larger_than_stride_and_split_h():
163    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0)
164    strategy1 = ((2, 2, 4, 1), (2, 2, 1, 1))
165    strategy2 = ((2, 2, 4, 1),)
166    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
167    with pytest.raises(RuntimeError):
168        compile_net(net)
169
170
171def test_conv2d_valid_mode_kernel_size_larger_than_stride():
172    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
173    strategy1 = ((2, 1, 1, 2), (1, 1, 1, 1))
174    strategy2 = ((2, 1, 1, 4),)
175    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="valid", stride=1, strategy1=strategy1, strategy2=strategy2)
176    with pytest.raises(RuntimeError):
177        compile_net(net)
178
179
180def test_conv2d_output_can_not_divisible_by_strategy():
181    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
182    strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1))
183    strategy2 = ((1, 1, 1, 8),)
184    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
185    with pytest.raises(RuntimeError):
186        compile_net(net)
187
188
189def test_conv2d_output_can_not_divisible_by_strategy2():
190    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
191    strategy1 = ((1, 1, 8, 1), (1, 1, 1, 1))
192    strategy2 = ((1, 1, 1, 8),)
193    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
194    with pytest.raises(RuntimeError):
195        compile_net(net)
196
197
198def test_split_kernel():
199    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
200    strategy1 = ((1, 1, 1, 1), (1, 1, 2, 2))
201    strategy2 = ((1, 1, 1, 8),)
202    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2)
203    with pytest.raises(RuntimeError):
204        compile_net(net)
205
206
207def test_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_same_mode():
208    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
209    strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1))
210    strategy2 = ((1, 1, 1, 8),)
211    net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2)
212    with pytest.raises(RuntimeError):
213        compile_net(net, _x2)
214
215
216def test_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_valid_mode():
217    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
218    strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1))
219    strategy2 = ((1, 1, 1, 8),)
220    net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="valid", stride=3, strategy1=strategy1, strategy2=strategy2)
221    with pytest.raises(RuntimeError):
222        compile_net(net, _x2)
223
224
225def test_h_dimension_kernel_size_smaller_than_stride_and_slice_is_not_divisible_by_stride_same_mode():
226    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
227    strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1))
228    strategy2 = ((1, 1, 1, 8),)
229    net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2)
230    with pytest.raises(RuntimeError):
231        compile_net(net, _x2)
232
233
234def test_h_dimension_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_valid_mode():
235    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
236    strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1))
237    strategy2 = ((1, 1, 1, 8),)
238    net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="valid", stride=3, strategy1=strategy1, strategy2=strategy2)
239    with pytest.raises(RuntimeError):
240        compile_net(net, _x2)
241
242
243def test_split_h_dimension_and_pad_mode_is_pad():
244    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
245    strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1))
246    strategy2 = ((1, 1, 1, 8),)
247    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="pad", stride=2, strategy1=strategy1, strategy2=strategy2)
248    with pytest.raises(RuntimeError):
249        compile_net(net)
250
251
252def test_kernel_size_larger_than_stride_and_input_can_not_divisible_by_stride():
253    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
254    strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1))
255    strategy2 = ((1, 1, 1, 8),)
256    net = Net(_w3, out_channel=8, kernel_size=5, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2)
257    with pytest.raises(RuntimeError):
258        compile_net(net, _x2)
259
260
261def test_kernel_size_larger_than_stride_and_slice_too_small():
262    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
263    strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1))
264    strategy2 = ((1, 1, 1, 8),)
265    net = Net(_w3, out_channel=8, kernel_size=5, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
266    with pytest.raises(RuntimeError):
267        compile_net(net)
268
269
270def test_conv2d_same_mode_overlap_size_equal_to_slice_shape():
271    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
272    strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1))
273    strategy2 = ((2, 1, 1, 4),)
274    net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
275    with pytest.raises(RuntimeError):
276        compile_net(net)
277
278
279def test_kernel_size_larger_than_stride_and_left_pad_is_0():
280    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
281    strategy1 = ((1, 1, 1, 4), (1, 1, 1, 1))
282    strategy2 = ((1, 1, 1, 8),)
283    net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2)
284    with pytest.raises(RuntimeError):
285        compile_net(net)
286