1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import pytest 16from mindspore.common import dtype as mstype 17from mindspore import nn 18from mindspore import Tensor 19from mindspore.ops import composite as C 20from mindspore import context 21 22context.set_context(mode=context.GRAPH_MODE) 23 24 25class ForwardNet(nn.Cell): 26 def construct(self, x, y): 27 y = y + 10 28 while x < y: 29 x = (x + 2) * (y - 9) 30 y = y + 2 31 x = x + 5 32 return x 33 34 35class BackwardNet(nn.Cell): 36 def __init__(self, forward_net): 37 super(BackwardNet, self).__init__() 38 self.forward_net = forward_net 39 self.grad = C.GradOperation() 40 41 def construct(self, *inputs): 42 grads = self.grad(self.forward_net)(*inputs) 43 return grads 44 45 46@pytest.mark.level0 47@pytest.mark.platform_x86_gpu_training 48@pytest.mark.platform_arm_ascend_training 49@pytest.mark.platform_x86_ascend_training 50@pytest.mark.env_onecard 51def test_forward(): 52 c1 = Tensor([0], mstype.int32) 53 c2 = Tensor([0], mstype.int32) 54 expect = Tensor([75], mstype.int32) 55 forward_net = ForwardNet() 56 output = forward_net(c1, c2) 57 assert expect == output 58 59 60@pytest.mark.level0 61@pytest.mark.platform_x86_gpu_training 62@pytest.mark.platform_arm_ascend_training 63@pytest.mark.platform_x86_ascend_training 64@pytest.mark.env_onecard 65def test_backward(): 66 c1 = Tensor([0], mstype.int32) 67 c2 = Tensor([0], mstype.int32) 68 expect = Tensor([75], mstype.int32) 69 forward_net = ForwardNet() 70 output = forward_net(c1, c2) 71 assert expect == output 72