• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.common.api import ms_function
21from mindspore.common.initializer import initializer
22from mindspore.common.parameter import Parameter
23from mindspore.ops import operations as P
24from mindspore.ops.composite import GradOperation
25
26# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
27context.set_context(device_target="Ascend")
28
29
30class Grad(nn.Cell):
31    def __init__(self, network):
32        super(Grad, self).__init__()
33        self.grad = GradOperation(get_all=True, sens_param=True)
34        self.network = network
35
36    @ms_function
37    def construct(self, input_, output_grad):
38        return self.grad(self.network)(input_, output_grad)
39
40
41class Net(nn.Cell):
42    def __init__(self):
43        super(Net, self).__init__()
44        self.bn = P.BatchNorm()
45        self.scale = Parameter(initializer('ones', [64]), name='scale')
46        self.b = Parameter(initializer('zeros', [64]), name='b')
47        self.mean = Parameter(initializer('ones', [64]), name='mean')
48        self.variance = Parameter(initializer('zeros', [64]), name='variance')
49
50    def construct(self, x):
51        return self.bn(x, self.scale, self.b, self.mean, self.variance)[0]
52
53
54def test_net():
55    x = np.random.randn(1, 64, 112, 112).astype(np.float32)
56    sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
57    net = Grad(Net())
58    output = net(Tensor(x), Tensor(sens))
59    print("***********x*********")
60    print(x)
61
62    print("***********output y*********")
63    print(output.asnumpy())
64