1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20from mindspore import Tensor 21from mindspore.ops import operations as P 22 23 24@pytest.mark.level0 25@pytest.mark.platform_x86_cpu 26@pytest.mark.env_onecard 27def test_topk(): 28 context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 29 30 x_np = np.random.rand(3, 4).astype(np.float32) 31 k = 4 32 ms_output = P.TopK(True)(Tensor(x_np), k) 33 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 34 assert np.allclose(ms_output[0].asnumpy(), np_output) 35 36 x_np = np.random.rand(3, 4).astype(np.float32) 37 k = 4 38 ms_output = P.TopK(False)(Tensor(x_np), k) 39 assert np.allclose(ms_output[0].asnumpy(), x_np) 40 41 x_np = np.random.rand(2, 3, 4).astype(np.float32) 42 k = 2 43 ms_output = P.TopK(True)(Tensor(x_np), k) 44 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 45 assert np.allclose(ms_output[0].asnumpy(), np_output) 46 47 x_np = np.random.rand(512, 1024).astype(np.float32) 48 k = 512 49 ms_output = P.TopK(True)(Tensor(x_np), k) 50 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 51 assert np.allclose(ms_output[0].asnumpy(), np_output) 52 53 # sorted elements num greater than max thread per block 54 x_np = np.random.rand(512, 2048).astype(np.float32) 55 k = 1 56 ms_output = P.TopK(True)(Tensor(x_np), k) 57 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 58 assert np.allclose(ms_output[0].asnumpy(), np_output) 59 60 x_np = np.random.rand(512, 2048).astype(np.float32) 61 k = 2048 62 ms_output = P.TopK(True)(Tensor(x_np), k) 63 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 64 assert np.allclose(ms_output[0].asnumpy(), np_output) 65 66 # sorted elements num greater than max share memory per block 67 x_np = np.random.rand(512, 40960).astype(np.float32) 68 k = 1 69 ms_output = P.TopK(True)(Tensor(x_np), k) 70 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 71 assert np.allclose(ms_output[0].asnumpy(), np_output) 72 73 x_np = np.random.rand(512, 40960).astype(np.float32) 74 k = 40960 75 ms_output = P.TopK(True)(Tensor(x_np), k) 76 np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] 77 assert np.allclose(ms_output[0].asnumpy(), np_output) 78 79 x_np = np.random.rand(512, 40960).astype(np.float32) 80 k = 40960 81 ms_output = P.TopK(False)(Tensor(x_np), k) 82 assert np.allclose(ms_output[0].asnumpy(), x_np) 83