/third_party/mindspore/mindspore/numpy/ |
D | dtypes.py | 18 float16, float32, float64, bool_) 34 float_ = float32 65 float32, 82 'float32': float32, 128 (uint8, float32): float32, 131 (uint16, float32): float32, 132 (uint16, float64): float32, 134 (uint32, float32): float32, 137 (uint64, float32): float32, 146 (int8, float32): float32, [all …]
|
/third_party/mindspore/tests/ut/python/pynative_mode/vm/ |
D | test_vm.py | 26 [-2., -1., -2., -15.]]]]).astype(np.float32) 40 [13, 14, 15, 16]]]]).astype(np.float32) 65 [2, 4, 5, 2, 3, 9]]]]).astype(np.float32) 66 weight = np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32) 72 [-3., -2., -3., -16.]]]]).astype(np.float32) 84 [2, 4, 5, 2, 3, 9]]]]).astype(np.float32) 85 weight = np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32) 86 bias = np.array([1]).astype(np.float32) 92 [-2., -1., -2., -15.]]]]).astype(np.float32) 104 [2, 4, 5, 2, 3, 9]]]]).astype(np.float32) [all …]
|
/third_party/mindspore/tests/ut/python/ops/ |
D | test_nn_ops_check.py | 67 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 72 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 83 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 144 …'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float… 145 Tensor(np.ones([5, 3]).astype(np.float32)), None, None], 150 …'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)… 151 … Tensor(np.ones([3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float16)), 152 Tensor(np.ones([3]).astype(np.float32))], 157 …'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float… 158 … Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)), [all …]
|
D | test_math_ops_check.py | 85 …'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float… 104 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 110 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 117 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 123 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 143 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 149 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 156 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 162 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], 169 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], [all …]
|
/third_party/mindspore/config/ |
D | op_info.config | 2 …oat16", "DefaultFormat"]], [["int32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", … 4 …float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "D… 5 …t16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float32", "DefaultFormat"], ["float32", … 6 …float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "D… 7 …float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["int32", "DefaultFormat"], ["float64"… 8 …float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "D… 9 …t16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float32", "DefaultFormat"], ["float32", … 10 …float32", "DefaultFormat"]], [["int64", "DefaultFormat"], ["int16", "DefaultFormat"], ["int64", "D… 15 …loat16", "DefaultFormat"], ["bool", "DefaultFormat"]], [["float32", "DefaultFormat"], ["float32", … 16 …loat16", "DefaultFormat"], ["bool", "DefaultFormat"]], [["float32", "DefaultFormat"], ["float32", … [all …]
|
/third_party/skia/third_party/externals/oboe/samples/RhythmGame/third_party/glm/detail/ |
D | glm.cpp | 19 template struct tvec1<float32, lowp>; 30 template struct tvec1<float32, mediump>; 41 template struct tvec1<float32, highp>; 53 template struct tvec2<float32, lowp>; 64 template struct tvec2<float32, mediump>; 75 template struct tvec2<float32, highp>; 87 template struct tvec3<float32, lowp>; 98 template struct tvec3<float32, mediump>; 109 template struct tvec3<float32, highp>; 121 template struct tvec4<float32, lowp>; [all …]
|
/third_party/mindspore/tests/ut/python/nn/ |
D | test_loss.py | 26 input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32)) 27 target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32)) 33 input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32)) 34 target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32)) 43 logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) 44 labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) 52 logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) 53 labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) 61 inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32)) 62 target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32)) [all …]
|
/third_party/mindspore/tests/ut/python/nn/gradient/ |
D | test_jvp_pynative.py | 47 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 48 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 54 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 55 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 61 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 62 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 68 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 69 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 75 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 76 y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) [all …]
|
D | test_jvp_graph.py | 48 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 49 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 55 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 56 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 62 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 63 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 69 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 70 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 76 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 77 y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) [all …]
|
/third_party/mindspore/tests/st/auto_monad/ |
D | test_effect_optimizer.py | 45 var = Tensor(np.ones([3, 3, 3]).astype(np.float32)) 46 m = Tensor(np.ones([3, 3, 3]).astype(np.float32)) 47 v = Tensor(np.ones([3, 3, 3]).astype(np.float32)) 50 beta1_power = Tensor(0.9, mstype.float32) 51 beta2_power = Tensor(0.999, mstype.float32) 52 lr = Tensor(0.001, mstype.float32) 53 beta1 = Tensor(0.9, mstype.float32) 54 beta2 = Tensor(0.999, mstype.float32) 55 epsilon = Tensor(1e-8, mstype.float32) 56 grad = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_fake_quant_perchannel.py | 44 x = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) 45 min_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) 46 max_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) 47 expect = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) 65 x = np.array([-0.1, 0.0, 63.75, 63.8]).astype(np.float32) 66 min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32) 67 max_val = np.array([63.65, 63.65, 63.65, 63.65]).astype(np.float32) 68 expect = np.array([0.0, 0.0, 63.75, 63.75]).astype(np.float32) 86 x = np.array([-0.1, 0.0, 63.5, 63.6]).astype(np.float32) 87 min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32) [all …]
|
D | test_fake_quant_perlayer.py | 52 x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).reshape(2, 3).astype(np.float32) 53 min_val = np.array([0]).reshape(1).astype(np.float32) 54 max_val = np.array([0]).reshape(1).astype(np.float32) 55 expect = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).astype(np.float32) 74 x = np.array([-10.1, -10.0, -9.9, -9.75, 53.75, 53.8]).reshape(2, 3).astype(np.float32) 75 min_val = np.array([-10.0]).reshape(1).astype(np.float32) 76 max_val = np.array([53.75]).reshape(1).astype(np.float32) 77 expect = np.array([-10.0, -10.0, -10.0, -9.75, 53.75, 53.75]).astype(np.float32) 94 x = np.array([-10.1, -10.0, -9.90, -9.75, 53.5, 53.6]).reshape(2, 3).astype(np.float32) 95 min_val = np.array([-10.0]).reshape(1).astype(np.float32) [all …]
|
D | test_layer_norm_grad_grad_op.py | 117 x_np = np.random.randn(4096, 3072).astype(np.float32) 118 dy_np = np.random.randn(4096, 3072).astype(np.float32) 119 gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) 121 grad_dx_np = np.random.randn(*x_np.shape).astype(np.float32) 122 grad_dg_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) 123 grad_db_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) 132 dy_ms = Tensor(dy_np.astype(np.float32)) 133 x_ms = Tensor(x_np.astype(np.float32)) 134 var_ms = Tensor(var_np.astype(np.float32)) 135 mean_ms = Tensor(mean_np.astype(np.float32)) [all …]
|
D | test_nll_loss.py | 71 if nptype_input == np.float32 and nptype_weight == np.float32: 76 if nptype_weight == np.float32: 118 if nptype_input == np.float32 and nptype_weight == np.float32: 131 nll_loss_template(np.float32, np.float32, "none") 132 nll_loss_template(np.float32, np.float16, "none") 133 nll_loss_template(np.float16, np.float32, "none") 142 nll_loss_template(np.float32, np.float32, "mean") 143 nll_loss_template(np.float32, np.float16, "mean") 144 nll_loss_template(np.float16, np.float32, "mean") 153 nll_loss_template(np.float32, np.float32, "sum") [all …]
|
/third_party/mindspore/tests/st/gradient/ |
D | test_jvp_graph.py | 51 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 52 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 54 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) 55 expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) 65 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 66 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 68 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) 69 expect_grad = Tensor(np.array([[3, 24], [81, 192]]).astype(np.float32)) 79 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 80 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) [all …]
|
D | test_jvp_pynative.py | 50 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 51 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) 53 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) 54 expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) 64 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 65 v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 67 expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) 68 expect_grad = Tensor(np.array([[3, 24], [81, 192]]).astype(np.float32)) 78 x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) 79 v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) [all …]
|
/third_party/mindspore/tests/st/probability/distribution/ |
D | test_gumbel.py | 33 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32) 42 loc = np.array([0.0]).astype(np.float32) 43 scale = np.array([[1.0], [2.0]]).astype(np.float32) 45 value = np.array([1.0, 2.0]).astype(np.float32) 46 expect_pdf = gumbel_benchmark.pdf(value).astype(np.float32) 48 output = pdf(Tensor(value, dtype=dtype.float32)) 58 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32) 67 loc = np.array([0.0]).astype(np.float32) 68 scale = np.array([[1.0], [2.0]]).astype(np.float32) 70 expect_logpdf = gumbel_benchmark.logpdf([1.0, 2.0]).astype(np.float32) [all …]
|
D | test_uniform.py | 32 self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32) 42 expect_pdf = uniform_benchmark.pdf([-1.0, 0.0, 0.5, 1.0, 1.5, 3.0]).astype(np.float32) 44 x_ = Tensor(np.array([-1.0, 0.0, 0.5, 1.0, 1.5, 3.0]).astype(np.float32), dtype=dtype.float32) 55 self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32) 65 expect_logpdf = uniform_benchmark.logpdf([0.5]).astype(np.float32) 67 x_ = Tensor(np.array([0.5]).astype(np.float32), dtype=dtype.float32) 78 self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32) 93 output = kl(Tensor(low_b, dtype=dtype.float32), Tensor(high_b, dtype=dtype.float32)) 103 self.u = msd.Uniform([0.0], [3.0], dtype=dtype.float32) 126 self.u = msd.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32) [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_batchdot_op.py | 71 x1 = np.ones(shape=shape_x1).astype(np.float32) 72 x2 = np.ones(shape=shape_x2).astype(np.float32) 73 x1_tensor = Tensor(x1, dtype=mindspore.float32) 74 x2_tensor = Tensor(x2, dtype=mindspore.float32) 86 x1 = np.random.random(shape_x1).astype(np.float32) 87 x2 = np.random.random(shape_x2).astype(np.float32) 88 x1_tensor = Tensor(x1, dtype=mindspore.float32) 89 x2_tensor = Tensor(x2, dtype=mindspore.float32) 101 x1 = np.random.random(shape_x1).astype(np.float32) 102 x2 = np.random.random(shape_x2).astype(np.float32) [all …]
|
/third_party/mindspore/tests/ut/python/nn/probability/distribution/ |
D | test_utils.py | 34 tensor_fp32 = Tensor(0.1, dtype=dtype.float32) 37 array_fp32 = np.array(1.0).astype(np.float32) 54 assert ans1 == dtype.float32 57 set_param_type(dict2, dtype.float32) 60 assert ans3 == dtype.float32 62 assert ans4 == dtype.float32 65 set_param_type(dict5, dtype.float32) 67 set_param_type(dict6, dtype.float32) 69 ans7 = set_param_type(dict7, dtype.float32) 70 assert ans7 == dtype.float32 [all …]
|
D | test_uniform.py | 32 msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) 56 u = msd.Uniform([3.0], [4.0], dtype=dtype.float32) 65 msd.Uniform(0.0, 0.0, dtype=dtype.float32) 67 msd.Uniform(1.0, 0.0, dtype=dtype.float32) 77 self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32) 94 value = Tensor([3.1, 3.2, 3.3, 3.4], dtype=dtype.float32) 106 self.u = msd.Uniform(dtype=dtype.float32) 123 value = Tensor([0.1, 0.2, 0.3, 0.9], dtype=dtype.float32) 124 low = Tensor([0.0], dtype=dtype.float32) 125 high = Tensor([1.0], dtype=dtype.float32) [all …]
|
D | test_beta.py | 31 msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) 69 g = msd.Gamma([3.0], [4.0], dtype=dtype.float32) 79 self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32) 91 value = Tensor([0.5, 1.0], dtype=dtype.float32) 114 value = Tensor([0.5, 1.0], dtype=dtype.float32) 115 concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32) 116 concentration0 = Tensor([1.0], dtype=dtype.float32) 126 self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) 127 self.g2 = msd.Gamma(dtype=dtype.float32) 139 concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) [all …]
|
/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_bprop.py | 37 self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') 47 grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), 48 Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['inputs']) 53 …ds = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.flo… 54 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 55 Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs']) 60 …ds = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.flo… 61 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 62 Tensor(np.ones([2, 2]).astype(np.float32)))) 68 …rads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.flo… [all …]
|
/third_party/mindspore/tests/st/ops/graph_kernel/ |
D | test_fused_adam.py | 40 Tensor(np.array([1, 3, 5]).astype(np.float32)), name='param') 42 Tensor(np.array([0.11, 0.33, 0.55]).astype(np.float32)), name='m') 44 Tensor(np.array([1.2, 3.4, 5.6]).astype(np.float32)), name='v') 48 param_fp32 = self.op_cast(self.param, mstype.float32) 49 m_fp32 = self.op_cast(self.m, mstype.float32) 50 v_fp32 = self.op_cast(self.v, mstype.float32) 51 gradient_fp32 = self.op_cast(gradient, mstype.float32) 55 mstype.float32), gradient_fp32) 57 … mstype.float32), self.op_square(gradient_fp32)) 82 Tensor(np.array([0, 0, 0]).astype(np.float32)), name='param') [all …]
|
/third_party/mindspore/tests/ut/python/pynative_mode/nn/ |
D | test_tensor_operation.py | 22 x = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 23 y = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 29 x = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 30 y = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 36 x = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 37 y = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 45 x = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 46 y = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 54 x = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) 55 y = Tensor(np.ones([3, 3, 3, 3]).astype(np.float32)) [all …]
|