/third_party/mindspore/tests/ut/python/parallel/ |
D | test_different_type_for_div_op.py | 46 def __init__(self, strategy0, strategy1): argument 48 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 57 strategy0 = ((4, 1), (4, 1)) 59 net = GradWrap(Net(strategy0, strategy1)) 69 def __init__(self, strategy0, strategy1): argument 71 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 80 strategy0 = ((4, 1), (4, 1)) 82 net = GradWrap(Net(strategy0, strategy1)) 92 def __init__(self, strategy0, strategy1): argument 94 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) [all …]
|
D | test_reshape.py | 67 def __init__(self, strategy0, strategy1, strategy2): argument 69 self.relu = P.ReLU().shard(strategy0) 81 def reshape_net(strategy0, strategy1, strategy2): argument 82 return ReshapeNet(strategy0=strategy0, strategy1=strategy1, strategy2=strategy2) 85 def reshape_common(parallel_mode, strategy0, strategy1, strategy2, strategy_loss): argument 95 net = reshape_net(strategy0, strategy1, strategy2) 106 strategy0 = ((8, 1, 1, 1),) 110 reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) 114 strategy0 = ((8, 1, 1, 1),) 119 … reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) [all …]
|
D | test_sum_as_loss.py | 46 def __init__(self, strategy0, strategy1): argument 48 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 57 strategy0 = ((4, 1), (4, 1)) 59 net = GradWrap(Net(strategy0, strategy1)) 69 def __init__(self, strategy0, strategy1): argument 71 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 80 strategy0 = ((4, 1), (4, 1)) 82 net = GradWrap(Net(strategy0, strategy1))
|
D | test_virtual_dataset_with_strategy.py | 87 strategy0 = ((1, 8), (1, 8), (1, 8)) 88 context.set_auto_parallel_context(dataset_strategy=strategy0) 101 strategy0 = ((1, 8), (1, 8), (1, 8)) 102 context.set_auto_parallel_context(dataset_strategy=strategy0) 115 strategy0 = ((1, 8), (1, 8), (8,)) 116 context.set_auto_parallel_context(dataset_strategy=strategy0) 129 strategy0 = ((1, 8), (1, 8), (8,)) 130 context.set_auto_parallel_context(dataset_strategy=strategy0) 143 strategy0 = ((1, 8), (1, 8), (1,)) 144 context.set_auto_parallel_context(dataset_strategy=strategy0) [all …]
|
D | test_add_relu_redistribution.py | 30 def __init__(self, strategy0=None, strategy1=None): argument 32 self.add = P.Add().shard(strategy=strategy0) 70 strategy0 = ((1, 1), (1, 1)) 72 net = Grad(NetWithLoss(AddRelu(strategy0, strategy1))) 83 strategy0 = ((8, 1), (8, 1)) 85 net = Grad(NetWithLoss(AddRelu(strategy0, strategy1)))
|
D | test_scalar_loss.py | 41 def __init__(self, strategy0, strategy1): argument 43 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 55 strategy0 = ((4, 1), (4, 1)) 57 net = GradWrap(Net(strategy0, strategy1))
|
D | test_linear.py | 51 def __init__(self, strategy0, strategy1, strategy2): argument 53 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 65 strategy0 = ((2, 4), (2, 4)) 69 net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2), strategy3))
|
D | test_split_grad_sens.py | 162 def __init__(self, strategy0, strategy1): argument 164 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 173 strategy0 = ((4, 1), (4, 1)) 175 net = GradWrap4(Net(strategy0, strategy1))
|
/third_party/mindspore/mindspore/ccsrc/frontend/parallel/auto_parallel/ |
D | operator_costmodel.cc | 1089 auto strategy0 = shape[0] / slice_shape[0]; in IsDataParallel() local 1091 return (total_device_num == LongToSize(strategy0)); in IsDataParallel()
|