• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21  *     Permission to use, copy, modify, and distribute this
22  *     software is freely granted, provided that this notice
23  *     is preserved.
24  *
25  *     @(#)e_acos.c 1.3 95/01/18
26  */
27 
28 #include "jerry-libm-internal.h"
29 
30 /* acos(x)
31  *
32  * Method:
33  *      acos(x)  = pi/2 - asin(x)
34  *      acos(-x) = pi/2 + asin(x)
35  * For |x|<=0.5
36  *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c)
37  * For x>0.5
38  *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
39  *              = 2asin(sqrt((1-x)/2))
40  *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z)
41  *              = 2f + (2c + 2s*z*R(z))
42  *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
43  *     for f so that f+c ~ sqrt(z).
44  * For x<-0.5
45  *      acos(x) = pi - 2asin(sqrt((1-|x|)/2))
46  *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
47  *
48  * Special cases:
49  *      if x is NaN, return x itself;
50  *      if |x|>1, return NaN with invalid signal.
51  *
52  * Function needed: sqrt
53  */
54 
55 #define one      1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */
56 #define pi       3.14159265358979311600e+00 /* 0x400921FB, 0x54442D18 */
57 #define pio2_hi  1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */
58 #define pio2_lo  6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */
59 #define pS0      1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */
60 #define pS1     -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */
61 #define pS2      2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */
62 #define pS3     -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */
63 #define pS4      7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */
64 #define pS5      3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */
65 #define qS1     -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */
66 #define qS2      2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */
67 #define qS3     -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */
68 #define qS4      7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */
69 
70 double
acos(double x)71 acos (double x)
72 {
73   double z, p, q, r, w, s, c;
74   int hx, ix;
75 
76   hx = __HI (x);
77   ix = hx & 0x7fffffff;
78   if (ix >= 0x3ff00000) /* |x| >= 1 */
79   {
80     if (((ix - 0x3ff00000) | __LO (x)) == 0) /* |x| == 1 */
81     {
82       if (hx > 0) /* acos(1) = 0  */
83       {
84         return 0.0;
85       }
86       else /* acos(-1) = pi */
87       {
88         return pi + 2.0 * pio2_lo;
89       }
90     }
91     return NAN; /* acos(|x|>1) is NaN */
92   }
93   if (ix < 0x3fe00000) /* |x| < 0.5 */
94   {
95     if (ix <= 0x3c600000) /* if |x| < 2**-57 */
96     {
97       return pio2_hi + pio2_lo;
98     }
99     z = x * x;
100     p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
101     q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
102     r = p / q;
103     return pio2_hi - (x - (pio2_lo - x * r));
104   }
105   else if (hx < 0) /* x < -0.5 */
106   {
107     z = (one + x) * 0.5;
108     p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
109     q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
110     s = sqrt (z);
111     r = p / q;
112     w = r * s - pio2_lo;
113     return pi - 2.0 * (s + w);
114   }
115   else /* x > 0.5 */
116   {
117     double_accessor df;
118     z = (one - x) * 0.5;
119     s = sqrt (z);
120     df.dbl = s;
121     df.as_int.lo = 0;
122     c = (z - df.dbl * df.dbl) / (s + df.dbl);
123     p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
124     q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
125     r = p / q;
126     w = r * s + c;
127     return 2.0 * (df.dbl + w);
128   }
129 } /* acos */
130 
131 #undef one
132 #undef pi
133 #undef pio2_hi
134 #undef pio2_lo
135 #undef pS0
136 #undef pS1
137 #undef pS2
138 #undef pS3
139 #undef pS4
140 #undef pS5
141 #undef qS1
142 #undef qS2
143 #undef qS3
144 #undef qS4
145