• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import datetime
16import numpy as np
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.common import dtype as mstype
22from mindspore.communication.management import init, get_group_size
23from mindspore.nn import TrainOneStepCell, WithLossCell
24from mindspore.nn.optim import Momentum
25from mindspore.ops import operations as P
26
27context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
28init()
29
30epoch = 5
31total = 5000
32batch_size = 32
33mini_batch = total // batch_size
34
35
36class LeNet(nn.Cell):
37    def __init__(self):
38        super(LeNet, self).__init__()
39
40        self.relu = P.ReLU()
41        self.batch_size = 32
42        weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
43        weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
44        self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
45        self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
46        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
47        self.reshape = P.Reshape()
48
49        weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01)
50        self.fc1 = nn.Dense(400, 120, weight_init=weight1)
51
52        weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01)
53        self.fc2 = nn.Dense(120, 84, weight_init=weight2)
54
55        weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01)
56        self.fc3 = nn.Dense(84, 10, weight_init=weight3)
57
58    def construct(self, input_x):
59        output = self.conv1(input_x)
60        output = self.relu(output)
61        output = self.pool(output)
62        output = self.conv2(output)
63        output = self.relu(output)
64        output = self.pool(output)
65        output = self.reshape(output, (self.batch_size, -1))
66        output = self.fc1(output)
67        output = self.fc2(output)
68        output = self.fc3(output)
69        return output
70
71
72def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
73    lr = []
74    for step in range(total_steps):
75        lr_ = base_lr * gamma ** (step // gap)
76        lr.append(lr_)
77    return Tensor(np.array(lr), dtype)
78
79
80def test_lenet_nccl():
81    context.set_auto_parallel_context(parallel_mode="data_parallel", gradients_mean=True, device_num=get_group_size())
82    net = LeNet()
83    net.set_train()
84
85    learning_rate = multisteplr(epoch, 2)
86    momentum = 0.9
87    mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
88    criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
89    net_with_criterion = WithLossCell(net, criterion)
90    train_network = TrainOneStepCell(net_with_criterion, mom_optimizer)
91    train_network.set_train()
92    losses = []
93
94    data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
95    label = Tensor(np.ones([net.batch_size]).astype(np.int32))
96    start = datetime.datetime.now()
97    for _ in range(epoch):
98        for _ in range(mini_batch):
99            loss = train_network(data, label)
100            losses.append(loss.asnumpy())
101    end = datetime.datetime.now()
102    with open("ms_time.txt", "w") as fo1:
103        fo1.write("time:")
104        fo1.write(str(end - start))
105    with open("ms_loss.txt", "w") as fo2:
106        fo2.write("loss:")
107        fo2.write(str(losses[-5:]))
108    assert losses[-1] < 0.01
109