• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.common.api import ms_function
22from mindspore.ops import operations as P
23from mindspore.ops.composite import GradOperation
24
25context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
26
27
28class Grad(nn.Cell):
29    def __init__(self, network):
30        super(Grad, self).__init__()
31        self.grad = GradOperation(get_all=True, sens_param=True)
32        self.network = network
33
34    @ms_function
35    def construct(self, input_, output_grad):
36        return self.grad(self.network)(input_, output_grad)
37
38
39class Net(nn.Cell):
40    def __init__(self):
41        super(Net, self).__init__()
42        self.ops = P.Neg()
43
44    def construct(self, x):
45        return self.ops(x)
46
47@pytest.mark.level0
48@pytest.mark.platform_x86_cpu
49@pytest.mark.env_onecard
50def test_net():
51    x = np.random.randn(2, 3, 3, 4).astype(np.float32)
52    y_expect = -x
53    net = Net()
54    out = net(Tensor(x))
55    assert (out.asnumpy() == y_expect).all()
56    sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
57    backword_net = Grad(Net())
58    output = backword_net(Tensor(x), Tensor(sens))
59    print(len(output))
60    print(output[0].asnumpy())
61