• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20from mindspore.common.tensor import Tensor
21from mindspore.nn import Cell
22from mindspore.ops import operations as P
23from mindspore.ops.operations import _inner_ops as inner
24
25
26class NetEqual(Cell):
27    def __init__(self):
28        super(NetEqual, self).__init__()
29        self.Equal = P.Equal()
30
31    def construct(self, x, y):
32        return self.Equal(x, y)
33
34
35class NetEqualDynamic(Cell):
36    def __init__(self):
37        super(NetEqualDynamic, self).__init__()
38        self.conv = inner.GpuConvertToDynamicShape()
39        self.Equal = P.Equal()
40
41    def construct(self, x, y):
42        x_conv = self.conv(x)
43        y_conv = self.conv(y)
44        return self.Equal(x_conv, y_conv)
45
46
47class NetNotEqual(Cell):
48    def __init__(self):
49        super(NetNotEqual, self).__init__()
50        self.NotEqual = P.NotEqual()
51
52    def construct(self, x, y):
53        return self.NotEqual(x, y)
54
55
56class NetGreaterEqual(Cell):
57    def __init__(self):
58        super(NetGreaterEqual, self).__init__()
59        self.GreaterEqual = P.GreaterEqual()
60
61    def construct(self, x, y):
62        return self.GreaterEqual(x, y)
63
64@pytest.mark.level0
65@pytest.mark.platform_x86_gpu_training
66@pytest.mark.env_onecard
67def test_equal():
68    x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
69    x0 = Tensor(x0_np)
70    y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
71    y0 = Tensor(y0_np)
72    expect0 = np.equal(x0_np, y0_np)
73    x1_np = np.array([0, 1, 3]).astype(np.float32)
74    x1 = Tensor(x1_np)
75    y1_np = np.array([0]).astype(np.float32)
76    y1 = Tensor(y1_np)
77    expect1 = np.equal(x1_np, y1_np)
78    x2_np = np.array([0, 1, 3]).astype(np.int32)
79    x2 = Tensor(x2_np)
80    y2_np = np.array([0]).astype(np.int32)
81    y2 = Tensor(y2_np)
82    expect2 = np.equal(x2_np, y2_np)
83    x3_np = np.array([0, 1, 3]).astype(np.int16)
84    x3 = Tensor(x3_np)
85    y3_np = np.array([0, 1, -3]).astype(np.int16)
86    y3 = Tensor(y3_np)
87    expect3 = np.equal(x3_np, y3_np)
88    x4_np = np.array([0, 1, 4]).astype(np.uint8)
89    x4 = Tensor(x4_np)
90    y4_np = np.array([0, 1, 3]).astype(np.uint8)
91    y4 = Tensor(y4_np)
92    expect4 = np.equal(x4_np, y4_np)
93    x5_np = np.array([True, False, True]).astype(bool)
94    x5 = Tensor(x5_np)
95    y5_np = np.array([True, False, False]).astype(bool)
96    y5 = Tensor(y5_np)
97    expect5 = np.equal(x5_np, y5_np)
98    x6_np = np.array([0, 1, 4]).astype(np.int8)
99    x6 = Tensor(x6_np)
100    y6_np = np.array([0, 1, 3]).astype(np.int8)
101    y6 = Tensor(y6_np)
102    expect6 = np.equal(x6_np, y6_np)
103    x7_np = np.array([0, 1, 4]).astype(np.int64)
104    x7 = Tensor(x7_np)
105    y7_np = np.array([0, 1, 3]).astype(np.int64)
106    y7 = Tensor(y7_np)
107    expect7 = np.equal(x7_np, y7_np)
108    x8_np = np.array([0, 1, 4]).astype(np.float16)
109    x8 = Tensor(x8_np)
110    y8_np = np.array([0, 1, 3]).astype(np.float16)
111    y8 = Tensor(y8_np)
112    expect8 = np.equal(x8_np, y8_np)
113    x9_np = np.array([0, 1, 4]).astype(np.float64)
114    x9 = Tensor(x9_np)
115    y9_np = np.array([0, 1, 3]).astype(np.float64)
116    y9 = Tensor(y9_np)
117    expect9 = np.equal(x9_np, y9_np)
118
119    x = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]
120    y = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9]
121    expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6, expect7, expect8, expect9]
122
123    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
124    equal = NetEqual()
125    for i, xi in enumerate(x):
126        output = equal(xi, y[i])
127        assert np.all(output.asnumpy() == expect[i])
128        assert output.shape == expect[i].shape
129        print('test [%d/%d] passed!' % (i, len(x)))
130
131    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
132    equal = NetEqual()
133    for i, xi in enumerate(x):
134        output = equal(xi, y[i])
135        assert np.all(output.asnumpy() == expect[i])
136        assert output.shape == expect[i].shape
137        print('test [%d/%d] passed!' % (i, len(x)))
138
139@pytest.mark.level0
140@pytest.mark.platform_x86_gpu_training
141@pytest.mark.env_onecard
142def test_notequal():
143    x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
144    y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
145    expect0 = np.array([[True, True], [False, True]])
146    x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
147    y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
148    expect1 = np.array([[True, True], [False, True]])
149    x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
150    y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
151    expect2 = np.array([[True, True], [False, False]])
152    x3 = Tensor(np.array([[False, True], [True, False]]).astype(bool))
153    y3 = Tensor(np.array([[True, False]]).astype(bool))
154    expect3 = np.array([[True, True], [False, False]])
155    x4 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float16))
156    y4 = Tensor(np.array([[1, 2]]).astype(np.float16))
157    expect4 = np.array([[True, True], [False, True]])
158    x5 = Tensor(np.array([[2, 1], [1, 0]]).astype(np.int64))
159    y5 = Tensor(np.array([[1, 2]]).astype(np.int64))
160    expect5 = np.array([[True, True], [False, True]])
161    x6 = Tensor(np.array([[2, 1], [1, 0]]).astype(np.int32))
162    y6 = Tensor(np.array([[1, 2], [1, 2]]).astype(np.int32))
163    expect6 = np.array([[True, True], [False, True]])
164
165    x = [x0, x1, x2, x3, x4, x5, x6]
166    y = [y0, y1, y2, y3, y4, y5, y6]
167    expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6]
168
169    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
170    notequal = NetNotEqual()
171    for i, xi in enumerate(x):
172        output = notequal(xi, y[i])
173        assert np.all(output.asnumpy() == expect[i])
174        assert output.shape == expect[i].shape
175        print('test [%d/%d] passed!' % (i, len(x)))
176
177    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
178    notequal = NetNotEqual()
179    for i, xi in enumerate(x):
180        output = notequal(xi, y[i])
181        assert np.all(output.asnumpy() == expect[i])
182        assert output.shape == expect[i].shape
183        print('test [%d/%d] passed!' % (i, len(x)))
184
185@pytest.mark.level0
186@pytest.mark.platform_x86_gpu_training
187@pytest.mark.env_onecard
188def test_greaterqual():
189    x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
190    y0 = Tensor(np.array([[1, 2], [1, 2]]).astype(np.float32))
191    expect0 = np.array([[True, False], [True, False]])
192    x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
193    y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
194    expect1 = np.array([[True, False], [True, False]])
195    x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
196    y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
197    expect2 = np.array([[True, False], [True, True]])
198
199    x3 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.float64))
200    y3 = Tensor(np.array([[1, 2]]).astype(np.float64))
201    expect3 = np.array([[True, False], [True, True]])
202    x4 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.float16))
203    y4 = Tensor(np.array([[1, 2]]).astype(np.float16))
204    expect4 = np.array([[True, False], [True, True]])
205    x5 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int64))
206    y5 = Tensor(np.array([[1, 2]]).astype(np.int64))
207    expect5 = np.array([[True, False], [True, False]])
208    x6 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int32))
209    y6 = Tensor(np.array([[1, 2]]).astype(np.int32))
210    expect6 = np.array([[True, False], [True, False]])
211    x7 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int8))
212    y7 = Tensor(np.array([[1, 2]]).astype(np.int8))
213    expect7 = np.array([[True, False], [True, False]])
214
215    x = [x0, x1, x2, x3, x4, x5, x6, x7]
216    y = [y0, y1, y2, y3, y4, y5, y6, y7]
217    expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6, expect7]
218
219    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
220    gequal = NetGreaterEqual()
221    for i, xi in enumerate(x):
222        output = gequal(xi, y[i])
223        assert np.all(output.asnumpy() == expect[i])
224        assert output.shape == expect[i].shape
225        print('test [%d/%d] passed!' % (i, len(x)))
226
227    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
228    gequal = NetGreaterEqual()
229    for i, xi in enumerate(x):
230        output = gequal(xi, y[i])
231        assert np.all(output.asnumpy() == expect[i])
232        assert output.shape == expect[i].shape
233        print('test [%d/%d] passed!' % (i, len(x)))
234
235
236@pytest.mark.level0
237@pytest.mark.platform_x86_gpu_training
238@pytest.mark.env_onecard
239def test_equal_dynamic_shape():
240    x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
241    x0 = Tensor(x0_np)
242    y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
243    y0 = Tensor(y0_np)
244    expect0 = np.equal(x0_np, y0_np)
245
246    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
247    equal = NetEqualDynamic()
248    output0 = equal(x0, y0)
249    assert np.all(output0.asnumpy() == expect0)
250    assert output0.shape == expect0.shape
251