• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/addn.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestAddN : public UT::Common {
28  public:
TestAddN()29   TestAddN() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestAddN,test_ops_addn1)34 TEST_F(TestAddN, test_ops_addn1) {
35   auto addn = std::make_shared<AddN>();
36   auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
37   auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
38   MS_EXCEPTION_IF_NULL(tensor_x1);
39   MS_EXCEPTION_IF_NULL(tensor_x2);
40   auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2});
41   auto abstract = addn->Infer({input_tuple->ToAbstract()});
42   MS_EXCEPTION_IF_NULL(abstract);
43   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
44   auto shape_ptr = abstract->BuildShape();
45   MS_EXCEPTION_IF_NULL(shape_ptr);
46   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
47   auto shape = shape_ptr->cast<abstract::ShapePtr>();
48   MS_EXCEPTION_IF_NULL(shape);
49   auto shape_vec = shape->shape();
50   auto type = abstract->BuildType();
51   MS_EXCEPTION_IF_NULL(type);
52   EXPECT_EQ(type->isa<TensorType>(), true);
53   auto tensor_type = type->cast<TensorTypePtr>();
54   MS_EXCEPTION_IF_NULL(tensor_type);
55   auto data_type = tensor_type->element();
56   MS_EXCEPTION_IF_NULL(data_type);
57   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
58   EXPECT_EQ(shape_vec.size(), 4);
59   EXPECT_EQ(shape_vec[0], 3);
60   EXPECT_EQ(shape_vec[1], 2);
61   EXPECT_EQ(shape_vec[2], 7);
62   EXPECT_EQ(shape_vec[3], 7);
63 }
64 
TEST_F(TestAddN,test_ops_addn2)65 TEST_F(TestAddN, test_ops_addn2) {
66   auto addn = std::make_shared<AddN>();
67   auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
68   auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
69   auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeBool, std::vector<int64_t>{3, 4, 5});
70   MS_EXCEPTION_IF_NULL(tensor_x1);
71   MS_EXCEPTION_IF_NULL(tensor_x2);
72   MS_EXCEPTION_IF_NULL(tensor_x3);
73   auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
74   auto abstract = addn->Infer({input_tuple->ToAbstract()});
75   MS_EXCEPTION_IF_NULL(abstract);
76   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
77   auto shape_ptr = abstract->BuildShape();
78   MS_EXCEPTION_IF_NULL(shape_ptr);
79   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
80   auto shape = shape_ptr->cast<abstract::ShapePtr>();
81   MS_EXCEPTION_IF_NULL(shape);
82   auto shape_vec = shape->shape();
83   auto type = abstract->BuildType();
84   MS_EXCEPTION_IF_NULL(type);
85   EXPECT_EQ(type->isa<TensorType>(), true);
86   auto tensor_type = type->cast<TensorTypePtr>();
87   MS_EXCEPTION_IF_NULL(tensor_type);
88   auto data_type = tensor_type->element();
89   MS_EXCEPTION_IF_NULL(data_type);
90   EXPECT_EQ(data_type->type_id(), kNumberTypeBool);
91   EXPECT_EQ(shape_vec.size(), 3);
92   EXPECT_EQ(shape_vec[0], 3);
93   EXPECT_EQ(shape_vec[1], 4);
94   EXPECT_EQ(shape_vec[2], 5);
95 }
96 }  // namespace ops
97 }  // namespace mindspore
98