• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""
16Testing UniformAugment in DE
17"""
18import numpy as np
19import pytest
20
21import mindspore.dataset as ds
22import mindspore.dataset.transforms.py_transforms
23import mindspore.dataset.vision.c_transforms as C
24import mindspore.dataset.vision.py_transforms as F
25from mindspore import log as logger
26from util import visualize_list, diff_mse
27
28DATA_DIR = "../data/dataset/testImageNetData/train/"
29
30
31def test_uniform_augment_callable(num_ops=2):
32    """
33    Test UniformAugment is callable
34    """
35    logger.info("test_uniform_augment_callable")
36    img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
37    logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
38
39    decode_op = C.Decode()
40    img = decode_op(img)
41    assert img.shape == (2268, 4032, 3)
42
43    transforms_ua = [C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32]),
44                     C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32])]
45    uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
46    img = uni_aug(img)
47    assert img.shape == (2268, 4032, 3) or img.shape == (400, 400, 3)
48
49
50def test_uniform_augment(plot=False, num_ops=2):
51    """
52    Test UniformAugment
53    """
54    logger.info("Test UniformAugment")
55
56    # Original Images
57    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
58
59    transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
60                                                                              F.Resize((224, 224)),
61                                                                              F.ToTensor()])
62
63    ds_original = data_set.map(operations=transforms_original, input_columns="image")
64
65    ds_original = ds_original.batch(512)
66
67    for idx, (image, _) in enumerate(ds_original):
68        if idx == 0:
69            images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
70        else:
71            images_original = np.append(images_original,
72                                        np.transpose(image.asnumpy(), (0, 2, 3, 1)),
73                                        axis=0)
74
75            # UniformAugment Images
76    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
77
78    transform_list = [F.RandomRotation(45),
79                      F.RandomColor(),
80                      F.RandomSharpness(),
81                      F.Invert(),
82                      F.AutoContrast(),
83                      F.Equalize()]
84
85    transforms_ua = \
86        mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
87                                                            F.Resize((224, 224)),
88                                                            F.UniformAugment(transforms=transform_list,
89                                                                             num_ops=num_ops),
90                                                            F.ToTensor()])
91
92    ds_ua = data_set.map(operations=transforms_ua, input_columns="image")
93
94    ds_ua = ds_ua.batch(512)
95
96    for idx, (image, _) in enumerate(ds_ua):
97        if idx == 0:
98            images_ua = np.transpose(image.asnumpy(), (0, 2, 3, 1))
99        else:
100            images_ua = np.append(images_ua,
101                                  np.transpose(image.asnumpy(), (0, 2, 3, 1)),
102                                  axis=0)
103
104    num_samples = images_original.shape[0]
105    mse = np.zeros(num_samples)
106    for i in range(num_samples):
107        mse[i] = diff_mse(images_ua[i], images_original[i])
108    logger.info("MSE= {}".format(str(np.mean(mse))))
109
110    if plot:
111        visualize_list(images_original, images_ua)
112
113
114def test_cpp_uniform_augment(plot=False, num_ops=2):
115    """
116    Test UniformAugment
117    """
118    logger.info("Test CPP UniformAugment")
119
120    # Original Images
121    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
122
123    transforms_original = [C.Decode(), C.Resize(size=[224, 224]),
124                           F.ToTensor()]
125
126    ds_original = data_set.map(operations=transforms_original, input_columns="image")
127
128    ds_original = ds_original.batch(512)
129
130    for idx, (image, _) in enumerate(ds_original):
131        if idx == 0:
132            images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
133        else:
134            images_original = np.append(images_original,
135                                        np.transpose(image.asnumpy(), (0, 2, 3, 1)),
136                                        axis=0)
137
138    # UniformAugment Images
139    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
140    transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
141                     C.RandomHorizontalFlip(),
142                     C.RandomVerticalFlip(),
143                     C.RandomColorAdjust(),
144                     C.RandomRotation(degrees=45)]
145
146    uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
147
148    transforms_all = [C.Decode(), C.Resize(size=[224, 224]),
149                      uni_aug,
150                      F.ToTensor()]
151
152    ds_ua = data_set.map(operations=transforms_all, input_columns="image", num_parallel_workers=1)
153
154    ds_ua = ds_ua.batch(512)
155
156    for idx, (image, _) in enumerate(ds_ua):
157        if idx == 0:
158            images_ua = np.transpose(image.asnumpy(), (0, 2, 3, 1))
159        else:
160            images_ua = np.append(images_ua,
161                                  np.transpose(image.asnumpy(), (0, 2, 3, 1)),
162                                  axis=0)
163    if plot:
164        visualize_list(images_original, images_ua)
165
166    num_samples = images_original.shape[0]
167    mse = np.zeros(num_samples)
168    for i in range(num_samples):
169        mse[i] = diff_mse(images_ua[i], images_original[i])
170    logger.info("MSE= {}".format(str(np.mean(mse))))
171
172
173def test_cpp_uniform_augment_exception_pyops(num_ops=2):
174    """
175    Test UniformAugment invalid op in operations
176    """
177    logger.info("Test CPP UniformAugment invalid OP exception")
178
179    transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
180                     C.RandomHorizontalFlip(),
181                     C.RandomVerticalFlip(),
182                     C.RandomColorAdjust(),
183                     C.RandomRotation(degrees=45),
184                     F.Invert()]
185
186    with pytest.raises(TypeError) as e:
187        C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
188
189    logger.info("Got an exception in DE: {}".format(str(e)))
190    assert "Type of Transforms[5] must be c_transform" in str(e.value)
191
192
193def test_cpp_uniform_augment_exception_large_numops(num_ops=6):
194    """
195    Test UniformAugment invalid large number of ops
196    """
197    logger.info("Test CPP UniformAugment invalid large num_ops exception")
198
199    transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
200                     C.RandomHorizontalFlip(),
201                     C.RandomVerticalFlip(),
202                     C.RandomColorAdjust(),
203                     C.RandomRotation(degrees=45)]
204
205    try:
206        _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
207
208    except Exception as e:
209        logger.info("Got an exception in DE: {}".format(str(e)))
210        assert "num_ops" in str(e)
211
212
213def test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0):
214    """
215    Test UniformAugment invalid non-positive number of ops
216    """
217    logger.info("Test CPP UniformAugment invalid non-positive num_ops exception")
218
219    transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
220                     C.RandomHorizontalFlip(),
221                     C.RandomVerticalFlip(),
222                     C.RandomColorAdjust(),
223                     C.RandomRotation(degrees=45)]
224
225    try:
226        _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
227
228    except Exception as e:
229        logger.info("Got an exception in DE: {}".format(str(e)))
230        assert "Input num_ops must be greater than 0" in str(e)
231
232
233def test_cpp_uniform_augment_exception_float_numops(num_ops=2.5):
234    """
235    Test UniformAugment invalid float number of ops
236    """
237    logger.info("Test CPP UniformAugment invalid float num_ops exception")
238
239    transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
240                     C.RandomHorizontalFlip(),
241                     C.RandomVerticalFlip(),
242                     C.RandomColorAdjust(),
243                     C.RandomRotation(degrees=45)]
244
245    try:
246        _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
247
248    except Exception as e:
249        logger.info("Got an exception in DE: {}".format(str(e)))
250        assert "Argument num_ops with value 2.5 is not of type [<class 'int'>]" in str(e)
251
252
253def test_cpp_uniform_augment_random_crop_badinput(num_ops=1):
254    """
255    Test UniformAugment with greater crop size
256    """
257    logger.info("Test CPP UniformAugment with random_crop bad input")
258    batch_size = 2
259    cifar10_dir = "../data/dataset/testCifar10Data"
260    ds1 = ds.Cifar10Dataset(cifar10_dir, shuffle=False)  # shape = [32,32,3]
261
262    transforms_ua = [
263        # Note: crop size [224, 224] > image size [32, 32]
264        C.RandomCrop(size=[224, 224]),
265        C.RandomHorizontalFlip()
266    ]
267    uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
268    ds1 = ds1.map(operations=uni_aug, input_columns="image")
269
270    # apply DatasetOps
271    ds1 = ds1.batch(batch_size, drop_remainder=True, num_parallel_workers=1)
272    num_batches = 0
273    try:
274        for _ in ds1.create_dict_iterator(num_epochs=1, output_numpy=True):
275            num_batches += 1
276    except Exception as e:
277        assert "crop size" in str(e)
278
279
280if __name__ == "__main__":
281    test_uniform_augment_callable(num_ops=2)
282    test_uniform_augment(num_ops=1, plot=True)
283    test_cpp_uniform_augment(num_ops=1, plot=True)
284    test_cpp_uniform_augment_exception_pyops(num_ops=1)
285    test_cpp_uniform_augment_exception_large_numops(num_ops=6)
286    test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0)
287    test_cpp_uniform_augment_exception_float_numops(num_ops=2.5)
288    test_cpp_uniform_augment_random_crop_badinput(num_ops=1)
289