1 /*
2 * Copyright 2020 Google LLC.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h"
9
10 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
11 #include "src/gpu/glsl/GrGLSLVarying.h"
12 #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
13 #include "src/gpu/tessellate/WangsFormula.h"
14
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)15 void GrStrokeTessellationShader::HardwareImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
16 const auto& shader = args.fGeomProc.cast<GrStrokeTessellationShader>();
17 auto* uniHandler = args.fUniformHandler;
18 auto* v = args.fVertBuilder;
19
20 args.fVaryingHandler->emitAttributes(shader);
21
22 v->defineConstant("float", "PI", "3.141592653589793238");
23
24 // The vertex shader chops the curve into 3 sections in order to meet our tessellation
25 // requirements. The stroke tessellator does not allow curve sections to inflect or to rotate
26 // more than 180 degrees.
27 //
28 // We start by chopping at inflections (if the curve has any), or else at midtangent. If we
29 // still don't have 3 sections after that then we just subdivide uniformly in parametric space.
30 using TypeModifier = GrShaderVar::TypeModifier;
31 v->defineConstantf("float", "kParametricEpsilon", "1.0 / (%i * 128)",
32 args.fShaderCaps->maxTessellationSegments()); // 1/128 of a segment.
33
34 // [numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent.xy]
35 v->declareGlobal(GrShaderVar("vsJoinArgs0", kFloat4_GrSLType, TypeModifier::Out));
36
37 // [radsPerJoinSegment, joinOutsetClamp.xy]
38 v->declareGlobal(GrShaderVar("vsJoinArgs1", kFloat3_GrSLType, TypeModifier::Out));
39
40 // Curve args.
41 v->declareGlobal(GrShaderVar("vsPts01", kFloat4_GrSLType, TypeModifier::Out));
42 v->declareGlobal(GrShaderVar("vsPts23", kFloat4_GrSLType, TypeModifier::Out));
43 v->declareGlobal(GrShaderVar("vsPts45", kFloat4_GrSLType, TypeModifier::Out));
44 v->declareGlobal(GrShaderVar("vsPts67", kFloat4_GrSLType, TypeModifier::Out));
45 v->declareGlobal(GrShaderVar("vsPts89", kFloat4_GrSLType, TypeModifier::Out));
46 v->declareGlobal(GrShaderVar("vsTans01", kFloat4_GrSLType, TypeModifier::Out));
47 v->declareGlobal(GrShaderVar("vsTans23", kFloat4_GrSLType, TypeModifier::Out));
48 if (shader.hasDynamicStroke()) {
49 // [NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS]
50 v->declareGlobal(GrShaderVar("vsStrokeArgs", kFloat2_GrSLType, TypeModifier::Out));
51 }
52 if (shader.hasDynamicColor()) {
53 v->declareGlobal(GrShaderVar("vsColor", kHalf4_GrSLType, TypeModifier::Out));
54 }
55
56 v->insertFunction(kCosineBetweenVectorsFn);
57 v->insertFunction(kMiterExtentFn);
58 v->insertFunction(kUncheckedMixFn);
59 if (shader.hasDynamicStroke()) {
60 v->insertFunction(kNumRadialSegmentsPerRadianFn);
61 }
62
63 if (!shader.hasDynamicStroke()) {
64 // [PARAMETRIC_PRECISION, NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS]
65 const char* tessArgsName;
66 fTessControlArgsUniform = uniHandler->addUniform(nullptr,
67 kVertex_GrShaderFlag |
68 kTessControl_GrShaderFlag |
69 kTessEvaluation_GrShaderFlag,
70 kFloat4_GrSLType, "tessArgs",
71 &tessArgsName);
72 v->codeAppendf(R"(
73 float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.y;
74 float JOIN_TYPE = %s.z;)", tessArgsName, tessArgsName);
75 } else {
76 const char* parametricPrecisionName;
77 fTessControlArgsUniform = uniHandler->addUniform(nullptr,
78 kVertex_GrShaderFlag |
79 kTessControl_GrShaderFlag |
80 kTessEvaluation_GrShaderFlag,
81 kFloat_GrSLType, "parametricPrecision",
82 ¶metricPrecisionName);
83 v->codeAppendf(R"(
84 float STROKE_RADIUS = dynamicStrokeAttr.x;
85 float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian(%s,STROKE_RADIUS);
86 float JOIN_TYPE = dynamicStrokeAttr.y;)", parametricPrecisionName);
87 }
88
89 fTranslateUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag,
90 kFloat2_GrSLType, "translate", nullptr);
91 // View matrix uniforms.
92 const char* affineMatrixName;
93 // Hairlines apply the affine matrix in their vertex shader, prior to tessellation.
94 // Otherwise the entire view matrix gets applied at the end of the tess eval shader.
95 auto affineMatrixVisibility = kTessEvaluation_GrShaderFlag;
96 if (shader.stroke().isHairlineStyle()) {
97 affineMatrixVisibility |= kVertex_GrShaderFlag;
98 }
99 fAffineMatrixUniform = uniHandler->addUniform(nullptr, affineMatrixVisibility, kFloat4_GrSLType,
100 "affineMatrix", &affineMatrixName);
101 if (affineMatrixVisibility & kVertex_GrShaderFlag) {
102 v->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s);\n", affineMatrixName);
103 }
104
105 v->codeAppend(R"(
106 // Unpack the control points.
107 float2 prevControlPoint = prevCtrlPtAttr;
108 float4x2 P = float4x2(pts01Attr.xy, pts01Attr.zw, pts23Attr.xy, pts23Attr.zw);)");
109
110 if (shader.stroke().isHairlineStyle()) {
111 // Hairline case. Transform the points before tessellation. We can still hold off on the
112 // translate until the end; we just need to perform the scale and skew right now.
113 v->codeAppend(R"(
114 P = AFFINE_MATRIX * P;
115 if (isinf(pts23Attr.w)) {
116 // If y3 is infinity then x3 is a conic weight. Don't transform.
117 P[3] = pts23Attr.zw;
118 }
119 prevControlPoint = AFFINE_MATRIX * prevControlPoint;)");
120 }
121
122 v->codeAppend(R"(
123 // Find the tangents. It's imperative that we compute these tangents from the original
124 // (pre-chopping) input points or else the seams might crack.
125 float2 prevJoinTangent = P[0] - prevControlPoint;
126 float2 tan0 = ((P[1] == P[0]) ? P[2] : P[1]) - P[0];
127 float2 tan1 = (P[3] == P[2] || isinf(P[3].y)) ? P[2] - P[1] : P[3] - P[2];
128
129 if (tan0 == float2(0)) {
130 // [p0, p0, p0, p3] is a reserved pattern that means this patch is a "bowtie".
131 P[3] = P[0]; // Colocate all the points on the center of the bowtie.
132 // Use the final curve section to draw the bowtie. Since the points are colocated, this
133 // curve will register as a line, which overrides innerTangents as [tan0, tan0]. That
134 // disables the first two sections of the curve because their tangents and points are all
135 // equal.
136 tan0 = prevJoinTangent;
137 prevJoinTangent = float2(0); // Disable the join section.
138 }
139
140 if (tan1 == float2(0)) {
141 // [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only. Colocate all
142 // the curve's points to ensure it gets disabled by the tessellation stages.
143 P[1] = P[2] = P[3] = P[0];
144 // Since the points are colocated, this curve will register as a line, which overrides
145 // innerTangents as [tan0, tan0]. Setting tan1=tan0 as well results in all tangents and all
146 // points being equal, which disables every section of the curve.
147 tan1 = tan0;
148 }
149
150 // Calculate the number of segments to chop the join into.
151 float cosTheta = cosine_between_vectors(prevJoinTangent, tan0);
152 float joinRotation = (cosTheta == 1) ? 0 : acos(cosTheta);
153 if (cross(prevJoinTangent, tan0) < 0) {
154 joinRotation = -joinRotation;
155 }
156 float joinRadialSegments = abs(joinRotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN;
157 float numSegmentsInJoin = (joinRadialSegments != 0 /*Is the join non-empty?*/ &&
158 JOIN_TYPE >= 0 /*Is the join not a round type?*/)
159 ? sign(JOIN_TYPE) + 1 // Non-empty bevel joins have 1 segment and miters have 2.
160 : ceil(joinRadialSegments); // Otherwise round up the number of radial segments.
161
162 // Extends the middle join edge to the miter point.
163 float innerJoinRadiusMultiplier = 1;
164 if (JOIN_TYPE > 0 /*Is the join a miter type?*/) {
165 innerJoinRadiusMultiplier = miter_extent(cosTheta, JOIN_TYPE/*miterLimit*/);
166 }
167
168 // Clamps join geometry to the exterior side of the junction.
169 float2 joinOutsetClamp = float2(-1, 1);
170 if (joinRadialSegments > .1 /*Does the join rotate more than 1/10 of a segment?*/) {
171 // Only clamp if the join angle is large enough to guarantee there won't be cracks on
172 // the interior side of the junction.
173 joinOutsetClamp = (joinRotation < 0) ? float2(-1, 0) : float2(0, 1);
174 }
175
176 // Pack join args for the tessellation control stage.
177 vsJoinArgs0 = float4(numSegmentsInJoin, innerJoinRadiusMultiplier, prevJoinTangent);
178 vsJoinArgs1 = float3(joinRotation / numSegmentsInJoin, joinOutsetClamp);
179
180 // Now find where to chop the curve so the resulting sub-curves are convex and do not rotate
181 // more than 180 degrees. We don't need to worry about cusps because the caller chops those out
182 // on the CPU. Start by finding the cubic's power basis coefficients. These define the bezier
183 // curve as:
184 //
185 // |T^3|
186 // Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0
187 // |. . .| |T |
188 //
189 // And the tangent direction (scaled by a uniform 1/3) will be:
190 //
191 // |T^2|
192 // Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
193 // |. . .| |1 |
194 //
195 float2 C = P[1] - P[0];
196 float2 D = P[2] - P[1];
197 float2 E = P[3] - P[0];
198 float2 B = D - C;
199 float2 A = fma(float2(-3), D, E);
200
201 // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
202 // We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0.
203 // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
204 // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
205 float a = cross(A, B);
206 float b = cross(A, C);
207 float c = cross(B, C);
208 float b_over_2 = b*.5;
209 float discr_over_4 = b_over_2*b_over_2 - a*c;
210
211 float2x2 innerTangents = float2x2(0);
212 if (discr_over_4 <= 0) {
213 // The curve does not inflect. This means it might rotate more than 180 degrees instead.
214 // Craft a quadratic whose roots are the points were rotation == 180 deg and 0. (These are
215 // the points where the tangent is parallel to tan0.)
216 //
217 // Tangent_Direction(T) x tan0 == 0
218 // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
219 // (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]]
220 // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]]
221 //
222 // NOTE: When P0 == P1 then C != tan0, C == 0 and these roots will be undefined. But that's
223 // ok because when P0 == P1 the curve cannot rotate more than 180 degrees anyway.
224 a = b;
225 b_over_2 = c;
226 c = 0;
227 discr_over_4 = b_over_2*b_over_2;
228 innerTangents[0] = -C;
229 }
230
231 // Solve our quadratic equation for the chop points. This is inspired by the quadratic formula
232 // from Numerical Recipes in C.
233 float q = sqrt(discr_over_4);
234 if (b_over_2 > 0) {
235 q = -q;
236 }
237 q -= b_over_2;
238 float2 chopT = float2((a != 0) ? q/a : 0,
239 (q != 0) ? c/q : 0);
240
241 // Reposition any chop points that fall outside ~0..1 and clear their innerTangent.
242 int numOutside = 0;
243 if (chopT[0] <= kParametricEpsilon || chopT[0] >= 1 - kParametricEpsilon) {
244 innerTangents[0] = float2(0);
245 ++numOutside;
246 }
247 if (chopT[1] <= kParametricEpsilon || chopT[1] >= 1 - kParametricEpsilon) {
248 // Swap places with chopT[0]. This ensures chopT[0] is outside when numOutside > 0.
249 chopT = chopT.ts;
250 innerTangents = float2x2(0,0, innerTangents[0]);
251 ++numOutside;
252 }
253 if (numOutside == 2) {
254 chopT[1] = 2/3.0;
255 }
256 if (numOutside >= 1) {
257 chopT[0] = (chopT[1] <= .5) ? chopT[1] * .5 : fma(chopT[1], .5, .5);
258 }
259
260 // Sort the chop points.
261 if (chopT[0] > chopT[1]) {
262 chopT = chopT.ts;
263 innerTangents = float2x2(innerTangents[1], innerTangents[0]);
264 }
265
266 // If the curve is a straight line, point, or conic, don't chop it into sections after all.
267 if ((P[0] == P[1] && P[2] == P[3]) || isinf(P[3].y)) {
268 chopT = float2(0);
269 innerTangents = float2x2(tan0, tan0);
270 }
271
272 // Chop the curve at chopT[0] and chopT[1].
273 float4 ab = unchecked_mix(P[0].xyxy, P[1].xyxy, chopT.sstt);
274 float4 bc = unchecked_mix(P[1].xyxy, P[2].xyxy, chopT.sstt);
275 float4 cd = isinf(P[3].y) ? P[2].xyxy : unchecked_mix(P[2].xyxy, P[3].xyxy, chopT.sstt);
276 float4 abc = unchecked_mix(ab, bc, chopT.sstt);
277 float4 bcd = unchecked_mix(bc, cd, chopT.sstt);
278 float4 abcd = unchecked_mix(abc, bcd, chopT.sstt);
279 float4 middle = unchecked_mix(abc, bcd, chopT.ttss);
280
281 // Find tangents at the chop points if an inner tangent wasn't specified.
282 if (innerTangents[0] == float2(0)) {
283 innerTangents[0] = bcd.xy - abc.xy;
284 }
285 if (innerTangents[1] == float2(0)) {
286 innerTangents[1] = bcd.zw - abc.zw;
287 }
288
289 // Pack curve args for the tessellation control stage.
290 vsPts01 = float4(P[0], ab.xy);
291 vsPts23 = float4(abc.xy, abcd.xy);
292 vsPts45 = middle;
293 vsPts67 = float4(abcd.zw, bcd.zw);
294 vsPts89 = float4(cd.zw, P[3]);
295 vsTans01 = float4(tan0, innerTangents[0]);
296 vsTans23 = float4(innerTangents[1], tan1);)");
297 if (shader.hasDynamicStroke()) {
298 v->codeAppend(R"(
299 vsStrokeArgs = float2(NUM_RADIAL_SEGMENTS_PER_RADIAN, STROKE_RADIUS);)");
300 }
301 if (shader.hasDynamicColor()) {
302 v->codeAppend(R"(
303 vsColor = dynamicColorAttr;)");
304 }
305
306 if (shader.hasDynamicColor()) {
307 // Color gets passed in from the tess evaluation shader.
308 fDynamicColorName = "dynamicColor";
309 SkString flatness(args.fShaderCaps->preferFlatInterpolation() ? "flat" : "");
310 args.fFragBuilder->declareGlobal(GrShaderVar(fDynamicColorName, kHalf4_GrSLType,
311 TypeModifier::In, 0, SkString(), flatness));
312 }
313 this->emitFragmentCode(shader, args);
314 }
315
getTessControlShaderGLSL(const GrGeometryProcessor & geomProc,const char * versionAndExtensionDecls,const GrGLSLUniformHandler & uniformHandler,const GrShaderCaps & shaderCaps) const316 SkString GrStrokeTessellationShader::HardwareImpl::getTessControlShaderGLSL(
317 const GrGeometryProcessor& geomProc,
318 const char* versionAndExtensionDecls,
319 const GrGLSLUniformHandler& uniformHandler,
320 const GrShaderCaps& shaderCaps) const {
321 const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
322 SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation);
323
324 SkString code(versionAndExtensionDecls);
325 // Run 3 invocations: 1 for each section that the vertex shader chopped the curve into.
326 code.append("layout(vertices = 3) out;\n");
327 code.appendf("precision highp float;\n");
328
329 code.appendf("#define float2 vec2\n");
330 code.appendf("#define float3 vec3\n");
331 code.appendf("#define float4 vec4\n");
332 code.appendf("#define float2x2 mat2\n");
333 code.appendf("#define float3x2 mat3x2\n");
334 code.appendf("#define float4x2 mat4x2\n");
335 code.appendf("#define PI 3.141592653589793238\n");
336 code.appendf("#define MAX_TESSELLATION_SEGMENTS %i.0\n", shaderCaps.maxTessellationSegments());
337 code.appendf("#define cross cross2d\n"); // GLSL already has a function named "cross".
338
339 const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform);
340 if (!shader.hasDynamicStroke()) {
341 code.appendf("uniform vec4 %s;\n", tessArgsName);
342 code.appendf("#define PARAMETRIC_PRECISION %s.x\n", tessArgsName);
343 code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN %s.y\n", tessArgsName);
344 } else {
345 code.appendf("uniform float %s;\n", tessArgsName);
346 code.appendf("#define PARAMETRIC_PRECISION %s\n", tessArgsName);
347 code.appendf("#define NUM_RADIAL_SEGMENTS_PER_RADIAN vsStrokeArgs[0].x\n");
348 }
349
350 code.append(skgpu::wangs_formula::as_sksl());
351 code.append(kCosineBetweenVectorsFn);
352 code.append(kMiterExtentFn);
353 code.append(R"(
354 float cross2d(vec2 a, vec2 b) {
355 return determinant(mat2(a,b));
356 })");
357
358 code.append(R"(
359 in vec4 vsJoinArgs0[];
360 in vec3 vsJoinArgs1[];
361 in vec4 vsPts01[];
362 in vec4 vsPts23[];
363 in vec4 vsPts45[];
364 in vec4 vsPts67[];
365 in vec4 vsPts89[];
366 in vec4 vsTans01[];
367 in vec4 vsTans23[];)");
368 if (shader.hasDynamicStroke()) {
369 code.append(R"(
370 in vec2 vsStrokeArgs[];)");
371 }
372 if (shader.hasDynamicColor()) {
373 code.append(R"(
374 in mediump vec4 vsColor[];)");
375 }
376
377 code.append(R"(
378 out vec4 tcsPts01[];
379 out vec4 tcsPt2Tan0[];
380 out vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment]
381 patch out vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier,
382 // prevJoinTangent.xy]
383 patch out vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy]
384 patch out vec4 tcsEndPtEndTan;)");
385 if (shader.hasDynamicStroke()) {
386 code.append(R"(
387 patch out float tcsStrokeRadius;)");
388 }
389 if (shader.hasDynamicColor()) {
390 code.append(R"(
391 patch out mediump vec4 tcsColor;)");
392 }
393
394 code.append(R"(
395 void main() {
396 // Forward join args to the evaluation stage.
397 tcsJoinArgs0 = vsJoinArgs0[0];
398 tcsJoinArgs1 = vsJoinArgs1[0];)");
399 if (shader.hasDynamicStroke()) {
400 code.append(R"(
401 tcsStrokeRadius = vsStrokeArgs[0].y;)");
402 }
403 if (shader.hasDynamicColor()) {
404 code.append(R"(
405 tcsColor = vsColor[0];)");
406 }
407
408 code.append(R"(
409 // Unpack the curve args from the vertex shader.
410 mat4x2 P;
411 mat2 tangents;
412 if (gl_InvocationID == 0) {
413 // This is the first section of the curve.
414 P = mat4x2(vsPts01[0], vsPts23[0]);
415 tangents = mat2(vsTans01[0]);
416 } else if (gl_InvocationID == 1) {
417 // This is the middle section of the curve.
418 P = mat4x2(vsPts23[0].zw, vsPts45[0], vsPts67[0].xy);
419 tangents = mat2(vsTans01[0].zw, vsTans23[0].xy);
420 } else {
421 // This is the final section of the curve.
422 P = mat4x2(vsPts67[0], vsPts89[0]);
423 tangents = mat2(vsTans23[0]);
424 }
425
426 // Calculate the number of parametric segments. The final tessellated strip will be a
427 // composition of these parametric segments as well as radial segments.
428 float w = isinf(P[3].y) ? P[3].x : -1.0; // w<0 means the curve is an integral cubic.
429 float numParametricSegments;
430 if (w < 0.0) {
431 numParametricSegments = wangs_formula_cubic(PARAMETRIC_PRECISION, P[0], P[1], P[2],
432 P[3], mat2(1));
433 } else {
434 numParametricSegments = wangs_formula_conic(PARAMETRIC_PRECISION, P[0], P[1], P[2], w);
435 }
436 if (P[0] == P[1] && P[2] == P[3]) {
437 // This is how the patch builder articulates lineTos but Wang's formula returns
438 // >>1 segment in this scenario. Assign 1 parametric segment.
439 numParametricSegments = 1.0;
440 }
441
442 // Determine the curve's total rotation. The vertex shader ensures our curve does not rotate
443 // more than 180 degrees or inflect, so the inverse cosine has enough range.
444 float cosTheta = cosine_between_vectors(tangents[0], tangents[1]);
445 float rotation = acos(cosTheta);
446
447 // Adjust sign of rotation to match the direction the curve turns.
448 // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
449 // NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
450 float turn = isinf(P[3].y) ? cross2d(P[1] - P[0], P[2] - P[1])
451 : cross2d(P[2] - P[0], P[3] - P[1]);
452 if (turn == 0.0) { // This is the case for joins and cusps where points are co-located.
453 turn = determinant(tangents);
454 }
455 if (turn < 0.0) {
456 rotation = -rotation;
457 }
458
459 // Calculate the number of evenly spaced radial segments to chop this section of the curve
460 // into. Radial segments divide the curve's rotation into even steps. The final tessellated
461 // strip will be a composition of both parametric and radial segments.
462 float numRadialSegments = abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN;
463 numRadialSegments = max(ceil(numRadialSegments), 1.0);
464
465 // The first and last edges are shared by both the parametric and radial sets of edges, so
466 // the total number of edges is:
467 //
468 // numCombinedEdges = numParametricEdges + numRadialEdges - 2
469 //
470 // It's also important to differentiate between the number of edges and segments in a strip:
471 //
472 // numCombinedSegments = numCombinedEdges - 1
473 //
474 // So the total number of segments in the combined strip is:
475 //
476 // numCombinedSegments = numParametricEdges + numRadialEdges - 2 - 1
477 // = numParametricSegments + 1 + numRadialSegments + 1 - 2 - 1
478 // = numParametricSegments + numRadialSegments - 1
479 //
480 float numCombinedSegments = numParametricSegments + numRadialSegments - 1.0;
481
482 if (P[0] == P[3] && tangents[0] == tangents[1]) {
483 // The vertex shader intentionally disabled our section. Set numCombinedSegments to 0.
484 numCombinedSegments = 0.0;
485 }
486
487 // Pack the args for the evaluation stage.
488 tcsPts01[gl_InvocationID] = vec4(P[0], P[1]);
489 tcsPt2Tan0[gl_InvocationID] = vec4(P[2], tangents[0]);
490 tcsTessArgs[gl_InvocationID] = vec3(numCombinedSegments, numParametricSegments,
491 rotation / numRadialSegments);
492 if (gl_InvocationID == 2) {
493 tcsEndPtEndTan = vec4(P[3], tangents[1]);
494 }
495
496 barrier();
497
498 // Tessellate a quad strip with enough segments for the join plus all 3 curve sections
499 // combined.
500 float numTotalCombinedSegments = tcsJoinArgs0.x + tcsTessArgs[0].x + tcsTessArgs[1].x +
501 tcsTessArgs[2].x;
502
503 if (tcsJoinArgs0.x != 0.0 && tcsJoinArgs0.x != numTotalCombinedSegments) {
504 // We are tessellating a quad strip with both a single-sided join and a double-sided
505 // stroke. Add one more edge to the join. This new edge will fall parallel with the
506 // first edge of the stroke, eliminating artifacts on the transition from single
507 // sided to double.
508 ++tcsJoinArgs0.x;
509 ++numTotalCombinedSegments;
510 }
511
512 numTotalCombinedSegments = min(numTotalCombinedSegments, MAX_TESSELLATION_SEGMENTS);
513 gl_TessLevelInner[0] = numTotalCombinedSegments;
514 gl_TessLevelInner[1] = 2.0;
515 gl_TessLevelOuter[0] = 2.0;
516 gl_TessLevelOuter[1] = numTotalCombinedSegments;
517 gl_TessLevelOuter[2] = 2.0;
518 gl_TessLevelOuter[3] = numTotalCombinedSegments;
519 })");
520
521 return code;
522 }
523
getTessEvaluationShaderGLSL(const GrGeometryProcessor & geomProc,const char * versionAndExtensionDecls,const GrGLSLUniformHandler & uniformHandler,const GrShaderCaps & shaderCaps) const524 SkString GrStrokeTessellationShader::HardwareImpl::getTessEvaluationShaderGLSL(
525 const GrGeometryProcessor& geomProc,
526 const char* versionAndExtensionDecls,
527 const GrGLSLUniformHandler& uniformHandler,
528 const GrShaderCaps& shaderCaps) const {
529 const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
530 SkASSERT(shader.mode() == GrStrokeTessellationShader::Mode::kHardwareTessellation);
531
532 SkString code(versionAndExtensionDecls);
533 code.append("layout(quads, equal_spacing, ccw) in;\n");
534 code.appendf("precision highp float;\n");
535
536 code.appendf("#define float2 vec2\n");
537 code.appendf("#define float3 vec3\n");
538 code.appendf("#define float4 vec4\n");
539 code.appendf("#define float2x2 mat2\n");
540 code.appendf("#define float3x2 mat3x2\n");
541 code.appendf("#define float4x2 mat4x2\n");
542 code.appendf("#define PI 3.141592653589793238\n");
543
544 if (!shader.hasDynamicStroke()) {
545 const char* tessArgsName = uniformHandler.getUniformCStr(fTessControlArgsUniform);
546 code.appendf("uniform vec4 %s;\n", tessArgsName);
547 code.appendf("#define STROKE_RADIUS %s.w\n", tessArgsName);
548 } else {
549 code.appendf("#define STROKE_RADIUS tcsStrokeRadius\n");
550 }
551
552 const char* translateName = uniformHandler.getUniformCStr(fTranslateUniform);
553 code.appendf("uniform vec2 %s;\n", translateName);
554 code.appendf("#define TRANSLATE %s\n", translateName);
555 const char* affineMatrixName = uniformHandler.getUniformCStr(fAffineMatrixUniform);
556 code.appendf("uniform vec4 %s;\n", affineMatrixName);
557 code.appendf("#define AFFINE_MATRIX mat2(%s)\n", affineMatrixName);
558
559 code.append(R"(
560 in vec4 tcsPts01[];
561 in vec4 tcsPt2Tan0[];
562 in vec3 tcsTessArgs[]; // [numCombinedSegments, numParametricSegments, radsPerSegment]
563 patch in vec4 tcsJoinArgs0; // [numSegmentsInJoin, innerJoinRadiusMultiplier,
564 // prevJoinTangent.xy]
565 patch in vec3 tcsJoinArgs1; // [radsPerJoinSegment, joinOutsetClamp.xy]
566 patch in vec4 tcsEndPtEndTan;)");
567 if (shader.hasDynamicStroke()) {
568 code.append(R"(
569 patch in float tcsStrokeRadius;)");
570 }
571 if (shader.hasDynamicColor()) {
572 code.appendf(R"(
573 patch in mediump vec4 tcsColor;
574 %s out mediump vec4 %s;)",
575 shaderCaps.preferFlatInterpolation() ? "flat" : "", fDynamicColorName.c_str());
576 }
577
578 code.append(R"(
579 uniform vec4 sk_RTAdjust;)");
580
581 code.append(kUncheckedMixFn);
582
583 code.append(R"(
584 void main() {
585 // Our patch is composed of exactly "numTotalCombinedSegments + 1" stroke-width edges that
586 // run orthogonal to the curve and make a strip of "numTotalCombinedSegments" quads.
587 // Determine which discrete edge belongs to this invocation. An edge can either come from a
588 // parametric segment or a radial one.
589 float numSegmentsInJoin = tcsJoinArgs0.x;
590 float numTotalCombinedSegments = numSegmentsInJoin + tcsTessArgs[0].x + tcsTessArgs[1].x +
591 tcsTessArgs[2].x;
592 float combinedEdgeID = round(gl_TessCoord.x * numTotalCombinedSegments);
593 float strokeOutset = gl_TessCoord.y * 2.0 - 1.0;
594
595 // Furthermore, the vertex shader may have chopped the curve into 3 different sections.
596 // Determine which section we belong to, and where we fall relative to its first edge.
597 float2 p0, p1, p2, p3;
598 vec2 tan0;
599 float numParametricSegments, radsPerSegment;
600 if (combinedEdgeID < numSegmentsInJoin || numSegmentsInJoin == numTotalCombinedSegments) {
601 // Our edge belongs to the join preceding the curve.
602 p3 = p2 = p1 = p0 = tcsPts01[0].xy;
603 tan0 = tcsJoinArgs0.zw;
604 numParametricSegments = 1;
605 radsPerSegment = tcsJoinArgs1.x;
606 strokeOutset = clamp(strokeOutset, tcsJoinArgs1.y, tcsJoinArgs1.z);
607 strokeOutset *= (combinedEdgeID == 1.0) ? tcsJoinArgs0.y : 1.0;
608 } else if ((combinedEdgeID -= numSegmentsInJoin) < tcsTessArgs[0].x) {
609 // Our edge belongs to the first curve section.
610 p0=tcsPts01[0].xy, p1=tcsPts01[0].zw, p2=tcsPt2Tan0[0].xy, p3=tcsPts01[1].xy;
611 tan0 = tcsPt2Tan0[0].zw;
612 numParametricSegments = tcsTessArgs[0].y;
613 radsPerSegment = tcsTessArgs[0].z;
614 } else if ((combinedEdgeID -= tcsTessArgs[0].x) < tcsTessArgs[1].x) {
615 // Our edge belongs to the second curve section.
616 p0=tcsPts01[1].xy, p1=tcsPts01[1].zw, p2=tcsPt2Tan0[1].xy, p3=tcsPts01[2].xy;
617 tan0 = tcsPt2Tan0[1].zw;
618 numParametricSegments = tcsTessArgs[1].y;
619 radsPerSegment = tcsTessArgs[1].z;
620 } else {
621 // Our edge belongs to the third curve section.
622 combinedEdgeID -= tcsTessArgs[1].x;
623 p0=tcsPts01[2].xy, p1=tcsPts01[2].zw, p2=tcsPt2Tan0[2].xy, p3=tcsEndPtEndTan.xy;
624 tan0 = tcsPt2Tan0[2].zw;
625 numParametricSegments = tcsTessArgs[2].y;
626 radsPerSegment = tcsTessArgs[2].z;
627 }
628 float2 tan1 = tcsEndPtEndTan.zw;
629 bool isFinalEdge = (gl_TessCoord.x == 1);
630 float w = -1.0; // w<0 means the curve is an integral cubic.
631 if (isinf(p3.y)) {
632 w = p3.x; // The curve is actually a conic.
633 p3 = p2; // Setting p3 equal to p2 works for the remaining rotational logic.
634 })");
635
636 GrGPArgs gpArgs;
637 this->emitTessellationCode(shader, &code, &gpArgs, shaderCaps);
638
639 // Manually map the position to OpenGL clip space, since we are generating raw GLSL.
640 code.appendf(R"(
641 gl_Position = vec4(%s * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);)",
642 gpArgs.fPositionVar.c_str());
643
644 if (shader.hasDynamicColor()) {
645 // Pass color on to the fragment shader.
646 code.appendf(R"(
647 %s = tcsColor;)", fDynamicColorName.c_str());
648 }
649
650 code.append(R"(
651 })");
652
653 return code;
654 }
655