1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdio.h>
25 #include <stdbool.h>
26 #include <stdint.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <expat.h>
30 #include <inttypes.h>
31 #include <zlib.h>
32
33 #include <util/macros.h>
34 #include <util/ralloc.h>
35 #include <util/u_math.h>
36
37 #include "intel_decoder.h"
38
39 #include "isl/isl.h"
40 #include "genxml/genX_xml.h"
41
42 #define XML_BUFFER_SIZE 4096
43 #define MAX_VALUE_ITEMS 128
44
45 struct location {
46 const char *filename;
47 int line_number;
48 };
49
50 struct parser_context {
51 XML_Parser parser;
52 int foo;
53 struct location loc;
54
55 struct intel_group *group;
56 struct intel_enum *enoom;
57
58 int n_values, n_allocated_values;
59 struct intel_value **values;
60
61 struct intel_field *last_field;
62
63 struct intel_spec *spec;
64 };
65
66 const char *
intel_group_get_name(struct intel_group * group)67 intel_group_get_name(struct intel_group *group)
68 {
69 return group->name;
70 }
71
72 uint32_t
intel_group_get_opcode(struct intel_group * group)73 intel_group_get_opcode(struct intel_group *group)
74 {
75 return group->opcode;
76 }
77
78 struct intel_group *
intel_spec_find_struct(struct intel_spec * spec,const char * name)79 intel_spec_find_struct(struct intel_spec *spec, const char *name)
80 {
81 struct hash_entry *entry = _mesa_hash_table_search(spec->structs,
82 name);
83 return entry ? entry->data : NULL;
84 }
85
86 struct intel_group *
intel_spec_find_register(struct intel_spec * spec,uint32_t offset)87 intel_spec_find_register(struct intel_spec *spec, uint32_t offset)
88 {
89 struct hash_entry *entry =
90 _mesa_hash_table_search(spec->registers_by_offset,
91 (void *) (uintptr_t) offset);
92 return entry ? entry->data : NULL;
93 }
94
95 struct intel_group *
intel_spec_find_register_by_name(struct intel_spec * spec,const char * name)96 intel_spec_find_register_by_name(struct intel_spec *spec, const char *name)
97 {
98 struct hash_entry *entry =
99 _mesa_hash_table_search(spec->registers_by_name, name);
100 return entry ? entry->data : NULL;
101 }
102
103 struct intel_enum *
intel_spec_find_enum(struct intel_spec * spec,const char * name)104 intel_spec_find_enum(struct intel_spec *spec, const char *name)
105 {
106 struct hash_entry *entry = _mesa_hash_table_search(spec->enums,
107 name);
108 return entry ? entry->data : NULL;
109 }
110
111 uint32_t
intel_spec_get_gen(struct intel_spec * spec)112 intel_spec_get_gen(struct intel_spec *spec)
113 {
114 return spec->gen;
115 }
116
117 static void __attribute__((noreturn))
fail(struct location * loc,const char * msg,...)118 fail(struct location *loc, const char *msg, ...)
119 {
120 va_list ap;
121
122 va_start(ap, msg);
123 fprintf(stderr, "%s:%d: error: ",
124 loc->filename, loc->line_number);
125 vfprintf(stderr, msg, ap);
126 fprintf(stderr, "\n");
127 va_end(ap);
128 exit(EXIT_FAILURE);
129 }
130
131 static void
get_array_offset_count(const char ** atts,uint32_t * offset,uint32_t * count,uint32_t * size,bool * variable)132 get_array_offset_count(const char **atts, uint32_t *offset, uint32_t *count,
133 uint32_t *size, bool *variable)
134 {
135 for (int i = 0; atts[i]; i += 2) {
136 char *p;
137
138 if (strcmp(atts[i], "count") == 0) {
139 *count = strtoul(atts[i + 1], &p, 0);
140 if (*count == 0)
141 *variable = true;
142 } else if (strcmp(atts[i], "start") == 0) {
143 *offset = strtoul(atts[i + 1], &p, 0);
144 } else if (strcmp(atts[i], "size") == 0) {
145 *size = strtoul(atts[i + 1], &p, 0);
146 }
147 }
148 return;
149 }
150
151 static struct intel_group *
create_group(struct parser_context * ctx,const char * name,const char ** atts,struct intel_group * parent,bool fixed_length)152 create_group(struct parser_context *ctx,
153 const char *name,
154 const char **atts,
155 struct intel_group *parent,
156 bool fixed_length)
157 {
158 struct intel_group *group;
159
160 group = rzalloc(ctx->spec, struct intel_group);
161 if (name)
162 group->name = ralloc_strdup(group, name);
163
164 group->spec = ctx->spec;
165 group->variable = false;
166 group->fixed_length = fixed_length;
167 group->dword_length_field = NULL;
168 group->dw_length = 0;
169 group->engine_mask = I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER) |
170 I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO) |
171 I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
172 group->bias = 1;
173
174 for (int i = 0; atts[i]; i += 2) {
175 char *p;
176 if (strcmp(atts[i], "length") == 0) {
177 group->dw_length = strtoul(atts[i + 1], &p, 0);
178 } else if (strcmp(atts[i], "bias") == 0) {
179 group->bias = strtoul(atts[i + 1], &p, 0);
180 } else if (strcmp(atts[i], "engine") == 0) {
181 void *mem_ctx = ralloc_context(NULL);
182 char *tmp = ralloc_strdup(mem_ctx, atts[i + 1]);
183 char *save_ptr;
184 char *tok = strtok_r(tmp, "|", &save_ptr);
185
186 group->engine_mask = 0;
187 while (tok != NULL) {
188 if (strcmp(tok, "render") == 0) {
189 group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER);
190 } else if (strcmp(tok, "video") == 0) {
191 group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO);
192 } else if (strcmp(tok, "blitter") == 0) {
193 group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY);
194 } else {
195 fprintf(stderr, "unknown engine class defined for instruction \"%s\": %s\n", name, atts[i + 1]);
196 }
197
198 tok = strtok_r(NULL, "|", &save_ptr);
199 }
200
201 ralloc_free(mem_ctx);
202 }
203 }
204
205 if (parent) {
206 group->parent = parent;
207 get_array_offset_count(atts,
208 &group->array_offset,
209 &group->array_count,
210 &group->array_item_size,
211 &group->variable);
212 }
213
214 return group;
215 }
216
217 static struct intel_enum *
create_enum(struct parser_context * ctx,const char * name,const char ** atts)218 create_enum(struct parser_context *ctx, const char *name, const char **atts)
219 {
220 struct intel_enum *e;
221
222 e = rzalloc(ctx->spec, struct intel_enum);
223 if (name)
224 e->name = ralloc_strdup(e, name);
225
226 return e;
227 }
228
229 static void
get_register_offset(const char ** atts,uint32_t * offset)230 get_register_offset(const char **atts, uint32_t *offset)
231 {
232 for (int i = 0; atts[i]; i += 2) {
233 char *p;
234
235 if (strcmp(atts[i], "num") == 0)
236 *offset = strtoul(atts[i + 1], &p, 0);
237 }
238 return;
239 }
240
241 static void
get_start_end_pos(int * start,int * end)242 get_start_end_pos(int *start, int *end)
243 {
244 /* start value has to be mod with 32 as we need the relative
245 * start position in the first DWord. For the end position, add
246 * the length of the field to the start position to get the
247 * relative position in the 64 bit address.
248 */
249 if (*end - *start > 32) {
250 int len = *end - *start;
251 *start = *start % 32;
252 *end = *start + len;
253 } else {
254 *start = *start % 32;
255 *end = *end % 32;
256 }
257
258 return;
259 }
260
261 static inline uint64_t
mask(int start,int end)262 mask(int start, int end)
263 {
264 uint64_t v;
265
266 v = ~0ULL >> (63 - end + start);
267
268 return v << start;
269 }
270
271 static inline uint64_t
field_value(uint64_t value,int start,int end)272 field_value(uint64_t value, int start, int end)
273 {
274 get_start_end_pos(&start, &end);
275 return (value & mask(start, end)) >> (start);
276 }
277
278 static struct intel_type
string_to_type(struct parser_context * ctx,const char * s)279 string_to_type(struct parser_context *ctx, const char *s)
280 {
281 int i, f;
282 struct intel_group *g;
283 struct intel_enum *e;
284
285 if (strcmp(s, "int") == 0)
286 return (struct intel_type) { .kind = INTEL_TYPE_INT };
287 else if (strcmp(s, "uint") == 0)
288 return (struct intel_type) { .kind = INTEL_TYPE_UINT };
289 else if (strcmp(s, "bool") == 0)
290 return (struct intel_type) { .kind = INTEL_TYPE_BOOL };
291 else if (strcmp(s, "float") == 0)
292 return (struct intel_type) { .kind = INTEL_TYPE_FLOAT };
293 else if (strcmp(s, "address") == 0)
294 return (struct intel_type) { .kind = INTEL_TYPE_ADDRESS };
295 else if (strcmp(s, "offset") == 0)
296 return (struct intel_type) { .kind = INTEL_TYPE_OFFSET };
297 else if (sscanf(s, "u%d.%d", &i, &f) == 2)
298 return (struct intel_type) { .kind = INTEL_TYPE_UFIXED, .i = i, .f = f };
299 else if (sscanf(s, "s%d.%d", &i, &f) == 2)
300 return (struct intel_type) { .kind = INTEL_TYPE_SFIXED, .i = i, .f = f };
301 else if (g = intel_spec_find_struct(ctx->spec, s), g != NULL)
302 return (struct intel_type) { .kind = INTEL_TYPE_STRUCT, .intel_struct = g };
303 else if (e = intel_spec_find_enum(ctx->spec, s), e != NULL)
304 return (struct intel_type) { .kind = INTEL_TYPE_ENUM, .intel_enum = e };
305 else if (strcmp(s, "mbo") == 0)
306 return (struct intel_type) { .kind = INTEL_TYPE_MBO };
307 else if (strcmp(s, "mbz") == 0)
308 return (struct intel_type) { .kind = INTEL_TYPE_MBZ };
309 else
310 fail(&ctx->loc, "invalid type: %s", s);
311 }
312
313 static struct intel_field *
create_field(struct parser_context * ctx,const char ** atts)314 create_field(struct parser_context *ctx, const char **atts)
315 {
316 struct intel_field *field;
317
318 field = rzalloc(ctx->group, struct intel_field);
319 field->parent = ctx->group;
320
321 for (int i = 0; atts[i]; i += 2) {
322 char *p;
323
324 if (strcmp(atts[i], "name") == 0) {
325 field->name = ralloc_strdup(field, atts[i + 1]);
326 if (strcmp(field->name, "DWord Length") == 0) {
327 field->parent->dword_length_field = field;
328 }
329 } else if (strcmp(atts[i], "start") == 0) {
330 field->start = strtoul(atts[i + 1], &p, 0);
331 } else if (strcmp(atts[i], "end") == 0) {
332 field->end = strtoul(atts[i + 1], &p, 0);
333 } else if (strcmp(atts[i], "type") == 0) {
334 field->type = string_to_type(ctx, atts[i + 1]);
335 } else if (strcmp(atts[i], "default") == 0 &&
336 field->start >= 16 && field->end <= 31) {
337 field->has_default = true;
338 field->default_value = strtoul(atts[i + 1], &p, 0);
339 }
340 }
341
342 return field;
343 }
344
345 static struct intel_field *
create_array_field(struct parser_context * ctx,struct intel_group * array)346 create_array_field(struct parser_context *ctx, struct intel_group *array)
347 {
348 struct intel_field *field;
349
350 field = rzalloc(ctx->group, struct intel_field);
351 field->parent = ctx->group;
352
353 field->array = array;
354 field->start = field->array->array_offset;
355
356 return field;
357 }
358
359 static struct intel_value *
create_value(struct parser_context * ctx,const char ** atts)360 create_value(struct parser_context *ctx, const char **atts)
361 {
362 struct intel_value *value = rzalloc(ctx->values, struct intel_value);
363
364 for (int i = 0; atts[i]; i += 2) {
365 if (strcmp(atts[i], "name") == 0)
366 value->name = ralloc_strdup(value, atts[i + 1]);
367 else if (strcmp(atts[i], "value") == 0)
368 value->value = strtoul(atts[i + 1], NULL, 0);
369 }
370
371 return value;
372 }
373
374 static struct intel_field *
create_and_append_field(struct parser_context * ctx,const char ** atts,struct intel_group * array)375 create_and_append_field(struct parser_context *ctx,
376 const char **atts,
377 struct intel_group *array)
378 {
379 struct intel_field *field = array ?
380 create_array_field(ctx, array) : create_field(ctx, atts);
381 struct intel_field *prev = NULL, *list = ctx->group->fields;
382
383 while (list && field->start > list->start) {
384 prev = list;
385 list = list->next;
386 }
387
388 field->next = list;
389 if (prev == NULL)
390 ctx->group->fields = field;
391 else
392 prev->next = field;
393
394 return field;
395 }
396
397 static void
start_element(void * data,const char * element_name,const char ** atts)398 start_element(void *data, const char *element_name, const char **atts)
399 {
400 struct parser_context *ctx = data;
401 const char *name = NULL;
402 const char *gen = NULL;
403
404 ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser);
405
406 for (int i = 0; atts[i]; i += 2) {
407 if (strcmp(atts[i], "name") == 0)
408 name = atts[i + 1];
409 else if (strcmp(atts[i], "gen") == 0)
410 gen = atts[i + 1];
411 }
412
413 if (strcmp(element_name, "genxml") == 0) {
414 if (name == NULL)
415 fail(&ctx->loc, "no platform name given");
416 if (gen == NULL)
417 fail(&ctx->loc, "no gen given");
418
419 int major, minor;
420 int n = sscanf(gen, "%d.%d", &major, &minor);
421 if (n == 0)
422 fail(&ctx->loc, "invalid gen given: %s", gen);
423 if (n == 1)
424 minor = 0;
425
426 ctx->spec->gen = intel_make_gen(major, minor);
427 } else if (strcmp(element_name, "instruction") == 0) {
428 ctx->group = create_group(ctx, name, atts, NULL, false);
429 } else if (strcmp(element_name, "struct") == 0) {
430 ctx->group = create_group(ctx, name, atts, NULL, true);
431 } else if (strcmp(element_name, "register") == 0) {
432 ctx->group = create_group(ctx, name, atts, NULL, true);
433 get_register_offset(atts, &ctx->group->register_offset);
434 } else if (strcmp(element_name, "group") == 0) {
435 struct intel_group *group = create_group(ctx, "", atts, ctx->group, false);
436 ctx->last_field = create_and_append_field(ctx, NULL, group);
437 ctx->group = group;
438 } else if (strcmp(element_name, "field") == 0) {
439 ctx->last_field = create_and_append_field(ctx, atts, NULL);
440 } else if (strcmp(element_name, "enum") == 0) {
441 ctx->enoom = create_enum(ctx, name, atts);
442 } else if (strcmp(element_name, "value") == 0) {
443 if (ctx->n_values >= ctx->n_allocated_values) {
444 ctx->n_allocated_values = MAX2(2, ctx->n_allocated_values * 2);
445 ctx->values = reralloc_array_size(ctx->spec, ctx->values,
446 sizeof(struct intel_value *),
447 ctx->n_allocated_values);
448 }
449 assert(ctx->n_values < ctx->n_allocated_values);
450 ctx->values[ctx->n_values++] = create_value(ctx, atts);
451 }
452
453 }
454
455 static void
end_element(void * data,const char * name)456 end_element(void *data, const char *name)
457 {
458 struct parser_context *ctx = data;
459 struct intel_spec *spec = ctx->spec;
460
461 if (strcmp(name, "instruction") == 0 ||
462 strcmp(name, "struct") == 0 ||
463 strcmp(name, "register") == 0) {
464 struct intel_group *group = ctx->group;
465 struct intel_field *list = group->fields;
466
467 ctx->group = ctx->group->parent;
468
469 while (list && list->end <= 31) {
470 if (list->start >= 16 && list->has_default) {
471 group->opcode_mask |=
472 mask(list->start % 32, list->end % 32);
473 group->opcode |= list->default_value << list->start;
474 }
475 list = list->next;
476 }
477
478 if (strcmp(name, "instruction") == 0)
479 _mesa_hash_table_insert(spec->commands, group->name, group);
480 else if (strcmp(name, "struct") == 0)
481 _mesa_hash_table_insert(spec->structs, group->name, group);
482 else if (strcmp(name, "register") == 0) {
483 _mesa_hash_table_insert(spec->registers_by_name, group->name, group);
484 _mesa_hash_table_insert(spec->registers_by_offset,
485 (void *) (uintptr_t) group->register_offset,
486 group);
487 }
488 } else if (strcmp(name, "group") == 0) {
489 ctx->group = ctx->group->parent;
490 } else if (strcmp(name, "field") == 0) {
491 struct intel_field *field = ctx->last_field;
492 ctx->last_field = NULL;
493 field->inline_enum.values = ctx->values;
494 field->inline_enum.nvalues = ctx->n_values;
495 ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
496 ctx->n_values = 0;
497 } else if (strcmp(name, "enum") == 0) {
498 struct intel_enum *e = ctx->enoom;
499 e->values = ctx->values;
500 e->nvalues = ctx->n_values;
501 ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2);
502 ctx->n_values = 0;
503 ctx->enoom = NULL;
504 _mesa_hash_table_insert(spec->enums, e->name, e);
505 }
506 }
507
508 static void
character_data(void * data,const XML_Char * s,int len)509 character_data(void *data, const XML_Char *s, int len)
510 {
511 }
512
zlib_inflate(const void * compressed_data,uint32_t compressed_len,void ** out_ptr)513 static uint32_t zlib_inflate(const void *compressed_data,
514 uint32_t compressed_len,
515 void **out_ptr)
516 {
517 struct z_stream_s zstream;
518 void *out;
519
520 memset(&zstream, 0, sizeof(zstream));
521
522 zstream.next_in = (unsigned char *)compressed_data;
523 zstream.avail_in = compressed_len;
524
525 if (inflateInit(&zstream) != Z_OK)
526 return 0;
527
528 out = malloc(4096);
529 zstream.next_out = out;
530 zstream.avail_out = 4096;
531
532 do {
533 switch (inflate(&zstream, Z_SYNC_FLUSH)) {
534 case Z_STREAM_END:
535 goto end;
536 case Z_OK:
537 break;
538 default:
539 inflateEnd(&zstream);
540 return 0;
541 }
542
543 if (zstream.avail_out)
544 break;
545
546 out = realloc(out, 2*zstream.total_out);
547 if (out == NULL) {
548 inflateEnd(&zstream);
549 return 0;
550 }
551
552 zstream.next_out = (unsigned char *)out + zstream.total_out;
553 zstream.avail_out = zstream.total_out;
554 } while (1);
555 end:
556 inflateEnd(&zstream);
557 *out_ptr = out;
558 return zstream.total_out;
559 }
560
_hash_uint32(const void * key)561 static uint32_t _hash_uint32(const void *key)
562 {
563 return (uint32_t) (uintptr_t) key;
564 }
565
566 static struct intel_spec *
intel_spec_init(void)567 intel_spec_init(void)
568 {
569 struct intel_spec *spec;
570 spec = rzalloc(NULL, struct intel_spec);
571 if (spec == NULL)
572 return NULL;
573
574 spec->commands =
575 _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
576 spec->structs =
577 _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
578 spec->registers_by_name =
579 _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
580 spec->registers_by_offset =
581 _mesa_hash_table_create(spec, _hash_uint32, _mesa_key_pointer_equal);
582 spec->enums =
583 _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
584 spec->access_cache =
585 _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal);
586
587 return spec;
588 }
589
590 struct intel_spec *
intel_spec_load(const struct intel_device_info * devinfo)591 intel_spec_load(const struct intel_device_info *devinfo)
592 {
593 struct parser_context ctx;
594 void *buf;
595 uint8_t *text_data = NULL;
596 uint32_t text_offset = 0, text_length = 0;
597 ASSERTED uint32_t total_length;
598 uint32_t ver_10 = devinfo->verx10;
599
600 for (int i = 0; i < ARRAY_SIZE(genxml_files_table); i++) {
601 if (genxml_files_table[i].ver_10 == ver_10) {
602 text_offset = genxml_files_table[i].offset;
603 text_length = genxml_files_table[i].length;
604 break;
605 }
606 }
607
608 if (text_length == 0) {
609 fprintf(stderr, "unable to find gen (%u) data\n", ver_10);
610 return NULL;
611 }
612
613 memset(&ctx, 0, sizeof ctx);
614 ctx.parser = XML_ParserCreate(NULL);
615 XML_SetUserData(ctx.parser, &ctx);
616 if (ctx.parser == NULL) {
617 fprintf(stderr, "failed to create parser\n");
618 return NULL;
619 }
620
621 XML_SetElementHandler(ctx.parser, start_element, end_element);
622 XML_SetCharacterDataHandler(ctx.parser, character_data);
623
624 ctx.spec = intel_spec_init();
625 if (ctx.spec == NULL) {
626 fprintf(stderr, "Failed to create intel_spec\n");
627 return NULL;
628 }
629
630 total_length = zlib_inflate(compress_genxmls,
631 sizeof(compress_genxmls),
632 (void **) &text_data);
633 assert(text_offset + text_length <= total_length);
634
635 buf = XML_GetBuffer(ctx.parser, text_length);
636 memcpy(buf, &text_data[text_offset], text_length);
637
638 if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) {
639 fprintf(stderr,
640 "Error parsing XML at line %ld col %ld byte %ld/%u: %s\n",
641 XML_GetCurrentLineNumber(ctx.parser),
642 XML_GetCurrentColumnNumber(ctx.parser),
643 XML_GetCurrentByteIndex(ctx.parser), text_length,
644 XML_ErrorString(XML_GetErrorCode(ctx.parser)));
645 XML_ParserFree(ctx.parser);
646 free(text_data);
647 return NULL;
648 }
649
650 XML_ParserFree(ctx.parser);
651 free(text_data);
652
653 return ctx.spec;
654 }
655
656 struct intel_spec *
intel_spec_load_filename(const char * filename)657 intel_spec_load_filename(const char *filename)
658 {
659 struct parser_context ctx;
660 FILE *input;
661 void *buf;
662 size_t len;
663
664 input = fopen(filename, "r");
665 if (input == NULL) {
666 fprintf(stderr, "failed to open xml description\n");
667 return NULL;
668 }
669
670 memset(&ctx, 0, sizeof ctx);
671 ctx.parser = XML_ParserCreate(NULL);
672 XML_SetUserData(ctx.parser, &ctx);
673 if (ctx.parser == NULL) {
674 fprintf(stderr, "failed to create parser\n");
675 fclose(input);
676 return NULL;
677 }
678
679 XML_SetElementHandler(ctx.parser, start_element, end_element);
680 XML_SetCharacterDataHandler(ctx.parser, character_data);
681 ctx.loc.filename = filename;
682
683 ctx.spec = intel_spec_init();
684 if (ctx.spec == NULL) {
685 fprintf(stderr, "Failed to create intel_spec\n");
686 goto end;
687 }
688
689 do {
690 buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE);
691 len = fread(buf, 1, XML_BUFFER_SIZE, input);
692 if (ferror(input)) {
693 fprintf(stderr, "fread: %m\n");
694 intel_spec_destroy(ctx.spec);
695 ctx.spec = NULL;
696 goto end;
697 } else if (len == 0 && feof(input))
698 goto end;
699
700 if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) {
701 fprintf(stderr,
702 "Error parsing XML at line %ld col %ld: %s\n",
703 XML_GetCurrentLineNumber(ctx.parser),
704 XML_GetCurrentColumnNumber(ctx.parser),
705 XML_ErrorString(XML_GetErrorCode(ctx.parser)));
706 intel_spec_destroy(ctx.spec);
707 ctx.spec = NULL;
708 goto end;
709 }
710 } while (len > 0);
711
712 end:
713 XML_ParserFree(ctx.parser);
714
715 fclose(input);
716
717 /* free ctx.spec if genxml is empty */
718 if (ctx.spec &&
719 _mesa_hash_table_num_entries(ctx.spec->commands) == 0 &&
720 _mesa_hash_table_num_entries(ctx.spec->structs) == 0) {
721 fprintf(stderr,
722 "Error parsing XML: empty spec.\n");
723 intel_spec_destroy(ctx.spec);
724 return NULL;
725 }
726
727 return ctx.spec;
728 }
729
730 struct intel_spec *
intel_spec_load_from_path(const struct intel_device_info * devinfo,const char * path)731 intel_spec_load_from_path(const struct intel_device_info *devinfo,
732 const char *path)
733 {
734 size_t filename_len = strlen(path) + 20;
735 char *filename = malloc(filename_len);
736
737 ASSERTED size_t len = snprintf(filename, filename_len, "%s/gen%i.xml",
738 path, devinfo->ver);
739 assert(len < filename_len);
740
741 struct intel_spec *spec = intel_spec_load_filename(filename);
742 free(filename);
743
744 return spec;
745 }
746
intel_spec_destroy(struct intel_spec * spec)747 void intel_spec_destroy(struct intel_spec *spec)
748 {
749 ralloc_free(spec);
750 }
751
752 struct intel_group *
intel_spec_find_instruction(struct intel_spec * spec,enum drm_i915_gem_engine_class engine,const uint32_t * p)753 intel_spec_find_instruction(struct intel_spec *spec,
754 enum drm_i915_gem_engine_class engine,
755 const uint32_t *p)
756 {
757 hash_table_foreach(spec->commands, entry) {
758 struct intel_group *command = entry->data;
759 uint32_t opcode = *p & command->opcode_mask;
760 if ((command->engine_mask & I915_ENGINE_CLASS_TO_MASK(engine)) &&
761 opcode == command->opcode)
762 return command;
763 }
764
765 return NULL;
766 }
767
768 struct intel_field *
intel_group_find_field(struct intel_group * group,const char * name)769 intel_group_find_field(struct intel_group *group, const char *name)
770 {
771 char path[256];
772 snprintf(path, sizeof(path), "%s/%s", group->name, name);
773
774 struct intel_spec *spec = group->spec;
775 struct hash_entry *entry = _mesa_hash_table_search(spec->access_cache,
776 path);
777 if (entry)
778 return entry->data;
779
780 struct intel_field *field = group->fields;
781 while (field) {
782 if (strcmp(field->name, name) == 0) {
783 _mesa_hash_table_insert(spec->access_cache,
784 ralloc_strdup(spec, path),
785 field);
786 return field;
787 }
788 field = field->next;
789 }
790
791 return NULL;
792 }
793
794 int
intel_group_get_length(struct intel_group * group,const uint32_t * p)795 intel_group_get_length(struct intel_group *group, const uint32_t *p)
796 {
797 if (group) {
798 if (group->fixed_length)
799 return group->dw_length;
800 else {
801 struct intel_field *field = group->dword_length_field;
802 if (field) {
803 return field_value(p[0], field->start, field->end) + group->bias;
804 }
805 }
806 }
807
808 uint32_t h = p[0];
809 uint32_t type = field_value(h, 29, 31);
810
811 switch (type) {
812 case 0: /* MI */ {
813 uint32_t opcode = field_value(h, 23, 28);
814 if (opcode < 16)
815 return 1;
816 else
817 return field_value(h, 0, 7) + 2;
818 break;
819 }
820
821 case 2: /* BLT */ {
822 return field_value(h, 0, 7) + 2;
823 }
824
825 case 3: /* Render */ {
826 uint32_t subtype = field_value(h, 27, 28);
827 uint32_t opcode = field_value(h, 24, 26);
828 uint16_t whole_opcode = field_value(h, 16, 31);
829 switch (subtype) {
830 case 0:
831 if (whole_opcode == 0x6104 /* PIPELINE_SELECT_965 */)
832 return 1;
833 else if (opcode < 2)
834 return field_value(h, 0, 7) + 2;
835 else
836 return -1;
837 case 1:
838 if (opcode < 2)
839 return 1;
840 else
841 return -1;
842 case 2: {
843 if (opcode == 0)
844 return field_value(h, 0, 7) + 2;
845 else if (opcode < 3)
846 return field_value(h, 0, 15) + 2;
847 else
848 return -1;
849 }
850 case 3:
851 if (whole_opcode == 0x780b)
852 return 1;
853 else if (opcode < 4)
854 return field_value(h, 0, 7) + 2;
855 else
856 return -1;
857 }
858 }
859 }
860
861 return -1;
862 }
863
864 static const char *
intel_get_enum_name(struct intel_enum * e,uint64_t value)865 intel_get_enum_name(struct intel_enum *e, uint64_t value)
866 {
867 for (int i = 0; i < e->nvalues; i++) {
868 if (e->values[i]->value == value) {
869 return e->values[i]->name;
870 }
871 }
872 return NULL;
873 }
874
875 static bool
iter_more_fields(const struct intel_field_iterator * iter)876 iter_more_fields(const struct intel_field_iterator *iter)
877 {
878 return iter->field != NULL && iter->field->next != NULL;
879 }
880
881 static uint32_t
iter_array_offset_bits(const struct intel_field_iterator * iter)882 iter_array_offset_bits(const struct intel_field_iterator *iter)
883 {
884 if (iter->level == 0)
885 return 0;
886
887 uint32_t offset = 0;
888 const struct intel_group *group = iter->groups[1];
889 for (int level = 1; level <= iter->level; level++, group = iter->groups[level]) {
890 uint32_t array_idx = iter->array_iter[level];
891 offset += group->array_offset + array_idx * group->array_item_size;
892 }
893
894 return offset;
895 }
896
897 /* Checks whether we have more items in the array to iterate, or more arrays to
898 * iterate through.
899 */
900 /* descend into a non-array field */
901 static void
iter_push_array(struct intel_field_iterator * iter)902 iter_push_array(struct intel_field_iterator *iter)
903 {
904 assert(iter->level >= 0);
905
906 iter->group = iter->field->array;
907 iter->level++;
908 assert(iter->level < DECODE_MAX_ARRAY_DEPTH);
909 iter->groups[iter->level] = iter->group;
910 iter->array_iter[iter->level] = 0;
911
912 assert(iter->group->fields != NULL); /* an empty <group> makes no sense */
913 iter->field = iter->group->fields;
914 iter->fields[iter->level] = iter->field;
915 }
916
917 static void
iter_pop_array(struct intel_field_iterator * iter)918 iter_pop_array(struct intel_field_iterator *iter)
919 {
920 assert(iter->level > 0);
921
922 iter->level--;
923 iter->field = iter->fields[iter->level];
924 iter->group = iter->groups[iter->level];
925 }
926
927 static void
iter_start_field(struct intel_field_iterator * iter,struct intel_field * field)928 iter_start_field(struct intel_field_iterator *iter, struct intel_field *field)
929 {
930 iter->field = field;
931 iter->fields[iter->level] = field;
932
933 while (iter->field->array)
934 iter_push_array(iter);
935
936 int array_member_offset = iter_array_offset_bits(iter);
937
938 iter->start_bit = array_member_offset + iter->field->start;
939 iter->end_bit = array_member_offset + iter->field->end;
940 iter->struct_desc = NULL;
941 }
942
943 static void
iter_advance_array(struct intel_field_iterator * iter)944 iter_advance_array(struct intel_field_iterator *iter)
945 {
946 assert(iter->level > 0);
947 int lvl = iter->level;
948
949 if (iter->group->variable)
950 iter->array_iter[lvl]++;
951 else {
952 if ((iter->array_iter[lvl] + 1) < iter->group->array_count) {
953 iter->array_iter[lvl]++;
954 }
955 }
956
957 iter_start_field(iter, iter->group->fields);
958 }
959
960 static bool
iter_more_array_elems(const struct intel_field_iterator * iter)961 iter_more_array_elems(const struct intel_field_iterator *iter)
962 {
963 int lvl = iter->level;
964 assert(lvl >= 0);
965
966 if (iter->group->variable) {
967 int length = intel_group_get_length(iter->group, iter->p);
968 assert(length >= 0 && "error the length is unknown!");
969 return iter_array_offset_bits(iter) + iter->group->array_item_size <
970 (length * 32);
971 } else {
972 return (iter->array_iter[lvl] + 1) < iter->group->array_count;
973 }
974 }
975
976 static bool
iter_advance_field(struct intel_field_iterator * iter)977 iter_advance_field(struct intel_field_iterator *iter)
978 {
979 /* Keep looping while we either have more fields to look at, or we are
980 * inside a <group> and can go up a level.
981 */
982 while (iter_more_fields(iter) || iter->level > 0) {
983 if (iter_more_fields(iter)) {
984 iter_start_field(iter, iter->field->next);
985 return true;
986 }
987
988 assert(iter->level >= 0);
989
990 if (iter_more_array_elems(iter)) {
991 iter_advance_array(iter);
992 return true;
993 }
994
995 /* At this point, we reached the end of the <group> and were on the last
996 * iteration. So it's time to go back to the parent and then advance the
997 * field.
998 */
999 iter_pop_array(iter);
1000 }
1001
1002 return false;
1003 }
1004
1005 static bool
iter_decode_field_raw(struct intel_field_iterator * iter,uint64_t * qw)1006 iter_decode_field_raw(struct intel_field_iterator *iter, uint64_t *qw)
1007 {
1008 *qw = 0;
1009
1010 int field_start = iter->p_bit + iter->start_bit;
1011 int field_end = iter->p_bit + iter->end_bit;
1012
1013 const uint32_t *p = iter->p + (iter->start_bit / 32);
1014 if (iter->p_end && p >= iter->p_end)
1015 return false;
1016
1017 if ((field_end - field_start) > 32) {
1018 if (!iter->p_end || (p + 1) < iter->p_end)
1019 *qw = ((uint64_t) p[1]) << 32;
1020 *qw |= p[0];
1021 } else
1022 *qw = p[0];
1023
1024 *qw = field_value(*qw, field_start, field_end);
1025
1026 /* Address & offset types have to be aligned to dwords, their start bit is
1027 * a reminder of the alignment requirement.
1028 */
1029 if (iter->field->type.kind == INTEL_TYPE_ADDRESS ||
1030 iter->field->type.kind == INTEL_TYPE_OFFSET)
1031 *qw <<= field_start % 32;
1032
1033 return true;
1034 }
1035
1036 static bool
iter_decode_field(struct intel_field_iterator * iter)1037 iter_decode_field(struct intel_field_iterator *iter)
1038 {
1039 union {
1040 uint64_t qw;
1041 float f;
1042 } v;
1043
1044 if (iter->field->name)
1045 snprintf(iter->name, sizeof(iter->name), "%s", iter->field->name);
1046 else
1047 memset(iter->name, 0, sizeof(iter->name));
1048
1049 memset(&v, 0, sizeof(v));
1050
1051 if (!iter_decode_field_raw(iter, &iter->raw_value))
1052 return false;
1053
1054 const char *enum_name = NULL;
1055
1056 v.qw = iter->raw_value;
1057 switch (iter->field->type.kind) {
1058 case INTEL_TYPE_UNKNOWN:
1059 case INTEL_TYPE_INT: {
1060 snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1061 enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1062 break;
1063 }
1064 case INTEL_TYPE_MBZ:
1065 case INTEL_TYPE_UINT: {
1066 snprintf(iter->value, sizeof(iter->value), "%"PRIu64, v.qw);
1067 enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw);
1068 break;
1069 }
1070 case INTEL_TYPE_BOOL: {
1071 const char *true_string =
1072 iter->print_colors ? "\e[0;35mtrue\e[0m" : "true";
1073 snprintf(iter->value, sizeof(iter->value), "%s",
1074 v.qw ? true_string : "false");
1075 break;
1076 }
1077 case INTEL_TYPE_FLOAT:
1078 snprintf(iter->value, sizeof(iter->value), "%f", v.f);
1079 break;
1080 case INTEL_TYPE_ADDRESS:
1081 case INTEL_TYPE_OFFSET:
1082 snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, v.qw);
1083 break;
1084 case INTEL_TYPE_STRUCT:
1085 snprintf(iter->value, sizeof(iter->value), "<struct %s>",
1086 iter->field->type.intel_struct->name);
1087 iter->struct_desc =
1088 intel_spec_find_struct(iter->group->spec,
1089 iter->field->type.intel_struct->name);
1090 break;
1091 case INTEL_TYPE_UFIXED:
1092 snprintf(iter->value, sizeof(iter->value), "%f",
1093 (float) v.qw / (1 << iter->field->type.f));
1094 break;
1095 case INTEL_TYPE_SFIXED: {
1096 /* Sign extend before converting */
1097 int bits = iter->field->type.i + iter->field->type.f + 1;
1098 int64_t v_sign_extend = util_mask_sign_extend(v.qw, bits);
1099 snprintf(iter->value, sizeof(iter->value), "%f",
1100 (float) v_sign_extend / (1 << iter->field->type.f));
1101 break;
1102 }
1103 case INTEL_TYPE_MBO:
1104 break;
1105 case INTEL_TYPE_ENUM: {
1106 snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw);
1107 enum_name = intel_get_enum_name(iter->field->type.intel_enum, v.qw);
1108 break;
1109 }
1110 }
1111
1112 if (strlen(iter->group->name) == 0) {
1113 int length = strlen(iter->name);
1114 assert(iter->level >= 0);
1115
1116 int level = 1;
1117 char *buf = iter->name + length;
1118 while (level <= iter->level) {
1119 int printed = snprintf(buf, sizeof(iter->name) - length,
1120 "[%i]", iter->array_iter[level]);
1121 level++;
1122 length += printed;
1123 buf += printed;
1124 }
1125 }
1126
1127 if (enum_name) {
1128 int length = strlen(iter->value);
1129 snprintf(iter->value + length, sizeof(iter->value) - length,
1130 " (%s)", enum_name);
1131 } else if (strcmp(iter->name, "Surface Format") == 0 ||
1132 strcmp(iter->name, "Source Element Format") == 0) {
1133 if (isl_format_is_valid((enum isl_format)v.qw)) {
1134 const char *fmt_name = isl_format_get_name((enum isl_format)v.qw);
1135 int length = strlen(iter->value);
1136 snprintf(iter->value + length, sizeof(iter->value) - length,
1137 " (%s)", fmt_name);
1138 }
1139 }
1140
1141 return true;
1142 }
1143
1144 void
intel_field_iterator_init(struct intel_field_iterator * iter,struct intel_group * group,const uint32_t * p,int p_bit,bool print_colors)1145 intel_field_iterator_init(struct intel_field_iterator *iter,
1146 struct intel_group *group,
1147 const uint32_t *p, int p_bit,
1148 bool print_colors)
1149 {
1150 memset(iter, 0, sizeof(*iter));
1151
1152 iter->groups[iter->level] = group;
1153 iter->group = group;
1154 iter->p = p;
1155 iter->p_bit = p_bit;
1156
1157 int length = intel_group_get_length(iter->group, iter->p);
1158 assert(length >= 0 && "error the length is unknown!");
1159 iter->p_end = length >= 0 ? &p[length] : NULL;
1160 iter->print_colors = print_colors;
1161 }
1162
1163 bool
intel_field_iterator_next(struct intel_field_iterator * iter)1164 intel_field_iterator_next(struct intel_field_iterator *iter)
1165 {
1166 /* Initial condition */
1167 if (!iter->field) {
1168 if (iter->group->fields)
1169 iter_start_field(iter, iter->group->fields);
1170
1171 bool result = iter_decode_field(iter);
1172 if (!result && iter->p_end) {
1173 /* We're dealing with a non empty struct of length=0 (BLEND_STATE on
1174 * Gen 7.5)
1175 */
1176 assert(iter->group->dw_length == 0);
1177 }
1178
1179 return result;
1180 }
1181
1182 if (!iter_advance_field(iter))
1183 return false;
1184
1185 if (!iter_decode_field(iter))
1186 return false;
1187
1188 return true;
1189 }
1190
1191 static void
print_dword_header(FILE * outfile,struct intel_field_iterator * iter,uint64_t offset,uint32_t dword)1192 print_dword_header(FILE *outfile,
1193 struct intel_field_iterator *iter,
1194 uint64_t offset, uint32_t dword)
1195 {
1196 fprintf(outfile, "0x%08"PRIx64": 0x%08x : Dword %d\n",
1197 offset + 4 * dword, iter->p[dword], dword);
1198 }
1199
1200 bool
intel_field_is_header(struct intel_field * field)1201 intel_field_is_header(struct intel_field *field)
1202 {
1203 uint32_t bits;
1204
1205 /* Instructions are identified by the first DWord. */
1206 if (field->start >= 32 ||
1207 field->end >= 32)
1208 return false;
1209
1210 bits = (1ULL << (field->end - field->start + 1)) - 1;
1211 bits <<= field->start;
1212
1213 return (field->parent->opcode_mask & bits) != 0;
1214 }
1215
1216 void
intel_print_group(FILE * outfile,struct intel_group * group,uint64_t offset,const uint32_t * p,int p_bit,bool color)1217 intel_print_group(FILE *outfile, struct intel_group *group, uint64_t offset,
1218 const uint32_t *p, int p_bit, bool color)
1219 {
1220 struct intel_field_iterator iter;
1221 int last_dword = -1;
1222
1223 intel_field_iterator_init(&iter, group, p, p_bit, color);
1224 while (intel_field_iterator_next(&iter)) {
1225 int iter_dword = iter.end_bit / 32;
1226 if (last_dword != iter_dword) {
1227 for (int i = last_dword + 1; i <= iter_dword; i++)
1228 print_dword_header(outfile, &iter, offset, i);
1229 last_dword = iter_dword;
1230 }
1231 if (!intel_field_is_header(iter.field)) {
1232 fprintf(outfile, " %s: %s\n", iter.name, iter.value);
1233 if (iter.struct_desc) {
1234 int struct_dword = iter.start_bit / 32;
1235 uint64_t struct_offset = offset + 4 * struct_dword;
1236 intel_print_group(outfile, iter.struct_desc, struct_offset,
1237 &p[struct_dword], iter.start_bit % 32, color);
1238 }
1239 }
1240 }
1241 }
1242