• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_builder.h"
31 #include "brw_cfg.h"
32 #include "util/set.h"
33 #include "util/register_allocate.h"
34 
35 using namespace brw;
36 
37 static void
assign_reg(const struct intel_device_info * devinfo,unsigned * reg_hw_locations,brw_reg * reg)38 assign_reg(const struct intel_device_info *devinfo,
39            unsigned *reg_hw_locations, brw_reg *reg)
40 {
41    if (reg->file == VGRF) {
42       reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
43       reg->offset %= REG_SIZE;
44    }
45 }
46 
47 void
brw_assign_regs_trivial(fs_visitor & s)48 brw_assign_regs_trivial(fs_visitor &s)
49 {
50    const struct intel_device_info *devinfo = s.devinfo;
51    unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, s.alloc.count + 1);
52    unsigned i;
53    int reg_width = s.dispatch_width / 8;
54 
55    /* Note that compressed instructions require alignment to 2 registers. */
56    hw_reg_mapping[0] = ALIGN(s.first_non_payload_grf, reg_width);
57    for (i = 1; i <= s.alloc.count; i++) {
58       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
59                            DIV_ROUND_UP(s.alloc.sizes[i - 1],
60                                         reg_unit(devinfo)));
61    }
62    s.grf_used = hw_reg_mapping[s.alloc.count];
63 
64    foreach_block_and_inst(block, fs_inst, inst, s.cfg) {
65       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
66       for (i = 0; i < inst->sources; i++) {
67          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
68       }
69    }
70 
71    if (s.grf_used >= BRW_MAX_GRF) {
72       s.fail("Ran out of regs on trivial allocator (%d/%d)\n",
73 	     s.grf_used, BRW_MAX_GRF);
74    } else {
75       s.alloc.count = s.grf_used;
76    }
77 
78    ralloc_free(hw_reg_mapping);
79 }
80 
81 extern "C" void
brw_fs_alloc_reg_sets(struct brw_compiler * compiler)82 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
83 {
84    const struct intel_device_info *devinfo = compiler->devinfo;
85    int base_reg_count = (devinfo->ver >= 30 ? XE3_MAX_GRF / reg_unit(devinfo) :
86                          BRW_MAX_GRF);
87 
88    /* The registers used to make up almost all values handled in the compiler
89     * are a scalar value occupying a single register (or 2 registers in the
90     * case of SIMD16, which is handled by dividing base_reg_count by 2 and
91     * multiplying allocated register numbers by 2).  Things that were
92     * aggregates of scalar values at the GLSL level were split to scalar
93     * values by split_virtual_grfs().
94     *
95     * However, texture SEND messages return a series of contiguous registers
96     * to write into.  We currently always ask for 4 registers, but we may
97     * convert that to use less some day.
98     *
99     * Additionally, on gfx5 we need aligned pairs of registers for the PLN
100     * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
101     * texturing.
102     */
103    assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
104    int class_sizes[REG_CLASS_COUNT];
105    for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
106       class_sizes[i] = i + 1;
107 
108    struct ra_regs *regs = ra_alloc_reg_set(compiler, base_reg_count, false);
109    if (devinfo->ver < 30)
110       ra_set_allocate_round_robin(regs);
111    struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
112                                             REG_CLASS_COUNT);
113 
114    /* Now, make the register classes for each size of contiguous register
115     * allocation we might need to make.
116     */
117    for (int i = 0; i < REG_CLASS_COUNT; i++) {
118       classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
119 
120       for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
121          ra_class_add_reg(classes[i], reg);
122    }
123 
124    ra_set_finalize(regs, NULL);
125 
126    compiler->reg_set.regs = regs;
127    for (unsigned i = 0; i < ARRAY_SIZE(compiler->reg_set.classes); i++)
128       compiler->reg_set.classes[i] = NULL;
129    for (int i = 0; i < REG_CLASS_COUNT; i++)
130       compiler->reg_set.classes[class_sizes[i] - 1] = classes[i];
131 }
132 
133 static int
count_to_loop_end(const bblock_t * block)134 count_to_loop_end(const bblock_t *block)
135 {
136    if (block->end()->opcode == BRW_OPCODE_WHILE)
137       return block->end_ip;
138 
139    int depth = 1;
140    /* Skip the first block, since we don't want to count the do the calling
141     * function found.
142     */
143    for (block = block->next();
144         depth > 0;
145         block = block->next()) {
146       if (block->start()->opcode == BRW_OPCODE_DO)
147          depth++;
148       if (block->end()->opcode == BRW_OPCODE_WHILE) {
149          depth--;
150          if (depth == 0)
151             return block->end_ip;
152       }
153    }
154    unreachable("not reached");
155 }
156 
calculate_payload_ranges(bool allow_spilling,unsigned payload_node_count,int * payload_last_use_ip) const157 void fs_visitor::calculate_payload_ranges(bool allow_spilling,
158                                           unsigned payload_node_count,
159                                           int *payload_last_use_ip) const
160 {
161    int loop_depth = 0;
162    int loop_end_ip = 0;
163 
164    for (unsigned i = 0; i < payload_node_count; i++)
165       payload_last_use_ip[i] = -1;
166 
167    int ip = 0;
168    foreach_block_and_inst(block, fs_inst, inst, cfg) {
169       switch (inst->opcode) {
170       case BRW_OPCODE_DO:
171          loop_depth++;
172 
173          /* Since payload regs are deffed only at the start of the shader
174           * execution, any uses of the payload within a loop mean the live
175           * interval extends to the end of the outermost loop.  Find the ip of
176           * the end now.
177           */
178          if (loop_depth == 1)
179             loop_end_ip = count_to_loop_end(block);
180          break;
181       case BRW_OPCODE_WHILE:
182          loop_depth--;
183          break;
184       default:
185          break;
186       }
187 
188       int use_ip;
189       if (loop_depth > 0)
190          use_ip = loop_end_ip;
191       else
192          use_ip = ip;
193 
194       /* Note that UNIFORM args have been turned into FIXED_GRF by
195        * assign_curbe_setup(), and interpolation uses fixed hardware regs from
196        * the start (see interp_reg()).
197        */
198       for (int i = 0; i < inst->sources; i++) {
199          if (inst->src[i].file == FIXED_GRF) {
200             unsigned reg_nr = inst->src[i].nr;
201             if (reg_nr / reg_unit(devinfo) >= payload_node_count)
202                continue;
203 
204             for (unsigned j = reg_nr / reg_unit(devinfo);
205                  j < DIV_ROUND_UP(reg_nr + regs_read(devinfo, inst, i),
206                                   reg_unit(devinfo));
207                  j++) {
208                payload_last_use_ip[j] = use_ip;
209                assert(j < payload_node_count);
210             }
211          }
212       }
213 
214       if (inst->dst.file == FIXED_GRF) {
215          unsigned reg_nr = inst->dst.nr;
216          if (reg_nr / reg_unit(devinfo) < payload_node_count) {
217             for (unsigned j = reg_nr / reg_unit(devinfo);
218                  j < DIV_ROUND_UP(reg_nr + regs_written(inst),
219                                   reg_unit(devinfo));
220                  j++) {
221                payload_last_use_ip[j] = use_ip;
222                assert(j < payload_node_count);
223             }
224          }
225       }
226 
227       ip++;
228    }
229 
230    /* g0 is needed to construct scratch headers for spilling.  While we could
231     * extend its live range each time we spill a register, and update the
232     * interference graph accordingly, this would get pretty messy.  Instead,
233     * simply consider g0 live for the whole program if spilling is required.
234     */
235    if (allow_spilling)
236       payload_last_use_ip[0] = ip - 1;
237 }
238 
239 class brw_reg_alloc {
240 public:
brw_reg_alloc(fs_visitor * fs)241    brw_reg_alloc(fs_visitor *fs):
242       fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
243       live(fs->live_analysis.require()), g(NULL),
244       have_spill_costs(false)
245    {
246       mem_ctx = ralloc_context(NULL);
247 
248       /* Stash the number of instructions so we can sanity check that our
249        * counts still match liveness.
250        */
251       live_instr_count = fs->cfg->last_block()->end_ip + 1;
252 
253       spill_insts = _mesa_pointer_set_create(mem_ctx);
254 
255       /* Most of this allocation was written for a reg_width of 1
256        * (dispatch_width == 8).  In extending to SIMD16, the code was
257        * left in place and it was converted to have the hardware
258        * registers it's allocating be contiguous physical pairs of regs
259        * for reg_width == 2.
260        */
261       int reg_width = fs->dispatch_width / 8;
262       payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
263 
264       /* Get payload IP information */
265       payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
266 
267       node_count = 0;
268       first_payload_node = 0;
269       grf127_send_hack_node = 0;
270       first_vgrf_node = 0;
271       last_vgrf_node = 0;
272       first_spill_node = 0;
273 
274       spill_vgrf_ip = NULL;
275       spill_vgrf_ip_alloc = 0;
276       spill_node_count = 0;
277    }
278 
~brw_reg_alloc()279    ~brw_reg_alloc()
280    {
281       ralloc_free(mem_ctx);
282    }
283 
284    bool assign_regs(bool allow_spilling, bool spill_all);
285 
286 private:
287    void setup_live_interference(unsigned node,
288                                 int node_start_ip, int node_end_ip);
289    void setup_inst_interference(const fs_inst *inst);
290 
291    void build_interference_graph(bool allow_spilling);
292 
293    brw_reg build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill);
294 
295    brw_reg build_lane_offsets(const brw_builder &bld,
296                               uint32_t spill_offset, int ip);
297    brw_reg build_single_offset(const brw_builder &bld,
298                               uint32_t spill_offset, int ip);
299    brw_reg build_legacy_scratch_header(const brw_builder &bld,
300                                        uint32_t spill_offset, int ip);
301 
302    void emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats,
303                      brw_reg dst, uint32_t spill_offset, unsigned count, int ip);
304    void emit_spill(const brw_builder &bld, struct brw_shader_stats *stats,
305                    brw_reg src, uint32_t spill_offset, unsigned count, int ip);
306 
307    void set_spill_costs();
308    int choose_spill_reg();
309    brw_reg alloc_spill_reg(unsigned size, int ip);
310    void spill_reg(unsigned spill_reg);
311 
312    void *mem_ctx;
313    fs_visitor *fs;
314    const intel_device_info *devinfo;
315    const brw_compiler *compiler;
316    const fs_live_variables &live;
317    int live_instr_count;
318 
319    set *spill_insts;
320 
321    ra_graph *g;
322    bool have_spill_costs;
323 
324    int payload_node_count;
325    int *payload_last_use_ip;
326 
327    int node_count;
328    int first_payload_node;
329    int grf127_send_hack_node;
330    int first_vgrf_node;
331    int last_vgrf_node;
332    int first_spill_node;
333 
334    int *spill_vgrf_ip;
335    int spill_vgrf_ip_alloc;
336    int spill_node_count;
337 };
338 
339 namespace {
340    /**
341     * Maximum spill block size we expect to encounter in 32B units.
342     *
343     * This is somewhat arbitrary and doesn't necessarily limit the maximum
344     * variable size that can be spilled -- A higher value will allow a
345     * variable of a given size to be spilled more efficiently with a smaller
346     * number of scratch messages, but will increase the likelihood of a
347     * collision between the MRFs reserved for spilling and other MRFs used by
348     * the program (and possibly increase GRF register pressure on platforms
349     * without hardware MRFs), what could cause register allocation to fail.
350     *
351     * For the moment reserve just enough space so a register of 32 bit
352     * component type and natural region width can be spilled without splitting
353     * into multiple (force_writemask_all) scratch messages.
354     */
355    unsigned
spill_max_size(const fs_visitor * s)356    spill_max_size(const fs_visitor *s)
357    {
358       /* LSC is limited to SIMD16 sends (SIMD32 on Xe2) */
359       if (s->devinfo->has_lsc)
360          return 2 * reg_unit(s->devinfo);
361 
362       /* FINISHME - On Gfx7+ it should be possible to avoid this limit
363        *            altogether by spilling directly from the temporary GRF
364        *            allocated to hold the result of the instruction (and the
365        *            scratch write header).
366        */
367       /* FINISHME - The shader's dispatch width probably belongs in
368        *            backend_shader (or some nonexistent fs_shader class?)
369        *            rather than in the visitor class.
370        */
371       return s->dispatch_width / 8;
372    }
373 }
374 
375 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)376 brw_reg_alloc::setup_live_interference(unsigned node,
377                                       int node_start_ip, int node_end_ip)
378 {
379    /* Mark any virtual grf that is live between the start of the program and
380     * the last use of a payload node interfering with that payload node.
381     */
382    for (int i = 0; i < payload_node_count; i++) {
383       if (payload_last_use_ip[i] == -1)
384          continue;
385 
386       /* Note that we use a <= comparison, unlike vgrfs_interfere(),
387        * in order to not have to worry about the uniform issue described in
388        * calculate_live_intervals().
389        */
390       if (node_start_ip <= payload_last_use_ip[i])
391          ra_add_node_interference(g, node, first_payload_node + i);
392    }
393 
394    /* Add interference with every vgrf whose live range intersects this
395     * node's.  We only need to look at nodes below this one as the reflexivity
396     * of interference will take care of the rest.
397     */
398    for (unsigned n2 = first_vgrf_node;
399         n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
400       unsigned vgrf = n2 - first_vgrf_node;
401       if (!(node_end_ip <= live.vgrf_start[vgrf] ||
402             live.vgrf_end[vgrf] <= node_start_ip))
403          ra_add_node_interference(g, node, n2);
404    }
405 }
406 
407 /**
408  * Returns true if this instruction's sources and destinations cannot
409  * safely be the same register.
410  *
411  * In most cases, a register can be written over safely by the same
412  * instruction that is its last use.  For a single instruction, the
413  * sources are dereferenced before writing of the destination starts
414  * (naturally).
415  *
416  * However, there are a few cases where this can be problematic:
417  *
418  * - Virtual opcodes that translate to multiple instructions in the
419  *   code generator: if src == dst and one instruction writes the
420  *   destination before a later instruction reads the source, then
421  *   src will have been clobbered.
422  *
423  * - SIMD16 compressed instructions with certain regioning (see below).
424  *
425  * The register allocator uses this information to set up conflicts between
426  * GRF sources and the destination.
427  */
428 static bool
brw_inst_has_source_and_destination_hazard(const fs_inst * inst)429 brw_inst_has_source_and_destination_hazard(const fs_inst *inst)
430 {
431    switch (inst->opcode) {
432    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
433       /* Multiple partial writes to the destination */
434       return true;
435    case SHADER_OPCODE_SHUFFLE:
436       /* This instruction returns an arbitrary channel from the source and
437        * gets split into smaller instructions in the generator.  It's possible
438        * that one of the instructions will read from a channel corresponding
439        * to an earlier instruction.
440        */
441    case SHADER_OPCODE_SEL_EXEC:
442       /* This is implemented as
443        *
444        * mov(16)      g4<1>D      0D            { align1 WE_all 1H };
445        * mov(16)      g4<1>D      g5<8,8,1>D    { align1 1H }
446        *
447        * Because the source is only read in the second instruction, the first
448        * may stomp all over it.
449        */
450       return true;
451    case SHADER_OPCODE_QUAD_SWIZZLE:
452       switch (inst->src[1].ud) {
453       case BRW_SWIZZLE_XXXX:
454       case BRW_SWIZZLE_YYYY:
455       case BRW_SWIZZLE_ZZZZ:
456       case BRW_SWIZZLE_WWWW:
457       case BRW_SWIZZLE_XXZZ:
458       case BRW_SWIZZLE_YYWW:
459       case BRW_SWIZZLE_XYXY:
460       case BRW_SWIZZLE_ZWZW:
461          /* These can be implemented as a single Align1 region on all
462           * platforms, so there's never a hazard between source and
463           * destination.  C.f. brw_generator::generate_quad_swizzle().
464           */
465          return false;
466       default:
467          return !is_uniform(inst->src[0]);
468       }
469    case BRW_OPCODE_DPAS:
470       /* This is overly conservative. The actual hazard is more complicated to
471        * describe. When the repeat count is N, the single instruction behaves
472        * like N instructions with a repeat count of one, but the destination
473        * and source registers are incremented (in somewhat complex ways) for
474        * each instruction.
475        *
476        * This means the source and destination register is actually a range of
477        * registers. The hazard exists of an earlier iteration would write a
478        * register that should be read by a later iteration.
479        *
480        * There may be some advantage to properly modeling this, but for now,
481        * be overly conservative.
482        */
483       return inst->rcount > 1;
484    default:
485       /* The SIMD16 compressed instruction
486        *
487        * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
488        *
489        * is actually decoded in hardware as:
490        *
491        * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
492        * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
493        *
494        * Which is safe.  However, if we have uniform accesses
495        * happening, we get into trouble:
496        *
497        * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
498        * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
499        *
500        * Now our destination for the first instruction overwrote the
501        * second instruction's src0, and we get garbage for those 8
502        * pixels.  There's a similar issue for the pre-gfx6
503        * pixel_x/pixel_y, which are registers of 16-bit values and thus
504        * would get stomped by the first decode as well.
505        */
506       if (inst->exec_size == 16) {
507          for (int i = 0; i < inst->sources; i++) {
508             if (inst->src[i].file == VGRF && (inst->src[i].stride == 0 ||
509                                               inst->src[i].type == BRW_TYPE_UW ||
510                                               inst->src[i].type == BRW_TYPE_W ||
511                                               inst->src[i].type == BRW_TYPE_UB ||
512                                               inst->src[i].type == BRW_TYPE_B)) {
513                return true;
514             }
515          }
516       }
517       return false;
518    }
519 }
520 
521 void
setup_inst_interference(const fs_inst * inst)522 brw_reg_alloc::setup_inst_interference(const fs_inst *inst)
523 {
524    /* Certain instructions can't safely use the same register for their
525     * sources and destination.  Add interference.
526     */
527    if (inst->dst.file == VGRF && brw_inst_has_source_and_destination_hazard(inst)) {
528       for (unsigned i = 0; i < inst->sources; i++) {
529          if (inst->src[i].file == VGRF) {
530             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
531                                         first_vgrf_node + inst->src[i].nr);
532          }
533       }
534    }
535 
536    /* A compressed instruction is actually two instructions executed
537     * simultaneously.  On most platforms, it ok to have the source and
538     * destination registers be the same.  In this case, each instruction
539     * over-writes its own source and there's no problem.  The real problem
540     * here is if the source and destination registers are off by one.  Then
541     * you can end up in a scenario where the first instruction over-writes the
542     * source of the second instruction.  Since the compiler doesn't know about
543     * this level of granularity, we simply make the source and destination
544     * interfere.
545     */
546    if (inst->dst.component_size(inst->exec_size) > REG_SIZE &&
547        inst->dst.file == VGRF) {
548       for (int i = 0; i < inst->sources; ++i) {
549          if (inst->src[i].file == VGRF) {
550             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
551                                         first_vgrf_node + inst->src[i].nr);
552          }
553       }
554    }
555 
556    if (grf127_send_hack_node >= 0) {
557       /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
558        * subsection "EUISA Instructions", Send Message (page 990):
559        *
560        * "r127 must not be used for return address when there is a src and
561        * dest overlap in send instruction."
562        *
563        * We are avoiding using grf127 as part of the destination of send
564        * messages adding a node interference to the grf127_send_hack_node.
565        * This node has a fixed assignment to grf127.
566        *
567        * We don't apply it to SIMD16 instructions because previous code avoids
568        * any register overlap between sources and destination.
569        */
570       if (inst->exec_size < 16 && inst->is_send_from_grf() &&
571           inst->dst.file == VGRF)
572          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
573                                      grf127_send_hack_node);
574    }
575 
576    /* From the Skylake PRM Vol. 2a docs for sends:
577     *
578     *    "It is required that the second block of GRFs does not overlap with
579     *    the first block."
580     *
581     * Normally, this is taken care of by fixup_sends_duplicate_payload() but
582     * in the case where one of the registers is an undefined value, the
583     * register allocator may decide that they don't interfere even though
584     * they're used as sources in the same instruction.  We also need to add
585     * interference here.
586     */
587    if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
588        inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
589        inst->src[2].nr != inst->src[3].nr)
590       ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
591                                   first_vgrf_node + inst->src[3].nr);
592 
593    /* When we do send-from-GRF for FB writes, we need to ensure that the last
594     * write instruction sends from a high register.  This is because the
595     * vertex fetcher wants to start filling the low payload registers while
596     * the pixel data port is still working on writing out the memory.  If we
597     * don't do this, we get rendering artifacts.
598     *
599     * We could just do "something high".  Instead, we just pick the highest
600     * register that works.
601     */
602    if (inst->eot && devinfo->ver < 30) {
603       const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
604                        inst->src[2].nr : inst->src[0].nr;
605       const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
606       int reg = BRW_MAX_GRF - size;
607 
608       if (grf127_send_hack_node >= 0) {
609          /* Avoid r127 which might be unusable if the node was previously
610           * written by a SIMD8 SEND message with source/destination overlap.
611           */
612          reg--;
613       }
614 
615       assert(reg >= 112);
616       ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
617 
618       if (inst->ex_mlen > 0) {
619          const int vgrf = inst->src[3].nr;
620          reg -= DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
621          assert(reg >= 112);
622          ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
623       }
624    }
625 }
626 
627 void
build_interference_graph(bool allow_spilling)628 brw_reg_alloc::build_interference_graph(bool allow_spilling)
629 {
630    /* Compute the RA node layout */
631    node_count = 0;
632    first_payload_node = node_count;
633    node_count += payload_node_count;
634 
635    grf127_send_hack_node = node_count;
636    node_count++;
637 
638    first_vgrf_node = node_count;
639    node_count += fs->alloc.count;
640    last_vgrf_node = node_count - 1;
641    first_spill_node = node_count;
642 
643    fs->calculate_payload_ranges(allow_spilling, payload_node_count,
644                                 payload_last_use_ip);
645 
646    assert(g == NULL);
647    g = ra_alloc_interference_graph(compiler->reg_set.regs, node_count);
648    ralloc_steal(mem_ctx, g);
649 
650    /* Set up the payload nodes */
651    for (int i = 0; i < payload_node_count; i++)
652       ra_set_node_reg(g, first_payload_node + i, i);
653 
654    if (grf127_send_hack_node >= 0)
655       ra_set_node_reg(g, grf127_send_hack_node, 127);
656 
657    /* Specify the classes of each virtual register. */
658    for (unsigned i = 0; i < fs->alloc.count; i++) {
659       unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
660 
661       assert(size <= ARRAY_SIZE(compiler->reg_set.classes) &&
662              "Register allocation relies on split_virtual_grfs()");
663 
664       ra_set_node_class(g, first_vgrf_node + i,
665                         compiler->reg_set.classes[size - 1]);
666    }
667 
668    /* Add interference based on the live range of the register */
669    for (unsigned i = 0; i < fs->alloc.count; i++) {
670       setup_live_interference(first_vgrf_node + i,
671                               live.vgrf_start[i],
672                               live.vgrf_end[i]);
673    }
674 
675    /* Add interference based on the instructions in which a register is used.
676     */
677    foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
678       setup_inst_interference(inst);
679 }
680 
681 brw_reg
build_single_offset(const brw_builder & bld,uint32_t spill_offset,int ip)682 brw_reg_alloc::build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip)
683 {
684    brw_reg offset = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
685    fs_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset));
686    _mesa_set_add(spill_insts, inst);
687    return offset;
688 }
689 
690 brw_reg
build_ex_desc(const brw_builder & bld,unsigned reg_size,bool unspill)691 brw_reg_alloc::build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill)
692 {
693    /* Use a different area of the address register than what is used in
694     * brw_lower_logical_sends.c (brw_address_reg(2)) so we don't have
695     * interactions between the spill/fill instructions and the other send
696     * messages.
697     */
698    brw_reg ex_desc = bld.vaddr(BRW_TYPE_UD,
699                                BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC);
700    fs_inst *inst = bld.exec_all().group(1, 0).AND(
701       ex_desc,
702       retype(brw_vec1_grf(0, 5), BRW_TYPE_UD),
703       brw_imm_ud(INTEL_MASK(31, 10)));
704    _mesa_set_add(spill_insts, inst);
705 
706    const intel_device_info *devinfo = bld.shader->devinfo;
707    if (devinfo->verx10 >= 200) {
708       inst = bld.exec_all().group(1, 0).SHR(
709          ex_desc, ex_desc, brw_imm_ud(4));
710       _mesa_set_add(spill_insts, inst);
711    } else {
712       if (unspill) {
713          inst = bld.exec_all().group(1, 0).OR(
714             ex_desc, ex_desc, brw_imm_ud(GFX12_SFID_UGM));
715          _mesa_set_add(spill_insts, inst);
716       } else {
717          inst = bld.exec_all().group(1, 0).OR(
718             ex_desc, ex_desc,
719             brw_imm_ud(brw_message_ex_desc(devinfo, reg_size) |
720                        GFX12_SFID_UGM));
721          _mesa_set_add(spill_insts, inst);
722       }
723    }
724 
725    return ex_desc;
726 }
727 
728 brw_reg
build_lane_offsets(const brw_builder & bld,uint32_t spill_offset,int ip)729 brw_reg_alloc::build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip)
730 {
731    assert(bld.dispatch_width() <= 16 * reg_unit(bld.shader->devinfo));
732 
733    const brw_builder ubld = bld.exec_all();
734    const unsigned reg_count = ubld.dispatch_width() / 8;
735 
736    brw_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_TYPE_UD);
737    fs_inst *inst;
738 
739    /* Build an offset per lane in SIMD8 */
740    inst = ubld.group(8, 0).MOV(retype(offset, BRW_TYPE_UW),
741                                brw_imm_uv(0x76543210));
742    _mesa_set_add(spill_insts, inst);
743    inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_TYPE_UW));
744    _mesa_set_add(spill_insts, inst);
745 
746    /* Build offsets in the upper 8 lanes of SIMD16 */
747    if (ubld.dispatch_width() > 8) {
748       inst = ubld.group(8, 0).ADD(
749          byte_offset(offset, REG_SIZE),
750          byte_offset(offset, 0),
751          brw_imm_ud(8));
752       _mesa_set_add(spill_insts, inst);
753    }
754 
755    /* Make the offset a dword */
756    inst = ubld.SHL(offset, offset, brw_imm_ud(2));
757    _mesa_set_add(spill_insts, inst);
758 
759    /* Build offsets in the upper 16 lanes of SIMD32 */
760    if (ubld.dispatch_width() > 16) {
761       inst = ubld.group(16, 0).ADD(
762          byte_offset(offset, 2 * REG_SIZE),
763          byte_offset(offset, 0),
764          brw_imm_ud(16 << 2));
765       _mesa_set_add(spill_insts, inst);
766    }
767 
768    /* Add the base offset */
769    if (spill_offset) {
770       inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset));
771       _mesa_set_add(spill_insts, inst);
772    }
773 
774    return offset;
775 }
776 
777 /**
778  * Generate a scratch header for pre-LSC platforms.
779  */
780 brw_reg
build_legacy_scratch_header(const brw_builder & bld,uint32_t spill_offset,int ip)781 brw_reg_alloc::build_legacy_scratch_header(const brw_builder &bld,
782                                           uint32_t spill_offset, int ip)
783 {
784    const brw_builder ubld8 = bld.exec_all().group(8, 0);
785    const brw_builder ubld1 = bld.exec_all().group(1, 0);
786 
787    /* Allocate a spill header and make it interfere with g0 */
788    brw_reg header = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
789    ra_add_node_interference(g, first_vgrf_node + header.nr, first_payload_node);
790 
791    fs_inst *inst =
792       ubld8.emit(SHADER_OPCODE_SCRATCH_HEADER, header, brw_ud8_grf(0, 0));
793    _mesa_set_add(spill_insts, inst);
794 
795    /* Write the scratch offset */
796    assert(spill_offset % 16 == 0);
797    inst = ubld1.MOV(component(header, 2), brw_imm_ud(spill_offset / 16));
798    _mesa_set_add(spill_insts, inst);
799 
800    return header;
801 }
802 
803 void
emit_unspill(const brw_builder & bld,struct brw_shader_stats * stats,brw_reg dst,uint32_t spill_offset,unsigned count,int ip)804 brw_reg_alloc::emit_unspill(const brw_builder &bld,
805                            struct brw_shader_stats *stats,
806                            brw_reg dst,
807                            uint32_t spill_offset, unsigned count, int ip)
808 {
809    const intel_device_info *devinfo = bld.shader->devinfo;
810    const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
811                              REG_SIZE;
812 
813    for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
814       ++stats->fill_count;
815 
816       fs_inst *unspill_inst;
817       if (devinfo->verx10 >= 125) {
818          /* LSC is limited to SIMD16 (SIMD32 on Xe2) load/store but we can
819           * load more using transpose messages.
820           */
821          const bool use_transpose =
822             bld.dispatch_width() > 16 * reg_unit(devinfo) ||
823             bld.has_writemask_all();
824          const brw_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld;
825          brw_reg offset;
826          if (use_transpose) {
827             offset = build_single_offset(ubld, spill_offset, ip);
828          } else {
829             offset = build_lane_offsets(ubld, spill_offset, ip);
830          }
831 
832          brw_reg srcs[] = {
833             brw_imm_ud(0), /* desc */
834             build_ex_desc(bld, reg_size, true),
835             offset,        /* payload */
836             brw_reg(),      /* payload2 */
837          };
838 
839          uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
840                                       LSC_ADDR_SURFTYPE_SS,
841                                       LSC_ADDR_SIZE_A32,
842                                       LSC_DATA_SIZE_D32,
843                                       use_transpose ? reg_size * 8 : 1 /* num_channels */,
844                                       use_transpose,
845                                       LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
846 
847 
848          unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst,
849                                   srcs, ARRAY_SIZE(srcs));
850          unspill_inst->sfid = GFX12_SFID_UGM;
851          unspill_inst->header_size = 0;
852          unspill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
853                                                unspill_inst->exec_size);
854          unspill_inst->ex_mlen = 0;
855          unspill_inst->size_written =
856             lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, bld.dispatch_width()) * REG_SIZE;
857          unspill_inst->send_has_side_effects = false;
858          unspill_inst->send_is_volatile = true;
859 
860          unspill_inst->src[0] = brw_imm_ud(
861             desc |
862             brw_message_desc(devinfo,
863                              unspill_inst->mlen,
864                              unspill_inst->size_written / REG_SIZE,
865                              unspill_inst->header_size));
866       } else {
867          brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
868 
869          const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
870 
871          brw_reg srcs[] = {
872             brw_imm_ud(0), /* desc */
873             brw_imm_ud(0), /* ex_desc */
874             header
875          };
876          unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
877                                  srcs, ARRAY_SIZE(srcs));
878          unspill_inst->mlen = 1;
879          unspill_inst->header_size = 1;
880          unspill_inst->size_written = reg_size * REG_SIZE;
881          unspill_inst->send_has_side_effects = false;
882          unspill_inst->send_is_volatile = true;
883          unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
884 
885          unspill_inst->src[0] = brw_imm_ud(
886             brw_dp_desc(devinfo, bti,
887                         BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
888                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
889             brw_message_desc(devinfo,
890                              unspill_inst->mlen,
891                              unspill_inst->size_written / REG_SIZE,
892                              unspill_inst->header_size));
893       }
894       _mesa_set_add(spill_insts, unspill_inst);
895       assert(unspill_inst->force_writemask_all || count % reg_size == 0);
896 
897       dst.offset += reg_size * REG_SIZE;
898       spill_offset += reg_size * REG_SIZE;
899    }
900 }
901 
902 void
emit_spill(const brw_builder & bld,struct brw_shader_stats * stats,brw_reg src,uint32_t spill_offset,unsigned count,int ip)903 brw_reg_alloc::emit_spill(const brw_builder &bld,
904                          struct brw_shader_stats *stats,
905                          brw_reg src,
906                          uint32_t spill_offset, unsigned count, int ip)
907 {
908    const intel_device_info *devinfo = bld.shader->devinfo;
909    const unsigned reg_size = src.component_size(bld.dispatch_width()) /
910                              REG_SIZE;
911 
912    for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
913       ++stats->spill_count;
914 
915       fs_inst *spill_inst;
916       if (devinfo->verx10 >= 125) {
917          brw_reg offset = build_lane_offsets(bld, spill_offset, ip);
918 
919          brw_reg srcs[] = {
920             brw_imm_ud(0), /* desc */
921             build_ex_desc(bld, reg_size, false),
922             offset,        /* payload */
923             src,           /* payload2 */
924          };
925          spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
926                                srcs, ARRAY_SIZE(srcs));
927          spill_inst->sfid = GFX12_SFID_UGM;
928          uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_STORE,
929                                       LSC_ADDR_SURFTYPE_SS,
930                                       LSC_ADDR_SIZE_A32,
931                                       LSC_DATA_SIZE_D32,
932                                       1 /* num_channels */,
933                                       false /* transpose */,
934                                       LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
935          spill_inst->header_size = 0;
936          spill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
937                                              bld.dispatch_width());
938          spill_inst->ex_mlen = reg_size;
939          spill_inst->size_written = 0;
940          spill_inst->send_has_side_effects = true;
941          spill_inst->send_is_volatile = false;
942 
943          spill_inst->src[0] = brw_imm_ud(
944             desc |
945             brw_message_desc(devinfo,
946                              spill_inst->mlen,
947                              spill_inst->size_written / REG_SIZE,
948                              spill_inst->header_size));
949       } else {
950          brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
951 
952          const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
953          brw_reg srcs[] = {
954             brw_imm_ud(0), /* desc */
955             brw_imm_ud(0), /* ex_desc */
956             header,
957             src
958          };
959          spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
960                                srcs, ARRAY_SIZE(srcs));
961          spill_inst->mlen = 1;
962          spill_inst->ex_mlen = reg_size;
963          spill_inst->size_written = 0;
964          spill_inst->header_size = 1;
965          spill_inst->send_has_side_effects = true;
966          spill_inst->send_is_volatile = false;
967          spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
968 
969          spill_inst->src[0] = brw_imm_ud(
970             brw_dp_desc(devinfo, bti,
971                         GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
972                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
973             brw_message_desc(devinfo,
974                              spill_inst->mlen,
975                              spill_inst->size_written / REG_SIZE,
976                              spill_inst->header_size));
977          spill_inst->src[1] = brw_imm_ud(
978             brw_message_ex_desc(devinfo, spill_inst->ex_mlen));
979       }
980       _mesa_set_add(spill_insts, spill_inst);
981       assert(spill_inst->force_writemask_all || count % reg_size == 0);
982 
983       src.offset += reg_size * REG_SIZE;
984       spill_offset += reg_size * REG_SIZE;
985    }
986 }
987 
988 void
set_spill_costs()989 brw_reg_alloc::set_spill_costs()
990 {
991    float block_scale = 1.0;
992    float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count);
993 
994    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
995     * spill/unspill we'll have to do, and guess that the insides of
996     * loops run 10 times.
997     */
998    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
999       for (unsigned int i = 0; i < inst->sources; i++) {
1000 	 if (inst->src[i].file == VGRF)
1001             spill_costs[inst->src[i].nr] += regs_read(devinfo, inst, i) * block_scale;
1002       }
1003 
1004       if (inst->dst.file == VGRF)
1005          spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
1006 
1007       /* Don't spill anything we generated while spilling */
1008       if (_mesa_set_search(spill_insts, inst)) {
1009          for (unsigned int i = 0; i < inst->sources; i++) {
1010 	    if (inst->src[i].file == VGRF)
1011                spill_costs[inst->src[i].nr] = INFINITY;
1012          }
1013 	 if (inst->dst.file == VGRF)
1014             spill_costs[inst->dst.nr] = INFINITY;
1015       }
1016 
1017       switch (inst->opcode) {
1018 
1019       case BRW_OPCODE_DO:
1020 	 block_scale *= 10;
1021 	 break;
1022 
1023       case BRW_OPCODE_WHILE:
1024 	 block_scale /= 10;
1025 	 break;
1026 
1027       case BRW_OPCODE_IF:
1028          block_scale *= 0.5;
1029          break;
1030 
1031       case BRW_OPCODE_ENDIF:
1032          block_scale /= 0.5;
1033          break;
1034 
1035       default:
1036 	 break;
1037       }
1038    }
1039 
1040    for (unsigned i = 0; i < fs->alloc.count; i++) {
1041       /* Do the no_spill check first.  Registers that are used as spill
1042        * temporaries may have been allocated after we calculated liveness so
1043        * we shouldn't look their liveness up.  Fortunately, they're always
1044        * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
1045        * no_spill.
1046        */
1047       if (isinf(spill_costs[i]))
1048          continue;
1049 
1050       int live_length = live.vgrf_end[i] - live.vgrf_start[i];
1051       if (live_length <= 0)
1052          continue;
1053 
1054       /* Divide the cost (in number of spills/fills) by the log of the length
1055        * of the live range of the register.  This will encourage spill logic
1056        * to spill long-living things before spilling short-lived things where
1057        * spilling is less likely to actually do us any good.  We use the log
1058        * of the length because it will fall off very quickly and not cause us
1059        * to spill medium length registers with more uses.
1060        */
1061       float adjusted_cost = spill_costs[i] / logf(live_length);
1062       ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
1063    }
1064 
1065    have_spill_costs = true;
1066 
1067    ralloc_free(spill_costs);
1068 }
1069 
1070 int
choose_spill_reg()1071 brw_reg_alloc::choose_spill_reg()
1072 {
1073    if (!have_spill_costs)
1074       set_spill_costs();
1075 
1076    int node = ra_get_best_spill_node(g);
1077    if (node < 0)
1078       return -1;
1079 
1080    assert(node >= first_vgrf_node);
1081    return node - first_vgrf_node;
1082 }
1083 
1084 brw_reg
alloc_spill_reg(unsigned size,int ip)1085 brw_reg_alloc::alloc_spill_reg(unsigned size, int ip)
1086 {
1087    int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo)));
1088    int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
1089    int n = ra_add_node(g, compiler->reg_set.classes[class_idx]);
1090    assert(n == first_vgrf_node + vgrf);
1091    assert(n == first_spill_node + spill_node_count);
1092 
1093    setup_live_interference(n, ip - 1, ip + 1);
1094 
1095    /* Add interference between this spill node and any other spill nodes for
1096     * the same instruction.
1097     */
1098    for (int s = 0; s < spill_node_count; s++) {
1099       if (spill_vgrf_ip[s] == ip)
1100          ra_add_node_interference(g, n, first_spill_node + s);
1101    }
1102 
1103    /* Add this spill node to the list for next time */
1104    if (spill_node_count >= spill_vgrf_ip_alloc) {
1105       if (spill_vgrf_ip_alloc == 0)
1106          spill_vgrf_ip_alloc = 16;
1107       else
1108          spill_vgrf_ip_alloc *= 2;
1109       spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
1110                                spill_vgrf_ip_alloc);
1111    }
1112    spill_vgrf_ip[spill_node_count++] = ip;
1113 
1114    return brw_vgrf(vgrf, BRW_TYPE_F);
1115 }
1116 
1117 void
spill_reg(unsigned spill_reg)1118 brw_reg_alloc::spill_reg(unsigned spill_reg)
1119 {
1120    int size = fs->alloc.sizes[spill_reg];
1121    unsigned int spill_offset = fs->last_scratch;
1122    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
1123 
1124    fs->spilled_any_registers = true;
1125 
1126    fs->last_scratch += align(size * REG_SIZE, REG_SIZE * reg_unit(devinfo));
1127 
1128    /* We're about to replace all uses of this register.  It no longer
1129     * conflicts with anything so we can get rid of its interference.
1130     */
1131    ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
1132    ra_reset_node_interference(g, first_vgrf_node + spill_reg);
1133 
1134    /* Generate spill/unspill instructions for the objects being
1135     * spilled.  Right now, we spill or unspill the whole thing to a
1136     * virtual grf of the same size.  For most instructions, though, we
1137     * could just spill/unspill the GRF being accessed.
1138     */
1139    int ip = 0;
1140    foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1141       const brw_builder ibld = brw_builder(fs, block, inst);
1142       exec_node *before = inst->prev;
1143       exec_node *after = inst->next;
1144 
1145       for (unsigned int i = 0; i < inst->sources; i++) {
1146 	 if (inst->src[i].file == VGRF &&
1147              inst->src[i].nr == spill_reg) {
1148             /* Count registers needed in units of physical registers */
1149             int count = align(regs_read(devinfo, inst, i), reg_unit(devinfo));
1150             /* Align the spilling offset the physical register size */
1151             int subset_spill_offset = spill_offset +
1152                ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE * reg_unit(devinfo));
1153             brw_reg unspill_dst = alloc_spill_reg(count, ip);
1154 
1155             inst->src[i].nr = unspill_dst.nr;
1156             /* The unspilled register is aligned to physical register, so
1157              * adjust the offset to the remaining within the physical register
1158              * size.
1159              */
1160             inst->src[i].offset %= REG_SIZE * reg_unit(devinfo);
1161 
1162             /* We read the largest power-of-two divisor of the register count
1163              * (because only POT scratch read blocks are allowed by the
1164              * hardware) up to the maximum supported block size.
1165              */
1166             const unsigned width =
1167                MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1168 
1169             /* Set exec_all() on unspill messages under the (rather
1170              * pessimistic) assumption that there is no one-to-one
1171              * correspondence between channels of the spilled variable in
1172              * scratch space and the scratch read message, which operates on
1173              * 32 bit channels.  It shouldn't hurt in any case because the
1174              * unspill destination is a block-local temporary.
1175              */
1176             emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
1177                          unspill_dst, subset_spill_offset, count, ip);
1178 	 }
1179       }
1180 
1181       if (inst->dst.file == VGRF &&
1182           inst->dst.nr == spill_reg &&
1183           inst->opcode != SHADER_OPCODE_UNDEF) {
1184          /* Count registers needed in units of physical registers */
1185          int count = align(regs_written(inst), reg_unit(devinfo));
1186          /* Align the spilling offset the physical register size */
1187          int subset_spill_offset = spill_offset +
1188             ROUND_DOWN_TO(inst->dst.offset, reg_unit(devinfo) * REG_SIZE);
1189          brw_reg spill_src = alloc_spill_reg(count, ip);
1190 
1191          inst->dst.nr = spill_src.nr;
1192          /* The spilled register is aligned to physical register, so adjust
1193           * the offset to the remaining within the physical register size.
1194           */
1195          inst->dst.offset %= REG_SIZE * reg_unit(devinfo);
1196 
1197          /* If we're immediately spilling the register, we should not use
1198           * destination dependency hints.  Doing so will cause the GPU do
1199           * try to read and write the register at the same time and may
1200           * hang the GPU.
1201           */
1202          inst->no_dd_clear = false;
1203          inst->no_dd_check = false;
1204 
1205          /* Calculate the execution width of the scratch messages (which work
1206           * in terms of 32 bit components so we have a fixed number of eight
1207           * channels per spilled register).  We attempt to write one
1208           * exec_size-wide component of the variable at a time without
1209           * exceeding the maximum number of (fake) MRF registers reserved for
1210           * spills.
1211           */
1212          const unsigned width = 8 * reg_unit(devinfo) *
1213             DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
1214                               spill_max_size(fs) * REG_SIZE),
1215                          reg_unit(devinfo) * REG_SIZE);
1216 
1217          /* Spills should only write data initialized by the instruction for
1218           * whichever channels are enabled in the execution mask.  If that's
1219           * not possible we'll have to emit a matching unspill before the
1220           * instruction and set force_writemask_all on the spill.
1221           */
1222          const bool per_channel =
1223             inst->dst.is_contiguous() &&
1224             brw_type_size_bytes(inst->dst.type) == 4 &&
1225             inst->exec_size == width;
1226 
1227          /* Builder used to emit the scratch messages. */
1228          const brw_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1229 
1230 	 /* If our write is going to affect just part of the
1231           * regs_written(inst), then we need to unspill the destination since
1232           * we write back out all of the regs_written().  If the original
1233           * instruction had force_writemask_all set and is not a partial
1234           * write, there should be no need for the unspill since the
1235           * instruction will be overwriting the whole destination in any case.
1236 	  */
1237          if (inst->is_partial_write() ||
1238              (!inst->force_writemask_all && !per_channel))
1239             emit_unspill(ubld, &fs->shader_stats, spill_src,
1240                          subset_spill_offset, regs_written(inst), ip);
1241 
1242          emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
1243                     subset_spill_offset, regs_written(inst), ip);
1244       }
1245 
1246       for (fs_inst *inst = (fs_inst *)before->next;
1247            inst != after; inst = (fs_inst *)inst->next)
1248          setup_inst_interference(inst);
1249 
1250       /* We don't advance the ip for scratch read/write instructions
1251        * because we consider them to have the same ip as instruction we're
1252        * spilling around for the purposes of interference.  Also, we're
1253        * inserting spill instructions without re-running liveness analysis
1254        * and we don't want to mess up our IPs.
1255        */
1256       if (!_mesa_set_search(spill_insts, inst))
1257          ip++;
1258    }
1259 
1260    assert(ip == live_instr_count);
1261 }
1262 
1263 bool
assign_regs(bool allow_spilling,bool spill_all)1264 brw_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1265 {
1266    build_interference_graph(allow_spilling);
1267 
1268    unsigned spilled = 0;
1269    while (1) {
1270       /* Debug of register spilling: Go spill everything. */
1271       if (unlikely(spill_all)) {
1272          int reg = choose_spill_reg();
1273          if (reg != -1) {
1274             spill_reg(reg);
1275             continue;
1276          }
1277       }
1278 
1279       if (ra_allocate(g))
1280          break;
1281 
1282       if (!allow_spilling)
1283          return false;
1284 
1285       /* Failed to allocate registers.  Spill some regs, and the caller will
1286        * loop back into here to try again.
1287        */
1288       unsigned nr_spills = 1;
1289       if (compiler->spilling_rate)
1290          nr_spills = MAX2(1, spilled / compiler->spilling_rate);
1291 
1292       for (unsigned j = 0; j < nr_spills; j++) {
1293          int reg = choose_spill_reg();
1294          if (reg == -1) {
1295             if (j == 0)
1296                return false; /* Nothing to spill */
1297             break;
1298          }
1299 
1300          spill_reg(reg);
1301          spilled++;
1302       }
1303    }
1304 
1305    if (spilled)
1306       fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1307 
1308    /* Get the chosen virtual registers for each node, and map virtual
1309     * regs in the register classes back down to real hardware reg
1310     * numbers.
1311     */
1312    unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count);
1313    fs->grf_used = fs->first_non_payload_grf;
1314    for (unsigned i = 0; i < fs->alloc.count; i++) {
1315       int reg = ra_get_node_reg(g, first_vgrf_node + i);
1316 
1317       hw_reg_mapping[i] = reg;
1318       fs->grf_used = MAX2(fs->grf_used,
1319 			  hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
1320                                                            reg_unit(devinfo)));
1321    }
1322 
1323    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1324       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
1325       for (int i = 0; i < inst->sources; i++) {
1326          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
1327       }
1328    }
1329 
1330    fs->alloc.count = fs->grf_used;
1331 
1332    ralloc_free(hw_reg_mapping);
1333 
1334    return true;
1335 }
1336 
1337 bool
brw_assign_regs(fs_visitor & s,bool allow_spilling,bool spill_all)1338 brw_assign_regs(fs_visitor &s, bool allow_spilling, bool spill_all)
1339 {
1340    brw_reg_alloc alloc(&s);
1341    bool success = alloc.assign_regs(allow_spilling, spill_all);
1342    if (!success && allow_spilling) {
1343       s.fail("no register to spill:\n");
1344       brw_print_instructions(s);
1345    }
1346    return success;
1347 }
1348