1 /******************************************************************************* 2 * Copyright 2002-2018 Intel Corporation 3 * All Rights Reserved. 4 * 5 * If this software was obtained under the Intel Simplified Software License, 6 * the following terms apply: 7 * 8 * The source code, information and material ("Material") contained herein is 9 * owned by Intel Corporation or its suppliers or licensors, and title to such 10 * Material remains with Intel Corporation or its suppliers or licensors. The 11 * Material contains proprietary information of Intel or its suppliers and 12 * licensors. The Material is protected by worldwide copyright laws and treaty 13 * provisions. No part of the Material may be used, copied, reproduced, 14 * modified, published, uploaded, posted, transmitted, distributed or disclosed 15 * in any way without Intel's prior express written permission. No license under 16 * any patent, copyright or other intellectual property rights in the Material 17 * is granted to or conferred upon you, either expressly, by implication, 18 * inducement, estoppel or otherwise. Any license under such intellectual 19 * property rights must be express and approved by Intel in writing. 20 * 21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this 22 * notice or any other notice embedded in Materials by Intel or Intel's 23 * suppliers or licensors in any way. 24 * 25 * 26 * If this software was obtained under the Apache License, Version 2.0 (the 27 * "License"), the following terms apply: 28 * 29 * You may not use this file except in compliance with the License. You may 30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 31 * 32 * 33 * Unless required by applicable law or agreed to in writing, software 34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 36 * 37 * See the License for the specific language governing permissions and 38 * limitations under the License. 39 *******************************************************************************/ 40 41 /* 42 // Intel(R) Integrated Performance Primitives 43 // Cryptographic Primitives (ippcp) 44 // 45 // Contents: 46 // ippsMontMul() 47 // 48 */ 49 50 #include "owndefs.h" 51 #include "owncp.h" 52 #include "pcpbn.h" 53 #include "pcpmontgomery.h" 54 #include "pcptool.h" 55 56 /*F* 57 // Name: ippsMontMul 58 // 59 // Purpose: Computes Montgomery modular multiplication for positive big 60 // number integers of Montgomery form. The following pseudocode 61 // represents this function: 62 // r <- ( a * b * R^(-1) ) mod m 63 // 64 // Returns: Reason: 65 // ippStsNoErr Returns no error. 66 // ippStsNullPtrErr Returns an error when pointers are null. 67 // ippStsBadArgErr Returns an error when a or b is a negative integer. 68 // ippStsScaleRangeErr Returns an error when a or b is more than m. 69 // ippStsOutOfRangeErr Returns an error when IppsBigNumState *r is larger than 70 // IppsMontState *m. 71 // ippStsContextMatchErr Returns an error when the context parameter does 72 // not match the operation. 73 // 74 // Parameters: 75 // pA Multiplicand within the range [0, m - 1]. 76 // pB Multiplier within the range [0, m - 1]. 77 // pCtx Modulus. 78 // pR Montgomery multiplication result. 79 // 80 // Notes: The size of IppsBigNumState *r should not be less than the data 81 // length of the modulus m. 82 *F*/ 83 IPPFUN(IppStatus, ippsMontMul, (const IppsBigNumState* pA, const IppsBigNumState* pB, IppsMontState* pCtx, IppsBigNumState* pR)) 84 { 85 IPP_BAD_PTR4_RET(pA, pB, pCtx, pR); 86 87 pCtx = (IppsMontState*)(IPP_ALIGNED_PTR((pCtx), MONT_ALIGNMENT)); 88 pA = (IppsBigNumState*)( IPP_ALIGNED_PTR(pA, BN_ALIGNMENT) ); 89 pB = (IppsBigNumState*)( IPP_ALIGNED_PTR(pB, BN_ALIGNMENT) ); 90 pR = (IppsBigNumState*)( IPP_ALIGNED_PTR(pR, BN_ALIGNMENT) ); 91 92 IPP_BADARG_RET(!MNT_VALID_ID(pCtx), ippStsContextMatchErr); 93 IPP_BADARG_RET(!BN_VALID_ID(pA), ippStsContextMatchErr); 94 IPP_BADARG_RET(!BN_VALID_ID(pB), ippStsContextMatchErr); 95 IPP_BADARG_RET(!BN_VALID_ID(pR), ippStsContextMatchErr); 96 97 IPP_BADARG_RET(BN_NEGATIVE(pA) || BN_NEGATIVE(pB), ippStsBadArgErr); 98 IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pA), BN_SIZE(pA), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr); 99 IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pB), BN_SIZE(pB), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr); 100 IPP_BADARG_RET(BN_ROOM(pR) < MOD_LEN( MNT_ENGINE(pCtx) ), ippStsOutOfRangeErr); 101 102 { 103 const int usedPoolLen = 2; 104 cpSize nsM = MOD_LEN( MNT_ENGINE(pCtx) ); 105 BNU_CHUNK_T* pDataR = BN_NUMBER(pR); 106 BNU_CHUNK_T* pDataA = gsModPoolAlloc(MNT_ENGINE(pCtx), usedPoolLen); 107 BNU_CHUNK_T* pDataB = pDataA + nsM; 108 //tbcd: temporary excluded: assert(NULL!=pDataA); 109 110 ZEXPAND_COPY_BNU(pDataA, nsM, BN_NUMBER(pA), BN_SIZE(pA)); 111 ZEXPAND_COPY_BNU(pDataB, nsM, BN_NUMBER(pB), BN_SIZE(pB)); 112 113 MOD_METHOD( MNT_ENGINE(pCtx) )->mul(pDataR, pDataA, pDataB, MNT_ENGINE(pCtx)); 114 115 gsModPoolFree(MNT_ENGINE(pCtx), usedPoolLen); 116 117 FIX_BNU(pDataR, nsM); 118 BN_SIZE(pR) = nsM; 119 BN_SIGN(pR) = ippBigNumPOS; 120 121 return ippStsNoErr; 122 } 123 } 124