• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class RealType = double>
15 // class piecewise_linear_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g);
18 
19 #include <iostream>
20 
21 #include <random>
22 #include <algorithm>
23 #include <vector>
24 #include <iterator>
25 #include <numeric>
26 #include <cassert>
27 #include <limits>
28 
29 template <class T>
30 inline
31 T
sqr(T x)32 sqr(T x)
33 {
34     return x*x;
35 }
36 
37 double
f(double x,double a,double m,double b,double c)38 f(double x, double a, double m, double b, double c)
39 {
40     return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
41 }
42 
43 void
test1()44 test1()
45 {
46     typedef std::piecewise_linear_distribution<> D;
47     typedef std::mt19937_64 G;
48     G g;
49     double b[] = {10, 14, 16, 17};
50     double p[] = {0, 1, 1, 0};
51     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
52     D d(b, b+Np+1, p);
53     const int N = 1000000;
54     std::vector<D::result_type> u;
55     for (size_t i = 0; i < N; ++i)
56     {
57         D::result_type v = d(g);
58         assert(d.min() <= v && v < d.max());
59         u.push_back(v);
60     }
61     std::sort(u.begin(), u.end());
62     int kp = -1;
63     double a = std::numeric_limits<double>::quiet_NaN();
64     double m = std::numeric_limits<double>::quiet_NaN();
65     double bk = std::numeric_limits<double>::quiet_NaN();
66     double c = std::numeric_limits<double>::quiet_NaN();
67     std::vector<double> areas(Np);
68     double S = 0;
69     for (size_t i = 0; i < areas.size(); ++i)
70     {
71         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
72         S += areas[i];
73     }
74     for (size_t i = 0; i < areas.size(); ++i)
75         areas[i] /= S;
76     for (size_t i = 0; i < Np+1; ++i)
77         p[i] /= S;
78     for (size_t i = 0; i < N; ++i)
79     {
80         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
81         if (k != kp)
82         {
83             a = 0;
84             for (int j = 0; j < k; ++j)
85                 a += areas[j];
86             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
87             bk = b[k];
88             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
89             kp = k;
90         }
91         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
92     }
93 }
94 
95 void
test2()96 test2()
97 {
98     typedef std::piecewise_linear_distribution<> D;
99     typedef std::mt19937_64 G;
100     G g;
101     double b[] = {10, 14, 16, 17};
102     double p[] = {0, 0, 1, 0};
103     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
104     D d(b, b+Np+1, p);
105     const int N = 1000000;
106     std::vector<D::result_type> u;
107     for (size_t i = 0; i < N; ++i)
108     {
109         D::result_type v = d(g);
110         assert(d.min() <= v && v < d.max());
111         u.push_back(v);
112     }
113     std::sort(u.begin(), u.end());
114     int kp = -1;
115     double a = std::numeric_limits<double>::quiet_NaN();
116     double m = std::numeric_limits<double>::quiet_NaN();
117     double bk = std::numeric_limits<double>::quiet_NaN();
118     double c = std::numeric_limits<double>::quiet_NaN();
119     std::vector<double> areas(Np);
120     double S = 0;
121     for (size_t i = 0; i < areas.size(); ++i)
122     {
123         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
124         S += areas[i];
125     }
126     for (size_t i = 0; i < areas.size(); ++i)
127         areas[i] /= S;
128     for (size_t i = 0; i < Np+1; ++i)
129         p[i] /= S;
130     for (size_t i = 0; i < N; ++i)
131     {
132         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
133         if (k != kp)
134         {
135             a = 0;
136             for (int j = 0; j < k; ++j)
137                 a += areas[j];
138             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
139             bk = b[k];
140             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
141             kp = k;
142         }
143         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
144     }
145 }
146 
147 void
test3()148 test3()
149 {
150     typedef std::piecewise_linear_distribution<> D;
151     typedef std::mt19937_64 G;
152     G g;
153     double b[] = {10, 14, 16, 17};
154     double p[] = {1, 0, 0, 0};
155     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
156     D d(b, b+Np+1, p);
157     const size_t N = 1000000;
158     std::vector<D::result_type> u;
159     for (size_t i = 0; i < N; ++i)
160     {
161         D::result_type v = d(g);
162         assert(d.min() <= v && v < d.max());
163         u.push_back(v);
164     }
165     std::sort(u.begin(), u.end());
166     int kp = -1;
167     double a = std::numeric_limits<double>::quiet_NaN();
168     double m = std::numeric_limits<double>::quiet_NaN();
169     double bk = std::numeric_limits<double>::quiet_NaN();
170     double c = std::numeric_limits<double>::quiet_NaN();
171     std::vector<double> areas(Np);
172     double S = 0;
173     for (size_t i = 0; i < areas.size(); ++i)
174     {
175         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
176         S += areas[i];
177     }
178     for (size_t i = 0; i < areas.size(); ++i)
179         areas[i] /= S;
180     for (size_t i = 0; i < Np+1; ++i)
181         p[i] /= S;
182     for (size_t i = 0; i < N; ++i)
183     {
184         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
185         if (k != kp)
186         {
187             a = 0;
188             for (int j = 0; j < k; ++j)
189                 a += areas[j];
190             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
191             bk = b[k];
192             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
193             kp = k;
194         }
195         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
196     }
197 }
198 
199 void
test4()200 test4()
201 {
202     typedef std::piecewise_linear_distribution<> D;
203     typedef std::mt19937_64 G;
204     G g;
205     double b[] = {10, 14, 16};
206     double p[] = {0, 1, 0};
207     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
208     D d(b, b+Np+1, p);
209     const int N = 1000000;
210     std::vector<D::result_type> u;
211     for (size_t i = 0; i < N; ++i)
212     {
213         D::result_type v = d(g);
214         assert(d.min() <= v && v < d.max());
215         u.push_back(v);
216     }
217     std::sort(u.begin(), u.end());
218     int kp = -1;
219     double a = std::numeric_limits<double>::quiet_NaN();
220     double m = std::numeric_limits<double>::quiet_NaN();
221     double bk = std::numeric_limits<double>::quiet_NaN();
222     double c = std::numeric_limits<double>::quiet_NaN();
223     std::vector<double> areas(Np);
224     double S = 0;
225     for (size_t i = 0; i < areas.size(); ++i)
226     {
227         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
228         S += areas[i];
229     }
230     for (size_t i = 0; i < areas.size(); ++i)
231         areas[i] /= S;
232     for (size_t i = 0; i < Np+1; ++i)
233         p[i] /= S;
234     for (size_t i = 0; i < N; ++i)
235     {
236         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
237         if (k != kp)
238         {
239             a = 0;
240             for (int j = 0; j < k; ++j)
241                 a += areas[j];
242             assert(k < static_cast<int>(Np));
243             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
244             bk = b[k];
245             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
246             kp = k;
247         }
248         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
249     }
250 }
251 
252 void
test5()253 test5()
254 {
255     typedef std::piecewise_linear_distribution<> D;
256     typedef std::mt19937_64 G;
257     G g;
258     double b[] = {10, 14};
259     double p[] = {1, 1};
260     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
261     D d(b, b+Np+1, p);
262     const int N = 1000000;
263     std::vector<D::result_type> u;
264     for (size_t i = 0; i < N; ++i)
265     {
266         D::result_type v = d(g);
267         assert(d.min() <= v && v < d.max());
268         u.push_back(v);
269     }
270     std::sort(u.begin(), u.end());
271     int kp = -1;
272     double a = std::numeric_limits<double>::quiet_NaN();
273     double m = std::numeric_limits<double>::quiet_NaN();
274     double bk = std::numeric_limits<double>::quiet_NaN();
275     double c = std::numeric_limits<double>::quiet_NaN();
276     std::vector<double> areas(Np);
277     double S = 0;
278     for (size_t i = 0; i < areas.size(); ++i)
279     {
280         assert(i < Np);
281         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
282         S += areas[i];
283     }
284     for (size_t i = 0; i < areas.size(); ++i)
285         areas[i] /= S;
286     for (size_t i = 0; i < Np+1; ++i)
287         p[i] /= S;
288     for (size_t i = 0; i < N; ++i)
289     {
290         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
291         if (k != kp)
292         {
293             a = 0;
294             for (int j = 0; j < k; ++j)
295                 a += areas[j];
296             assert(k < static_cast<int>(Np));
297             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
298             bk = b[k];
299             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
300             kp = k;
301         }
302         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
303     }
304 }
305 
306 void
test6()307 test6()
308 {
309     typedef std::piecewise_linear_distribution<> D;
310     typedef std::mt19937_64 G;
311     G g;
312     double b[] = {10, 14, 16, 17};
313     double p[] = {25, 62.5, 12.5, 0};
314     const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
315     D d(b, b+Np+1, p);
316     const int N = 1000000;
317     std::vector<D::result_type> u;
318     for (size_t i = 0; i < N; ++i)
319     {
320         D::result_type v = d(g);
321         assert(d.min() <= v && v < d.max());
322         u.push_back(v);
323     }
324     std::sort(u.begin(), u.end());
325     int kp = -1;
326     double a = std::numeric_limits<double>::quiet_NaN();
327     double m = std::numeric_limits<double>::quiet_NaN();
328     double bk = std::numeric_limits<double>::quiet_NaN();
329     double c = std::numeric_limits<double>::quiet_NaN();
330     std::vector<double> areas(Np);
331     double S = 0;
332     for (size_t i = 0; i < areas.size(); ++i)
333     {
334         areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
335         S += areas[i];
336     }
337     for (size_t i = 0; i < areas.size(); ++i)
338         areas[i] /= S;
339     for (size_t i = 0; i < Np+1; ++i)
340         p[i] /= S;
341     for (size_t i = 0; i < N; ++i)
342     {
343         int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
344         if (k != kp)
345         {
346             a = 0;
347             for (int j = 0; j < k; ++j)
348                 a += areas[j];
349             m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
350             bk = b[k];
351             c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
352             kp = k;
353         }
354         assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
355     }
356 }
357 
main()358 int main()
359 {
360     test1();
361     test2();
362     test3();
363     test4();
364     test5();
365     test6();
366 }
367