1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the aggressive expression pattern combiner classes.
11 // Currently, it handles expression patterns for:
12 // * Truncate instruction
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
17 #include "AggressiveInstCombineInternal.h"
18 #include "llvm-c/Initialization.h"
19 #include "llvm-c/Transforms/Scalar.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/LegacyPassManager.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
32 using namespace PatternMatch;
33
34 #define DEBUG_TYPE "aggressive-instcombine"
35
36 namespace {
37 /// Contains expression pattern combiner logic.
38 /// This class provides both the logic to combine expression patterns and
39 /// combine them. It differs from InstCombiner class in that each pattern
40 /// combiner runs only once as opposed to InstCombine's multi-iteration,
41 /// which allows pattern combiner to have higher complexity than the O(1)
42 /// required by the instruction combiner.
43 class AggressiveInstCombinerLegacyPass : public FunctionPass {
44 public:
45 static char ID; // Pass identification, replacement for typeid
46
AggressiveInstCombinerLegacyPass()47 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
48 initializeAggressiveInstCombinerLegacyPassPass(
49 *PassRegistry::getPassRegistry());
50 }
51
52 void getAnalysisUsage(AnalysisUsage &AU) const override;
53
54 /// Run all expression pattern optimizations on the given /p F function.
55 ///
56 /// \param F function to optimize.
57 /// \returns true if the IR is changed.
58 bool runOnFunction(Function &F) override;
59 };
60 } // namespace
61
62 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
63 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
64 /// of 'and' ops, then we also need to capture the fact that we saw an
65 /// "and X, 1", so that's an extra return value for that case.
66 struct MaskOps {
67 Value *Root;
68 APInt Mask;
69 bool MatchAndChain;
70 bool FoundAnd1;
71
MaskOpsMaskOps72 MaskOps(unsigned BitWidth, bool MatchAnds) :
73 Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
74 MatchAndChain(MatchAnds), FoundAnd1(false) {}
75 };
76
77 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
78 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
79 /// value. Examples:
80 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
81 /// returns { X, 0x129 }
82 /// and (and (X >> 1), 1), (X >> 4)
83 /// returns { X, 0x12 }
matchAndOrChain(Value * V,MaskOps & MOps)84 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
85 Value *Op0, *Op1;
86 if (MOps.MatchAndChain) {
87 // Recurse through a chain of 'and' operands. This requires an extra check
88 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
89 // in the chain to know that all of the high bits are cleared.
90 if (match(V, m_And(m_Value(Op0), m_One()))) {
91 MOps.FoundAnd1 = true;
92 return matchAndOrChain(Op0, MOps);
93 }
94 if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
95 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
96 } else {
97 // Recurse through a chain of 'or' operands.
98 if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
99 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
100 }
101
102 // We need a shift-right or a bare value representing a compare of bit 0 of
103 // the original source operand.
104 Value *Candidate;
105 uint64_t BitIndex = 0;
106 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
107 Candidate = V;
108
109 // Initialize result source operand.
110 if (!MOps.Root)
111 MOps.Root = Candidate;
112
113 // The shift constant is out-of-range? This code hasn't been simplified.
114 if (BitIndex >= MOps.Mask.getBitWidth())
115 return false;
116
117 // Fill in the mask bit derived from the shift constant.
118 MOps.Mask.setBit(BitIndex);
119 return MOps.Root == Candidate;
120 }
121
122 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
123 /// These will include a chain of 'or' or 'and'-shifted bits from a
124 /// common source value:
125 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
126 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
127 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
128 /// that differ only with a final 'not' of the result. We expect that final
129 /// 'not' to be folded with the compare that we create here (invert predicate).
foldAnyOrAllBitsSet(Instruction & I)130 static bool foldAnyOrAllBitsSet(Instruction &I) {
131 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
132 // final "and X, 1" instruction must be the final op in the sequence.
133 bool MatchAllBitsSet;
134 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
135 MatchAllBitsSet = true;
136 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
137 MatchAllBitsSet = false;
138 else
139 return false;
140
141 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
142 if (MatchAllBitsSet) {
143 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
144 return false;
145 } else {
146 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
147 return false;
148 }
149
150 // The pattern was found. Create a masked compare that replaces all of the
151 // shift and logic ops.
152 IRBuilder<> Builder(&I);
153 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
154 Value *And = Builder.CreateAnd(MOps.Root, Mask);
155 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) :
156 Builder.CreateIsNotNull(And);
157 Value *Zext = Builder.CreateZExt(Cmp, I.getType());
158 I.replaceAllUsesWith(Zext);
159 return true;
160 }
161
162 /// This is the entry point for folds that could be implemented in regular
163 /// InstCombine, but they are separated because they are not expected to
164 /// occur frequently and/or have more than a constant-length pattern match.
foldUnusualPatterns(Function & F,DominatorTree & DT)165 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
166 bool MadeChange = false;
167 for (BasicBlock &BB : F) {
168 // Ignore unreachable basic blocks.
169 if (!DT.isReachableFromEntry(&BB))
170 continue;
171 // Do not delete instructions under here and invalidate the iterator.
172 // Walk the block backwards for efficiency. We're matching a chain of
173 // use->defs, so we're more likely to succeed by starting from the bottom.
174 // Also, we want to avoid matching partial patterns.
175 // TODO: It would be more efficient if we removed dead instructions
176 // iteratively in this loop rather than waiting until the end.
177 for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
178 MadeChange |= foldAnyOrAllBitsSet(I);
179 }
180
181 // We're done with transforms, so remove dead instructions.
182 if (MadeChange)
183 for (BasicBlock &BB : F)
184 SimplifyInstructionsInBlock(&BB);
185
186 return MadeChange;
187 }
188
189 /// This is the entry point for all transforms. Pass manager differences are
190 /// handled in the callers of this function.
runImpl(Function & F,TargetLibraryInfo & TLI,DominatorTree & DT)191 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
192 bool MadeChange = false;
193 const DataLayout &DL = F.getParent()->getDataLayout();
194 TruncInstCombine TIC(TLI, DL, DT);
195 MadeChange |= TIC.run(F);
196 MadeChange |= foldUnusualPatterns(F, DT);
197 return MadeChange;
198 }
199
getAnalysisUsage(AnalysisUsage & AU) const200 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
201 AnalysisUsage &AU) const {
202 AU.setPreservesCFG();
203 AU.addRequired<DominatorTreeWrapperPass>();
204 AU.addRequired<TargetLibraryInfoWrapperPass>();
205 AU.addPreserved<AAResultsWrapperPass>();
206 AU.addPreserved<BasicAAWrapperPass>();
207 AU.addPreserved<DominatorTreeWrapperPass>();
208 AU.addPreserved<GlobalsAAWrapperPass>();
209 }
210
runOnFunction(Function & F)211 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
212 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
213 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
214 return runImpl(F, TLI, DT);
215 }
216
run(Function & F,FunctionAnalysisManager & AM)217 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
218 FunctionAnalysisManager &AM) {
219 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
220 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
221 if (!runImpl(F, TLI, DT)) {
222 // No changes, all analyses are preserved.
223 return PreservedAnalyses::all();
224 }
225 // Mark all the analyses that instcombine updates as preserved.
226 PreservedAnalyses PA;
227 PA.preserveSet<CFGAnalyses>();
228 PA.preserve<AAManager>();
229 PA.preserve<GlobalsAA>();
230 return PA;
231 }
232
233 char AggressiveInstCombinerLegacyPass::ID = 0;
234 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
235 "aggressive-instcombine",
236 "Combine pattern based expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)237 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
238 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
239 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
240 "Combine pattern based expressions", false, false)
241
242 // Initialization Routines
243 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
244 initializeAggressiveInstCombinerLegacyPassPass(Registry);
245 }
246
LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R)247 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
248 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
249 }
250
createAggressiveInstCombinerPass()251 FunctionPass *llvm::createAggressiveInstCombinerPass() {
252 return new AggressiveInstCombinerLegacyPass();
253 }
254
LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM)255 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
256 unwrap(PM)->add(createAggressiveInstCombinerPass());
257 }
258