1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x4(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x4(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f);
33 const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
38 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
39 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
40 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
43 const float32x4_t vx = vld1q_f32(x); x += 4;
44
45 // General structure of the algorithm:
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51 // then replace result with 1 - f[z] if x <= 0.
52 const float32x4_t vz = vabsq_f32(vx);
53
54 // Compute reduced argument n := round(-z / log(2)).
55 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
56 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
58 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
59 // anyway. We fixup the result for such inputs at the very end of the algorithm.
60 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
61
62 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
63 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
64 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
65
66 // Subtract the large number back to get final n := round(-z / log(2)).
67 vn = vsubq_f32(vn, vmagic_bias);
68
69 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
70 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
72 vt = vmlaq_f32(vt, vn, vln2_lo);
73
74 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
75 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
76 vp = vmlaq_f32(vc3, vp, vt);
77 vp = vmlaq_f32(vc2, vp, vt);
78 vp = vmlaq_f32(vc1, vp, vt);
79
80 // Reconstruct the exp(-z) value:
81 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
82 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
83 // = s + (t * s) * p
84 vt = vmulq_f32(vt, vs);
85 float32x4_t ve = vmlaq_f32(vs, vp, vt);
86
87 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
88 float32x4_t vd = vaddq_f32(ve, vone);
89
90 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
91 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
92 // Thus the reciprocal of the denominator never overflows.
93 float32x4_t vr = vrecpeq_f32(vd);
94
95 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
96
97 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
98
99 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
100 float32x4_t vf = vmulq_f32(ve, vr);
101
102 // For inputs below denormal cutoff, replace output with +0.0f.
103 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
104 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
105
106 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
107 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
108 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
109
110 vst1q_f32(y, vf); y += 4;
111 }
112 if XNN_UNLIKELY(n != 0) {
113 const float32x4_t vx = vld1q_f32(x);
114
115 // General structure of the algorithm:
116 // / exp(x) / (1 + exp(x)) if x <= 0
117 // f[x] :=
118 // \ 1 - f[-x] if x >= 0
119 //
120 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
121 // then replace result with 1 - f[z] if x <= 0.
122 const float32x4_t vz = vabsq_f32(vx);
123
124 // Compute reduced argument n := round(-z / log(2)).
125 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
126 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
127 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
128 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
129 // anyway. We fixup the result for such inputs at the very end of the algorithm.
130 float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
131
132 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
133 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
134 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
135
136 // Subtract the large number back to get final n := round(-z / log(2)).
137 vn = vsubq_f32(vn, vmagic_bias);
138
139 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
140 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
141 float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
142 vt = vmlaq_f32(vt, vn, vln2_lo);
143
144 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
145 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
146 vp = vmlaq_f32(vc3, vp, vt);
147 vp = vmlaq_f32(vc2, vp, vt);
148 vp = vmlaq_f32(vc1, vp, vt);
149
150 // Reconstruct the exp(-z) value:
151 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
152 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
153 // = s + (t * s) * p
154 vt = vmulq_f32(vt, vs);
155 float32x4_t ve = vmlaq_f32(vs, vp, vt);
156
157 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
158 float32x4_t vd = vaddq_f32(ve, vone);
159
160 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
161 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
162 // Thus the reciprocal of the denominator never overflows.
163 float32x4_t vr = vrecpeq_f32(vd);
164
165 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
166
167 vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
168
169 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
170 float32x4_t vf = vmulq_f32(ve, vr);
171
172 // For inputs below denormal cutoff, replace output with +0.0f.
173 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
174 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
175
176 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
177 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
178 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
179
180 float32x2_t vf_lo = vget_low_f32(vf);
181 if (n & (2 * sizeof(float))) {
182 vst1_f32(y, vf_lo); y += 2;
183 vf_lo = vget_high_f32(vf);
184 }
185 if (n & (1 * sizeof(float))) {
186 vst1_lane_f32(y, vf_lo, 0);
187 }
188 }
189 }
190