• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x4(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neon_rr2_p5_nr2recps_x4(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27   // The largest z for which sigmoidf(-z) is normalized.
28   // This number is also the largest z for which expf(-z) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30   const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f);
33   const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
37   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
38   const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
39   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
40   const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
41 
42   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
43     const float32x4_t vx = vld1q_f32(x); x += 4;
44 
45     // General structure of the algorithm:
46     //           / exp(x) / (1 + exp(x)) if x <= 0
47     //   f[x] :=
48     //           \ 1 - f[-x] if x >= 0
49     //
50     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51     // then replace result with 1 - f[z] if x <= 0.
52     const float32x4_t vz = vabsq_f32(vx);
53 
54     // Compute reduced argument n := round(-z / log(2)).
55     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
56     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
58     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
59     // anyway. We fixup the result for such inputs at the very end of the algorithm.
60     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
61 
62     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
63     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
64     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
65 
66     // Subtract the large number back to get final n := round(-z / log(2)).
67     vn = vsubq_f32(vn, vmagic_bias);
68 
69     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
70     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71     float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
72     vt = vmlaq_f32(vt, vn, vln2_lo);
73 
74     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
75     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
76     vp = vmlaq_f32(vc3, vp, vt);
77     vp = vmlaq_f32(vc2, vp, vt);
78     vp = vmlaq_f32(vc1, vp, vt);
79 
80     // Reconstruct the exp(-z) value:
81     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
82     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
83     //     = s + (t * s) * p
84     vt = vmulq_f32(vt, vs);
85     float32x4_t ve = vmlaq_f32(vs, vp, vt);
86 
87     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
88     float32x4_t vd = vaddq_f32(ve, vone);
89 
90     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
91     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
92     // Thus the reciprocal of the denominator never overflows.
93     float32x4_t vr = vrecpeq_f32(vd);
94 
95     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
96 
97     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
98 
99     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
100     float32x4_t vf = vmulq_f32(ve, vr);
101 
102     // For inputs below denormal cutoff, replace output with +0.0f.
103     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
104     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
105 
106     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
107     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
108     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
109 
110     vst1q_f32(y, vf); y += 4;
111   }
112   if XNN_UNLIKELY(n != 0) {
113     const float32x4_t vx = vld1q_f32(x);
114 
115     // General structure of the algorithm:
116     //           / exp(x) / (1 + exp(x)) if x <= 0
117     //   f[x] :=
118     //           \ 1 - f[-x] if x >= 0
119     //
120     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
121     // then replace result with 1 - f[z] if x <= 0.
122     const float32x4_t vz = vabsq_f32(vx);
123 
124     // Compute reduced argument n := round(-z / log(2)).
125     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
126     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
127     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
128     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
129     // anyway. We fixup the result for such inputs at the very end of the algorithm.
130     float32x4_t vn = vmlaq_f32(vmagic_bias, vz, vminus_log2e);
131 
132     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
133     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
134     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
135 
136     // Subtract the large number back to get final n := round(-z / log(2)).
137     vn = vsubq_f32(vn, vmagic_bias);
138 
139     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
140     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
141     float32x4_t vt = vmlaq_f32(vz, vn, vln2_hi);
142     vt = vmlaq_f32(vt, vn, vln2_lo);
143 
144     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
145     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
146     vp = vmlaq_f32(vc3, vp, vt);
147     vp = vmlaq_f32(vc2, vp, vt);
148     vp = vmlaq_f32(vc1, vp, vt);
149 
150     // Reconstruct the exp(-z) value:
151     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
152     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
153     //     = s + (t * s) * p
154     vt = vmulq_f32(vt, vs);
155     float32x4_t ve = vmlaq_f32(vs, vp, vt);
156 
157     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
158     float32x4_t vd = vaddq_f32(ve, vone);
159 
160     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
161     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
162     // Thus the reciprocal of the denominator never overflows.
163     float32x4_t vr = vrecpeq_f32(vd);
164 
165     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
166 
167     vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
168 
169     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
170     float32x4_t vf = vmulq_f32(ve, vr);
171 
172     // For inputs below denormal cutoff, replace output with +0.0f.
173     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
174     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
175 
176     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
177     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
178     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
179 
180     float32x2_t vf_lo = vget_low_f32(vf);
181     if (n & (2 * sizeof(float))) {
182       vst1_f32(y, vf_lo); y += 2;
183       vf_lo = vget_high_f32(vf);
184     }
185     if (n & (1 * sizeof(float))) {
186       vst1_lane_f32(y, vf_lo, 0);
187     }
188   }
189 }
190