• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x20(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x20(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45     const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46 
47     // General structure of the algorithm:
48     //           / exp(x) / (1 + exp(x)) if x <= 0
49     //   f[x] :=
50     //           \ 1 - f[-x] if x >= 0
51     //
52     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53     // then replace result with 1 - f[-z] if x >= 0.
54     const float32x4_t vz0123 = vabsq_f32(vx0123);
55     const float32x4_t vz4567 = vabsq_f32(vx4567);
56     const float32x4_t vz89AB = vabsq_f32(vx89AB);
57     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
58     const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
59 
60     // Compute reduced argument n := round(-z * 64 / log(2)).
61     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
64     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
65     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
66     // very end of the algorithm.
67     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
68     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
69     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
70     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
71     float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
72 
73     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
74     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
75     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
76     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
77     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
78     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
79     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
80     //    and thus the adjusted exponent is not lower than -126.
81     //
82     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
83     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
84     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
85     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
86     const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
87     const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
88 
89     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
90     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
91     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
92     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
93     const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
94     const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
95 
96     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
97     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
98     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
99     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
100     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
101     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
102     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
103     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
104     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
105     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
106     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
107     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
108     const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
109     const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
110     float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
111     float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
112     const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
113     const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
114     float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
115     float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
116 
117     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
118     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
119     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
120     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
121     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
122     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
123     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
124     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
125     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
126     vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
127     vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
128     const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
129     vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
130     vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
131     const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
132 
133     // Adjust exponent of the value l fetched from the table to get the final s value.
134     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
135     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
136     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
137     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
138     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
139 
140     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
141     vn0123 = vsubq_f32(vn0123, vmagic_bias);
142     vn4567 = vsubq_f32(vn4567, vmagic_bias);
143     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
144     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
145     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
146 
147     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
148     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
149     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
150     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
151     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
152     float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o64);
153 
154     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
155     //   P1(t) = 1 + t * (-1 + t * c2)
156     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
157     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
158     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
159     float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
160     float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
161 
162     vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
163     vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
164     vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
165     vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
166     vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
167 
168     // Reconstruct the exp(-z) value:
169     //   f = s * (1 + t * (-1 + t * c2))
170     //     = s * (1 - t + t * (t * c2))
171     //     = s - s * (t - t * (t * c2))
172     //     = s - s * p
173     const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
174     const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
175     const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
176     const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
177     const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
178 
179     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
180     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
181     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
182     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
183     const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
184     const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
185 
186     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
187     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
188     // Thus the reciprocal of the denominator never overflows.
189     float32x4_t vr0123 = vrecpeq_f32(vd0123);
190     float32x4_t vr4567 = vrecpeq_f32(vd4567);
191     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
192     float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
193     float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
194 
195     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
196     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
197     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
198     vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
199     vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
200 
201     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
202     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
203     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
204     vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
205     vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
206 
207     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
208     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
209     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
210     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
211     float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
212     float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
213 
214     // For inputs below denormal cutoff, replace output with +0.0f.
215     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
216     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
217     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
218     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
219     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
220     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
221 
222     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
223     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
224     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
225     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
226     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
227     const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
228 
229     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
230     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
231     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
232     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
233     vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
234 
235     vst1q_f32(y, vf0123); y += 4;
236     vst1q_f32(y, vf4567); y += 4;
237     vst1q_f32(y, vf89AB); y += 4;
238     vst1q_f32(y, vfCDEF); y += 4;
239     vst1q_f32(y, vfGHIJ); y += 4;
240   }
241   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
242     const float32x4_t vx = vld1q_f32(x); x += 4;
243 
244     // General structure of the algorithm:
245     //           / exp(x) / (1 + exp(x)) if x <= 0
246     //   f[x] :=
247     //           \ 1 - f[-x] if x >= 0
248     //
249     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
250     // then replace result with 1 - f[-z] if x >= 0.
251     const float32x4_t vz = vabsq_f32(vx);
252 
253     // Compute reduced argument n := round(-z * 64 / log(2)).
254     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
255     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
256     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
257     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
258     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
259     // very end of the algorithm.
260     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
261 
262     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
263     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
264     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
265     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
266     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
267     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
268     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
269     //    and thus the adjusted exponent is not lower than -126.
270     //
271     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
272     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
273 
274     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
275     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
276     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
277     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
278     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
279     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
280     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
281     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
282     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
283     // Adjust exponent of the value l fetched from the table to get the final s value.
284     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
285 
286     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
287     vn = vsubq_f32(vn, vmagic_bias);
288 
289     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
290     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
291 
292     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
293     //   P1(t) = 1 + t * (-1 + t * c2)
294     float32x4_t vp = vmulq_f32(vt, vc2);
295     vp = vfmsq_f32(vt, vp, vt);
296 
297     // Reconstruct the exp(-z) value:
298     //   f = s * (1 + t * (-1 + t * c2))
299     //     = s * (1 - t + t * (t * c2))
300     //     = s - s * (t - t * (t * c2))
301     //     = s - s * p
302     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
303 
304     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
305     const float32x4_t vd = vaddq_f32(vy, vone);
306 
307     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
308     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
309     // Thus the reciprocal of the denominator never overflows.
310     float32x4_t vr = vrecpeq_f32(vd);
311 
312     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
313 
314     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
315 
316     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
317     float32x4_t vf = vmulq_f32(vy, vr);
318 
319     // For inputs below denormal cutoff, replace output with +0.0f.
320     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
321     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
322 
323     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
324     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
325     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
326 
327     vst1q_f32(y, vf); y += 4;
328   }
329   if XNN_UNLIKELY(n != 0) {
330     const float32x4_t vx = vld1q_f32(x);
331 
332     // General structure of the algorithm:
333     //           / exp(x) / (1 + exp(x)) if x <= 0
334     //   f[x] :=
335     //           \ 1 - f[-x] if x >= 0
336     //
337     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
338     // then replace result with 1 - f[-z] if x >= 0.
339     const float32x4_t vz = vabsq_f32(vx);
340 
341     // Compute reduced argument n := round(-z * 64 / log(2)).
342     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
343     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
344     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
345     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
346     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
347     // very end of the algorithm.
348     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
349 
350     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
351     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
352     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
353     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
354     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
355     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
356     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
357     //    and thus the adjusted exponent is not lower than -126.
358     //
359     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
360     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
361 
362     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
363     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
364     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
365     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
366     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
367     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
368     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
369     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
370     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
371     // Adjust exponent of the value l fetched from the table to get the final s value.
372     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
373 
374     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
375     vn = vsubq_f32(vn, vmagic_bias);
376 
377     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
378     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
379 
380     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
381     //   P1(t) = 1 + t * (-1 + t * c2)
382     float32x4_t vp = vmulq_f32(vt, vc2);
383     vp = vfmsq_f32(vt, vp, vt);
384 
385     // Reconstruct the exp(-z) value:
386     //   f = s * (1 + t * (-1 + t * c2))
387     //     = s * (1 - t + t * (t * c2))
388     //     = s - s * (t - t * (t * c2))
389     //     = s - s * p
390     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
391 
392     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
393     const float32x4_t vd = vaddq_f32(vy, vone);
394 
395     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
396     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
397     // Thus the reciprocal of the denominator never overflows.
398     float32x4_t vr = vrecpeq_f32(vd);
399 
400     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
401 
402     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
403 
404     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
405     float32x4_t vf = vmulq_f32(vy, vr);
406 
407     // For inputs below denormal cutoff, replace output with +0.0f.
408     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
409     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
410 
411     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
412     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
413     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
414 
415     float32x2_t vf_lo = vget_low_f32(vf);
416     if (n & (2 * sizeof(float))) {
417       vst1_f32(y, vf_lo); y += 2;
418       vf_lo = vget_high_f32(vf);
419     }
420     if (n & (1 * sizeof(float))) {
421       vst1_lane_f32(y, vf_lo, 0);
422     }
423   }
424 }
425