1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x20(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x20(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 20 * sizeof(float); n -= 20 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 const float32x4_t vxGHIJ = vld1q_f32(x); x += 4;
46
47 // General structure of the algorithm:
48 // / exp(x) / (1 + exp(x)) if x <= 0
49 // f[x] :=
50 // \ 1 - f[-x] if x >= 0
51 //
52 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
53 // then replace result with 1 - f[-z] if x >= 0.
54 const float32x4_t vz0123 = vabsq_f32(vx0123);
55 const float32x4_t vz4567 = vabsq_f32(vx4567);
56 const float32x4_t vz89AB = vabsq_f32(vx89AB);
57 const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
58 const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ);
59
60 // Compute reduced argument n := round(-z * 64 / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
64 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
65 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
66 // very end of the algorithm.
67 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
68 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
69 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
70 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e_x64);
71 float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e_x64);
72
73 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
74 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
75 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
76 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
77 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
78 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
79 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
80 // and thus the adjusted exponent is not lower than -126.
81 //
82 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
83 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
84 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
85 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
86 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
87 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
88
89 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
90 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
91 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
92 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
93 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
94 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
95
96 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
97 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
98 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
99 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
100 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
101 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
102 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
103 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
104 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
105 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
106 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
107 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
108 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
109 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
110 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
111 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
112 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
113 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
114 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
115 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
116
117 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
118 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
119 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
120 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
121 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
122 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
123 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
124 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
125 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
126 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
127 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
128 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
129 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
130 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
131 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
132
133 // Adjust exponent of the value l fetched from the table to get the final s value.
134 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
135 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
136 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
137 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
138 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
139
140 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
141 vn0123 = vsubq_f32(vn0123, vmagic_bias);
142 vn4567 = vsubq_f32(vn4567, vmagic_bias);
143 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
144 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
145 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
146
147 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
148 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
149 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
150 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
151 float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2_o64);
152 float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2_o64);
153
154 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
155 // P1(t) = 1 + t * (-1 + t * c2)
156 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
157 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
158 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
159 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
160 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
161
162 vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
163 vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
164 vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
165 vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF);
166 vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ);
167
168 // Reconstruct the exp(-z) value:
169 // f = s * (1 + t * (-1 + t * c2))
170 // = s * (1 - t + t * (t * c2))
171 // = s - s * (t - t * (t * c2))
172 // = s - s * p
173 const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
174 const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
175 const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
176 const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF);
177 const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
178
179 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
180 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
181 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
182 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
183 const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone);
184 const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone);
185
186 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
187 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
188 // Thus the reciprocal of the denominator never overflows.
189 float32x4_t vr0123 = vrecpeq_f32(vd0123);
190 float32x4_t vr4567 = vrecpeq_f32(vd4567);
191 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
192 float32x4_t vrCDEF = vrecpeq_f32(vdCDEF);
193 float32x4_t vrGHIJ = vrecpeq_f32(vdGHIJ);
194
195 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
196 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
197 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
198 vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
199 vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
200
201 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
202 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
203 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
204 vrCDEF = vfmaq_f32(vrCDEF, vrCDEF, vfmsq_f32(vone, vrCDEF, vdCDEF));
205 vrGHIJ = vfmaq_f32(vrGHIJ, vrGHIJ, vfmsq_f32(vone, vrGHIJ, vdGHIJ));
206
207 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
208 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
209 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
210 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
211 float32x4_t vfCDEF = vmulq_f32(vyCDEF, vrCDEF);
212 float32x4_t vfGHIJ = vmulq_f32(vyGHIJ, vrGHIJ);
213
214 // For inputs below denormal cutoff, replace output with +0.0f.
215 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
216 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
217 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
218 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
219 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
220 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff)));
221
222 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
223 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
224 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
225 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
226 const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
227 const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f));
228
229 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
230 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
231 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
232 vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
233 vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ));
234
235 vst1q_f32(y, vf0123); y += 4;
236 vst1q_f32(y, vf4567); y += 4;
237 vst1q_f32(y, vf89AB); y += 4;
238 vst1q_f32(y, vfCDEF); y += 4;
239 vst1q_f32(y, vfGHIJ); y += 4;
240 }
241 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
242 const float32x4_t vx = vld1q_f32(x); x += 4;
243
244 // General structure of the algorithm:
245 // / exp(x) / (1 + exp(x)) if x <= 0
246 // f[x] :=
247 // \ 1 - f[-x] if x >= 0
248 //
249 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
250 // then replace result with 1 - f[-z] if x >= 0.
251 const float32x4_t vz = vabsq_f32(vx);
252
253 // Compute reduced argument n := round(-z * 64 / log(2)).
254 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
255 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
256 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
257 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
258 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
259 // very end of the algorithm.
260 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
261
262 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
263 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
264 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
265 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
266 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
267 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
268 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
269 // and thus the adjusted exponent is not lower than -126.
270 //
271 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
272 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
273
274 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
275 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
276 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
277 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
278 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
279 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
280 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
281 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
282 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
283 // Adjust exponent of the value l fetched from the table to get the final s value.
284 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
285
286 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
287 vn = vsubq_f32(vn, vmagic_bias);
288
289 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
290 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
291
292 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
293 // P1(t) = 1 + t * (-1 + t * c2)
294 float32x4_t vp = vmulq_f32(vt, vc2);
295 vp = vfmsq_f32(vt, vp, vt);
296
297 // Reconstruct the exp(-z) value:
298 // f = s * (1 + t * (-1 + t * c2))
299 // = s * (1 - t + t * (t * c2))
300 // = s - s * (t - t * (t * c2))
301 // = s - s * p
302 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
303
304 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
305 const float32x4_t vd = vaddq_f32(vy, vone);
306
307 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
308 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
309 // Thus the reciprocal of the denominator never overflows.
310 float32x4_t vr = vrecpeq_f32(vd);
311
312 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
313
314 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
315
316 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
317 float32x4_t vf = vmulq_f32(vy, vr);
318
319 // For inputs below denormal cutoff, replace output with +0.0f.
320 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
321 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
322
323 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
324 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
325 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
326
327 vst1q_f32(y, vf); y += 4;
328 }
329 if XNN_UNLIKELY(n != 0) {
330 const float32x4_t vx = vld1q_f32(x);
331
332 // General structure of the algorithm:
333 // / exp(x) / (1 + exp(x)) if x <= 0
334 // f[x] :=
335 // \ 1 - f[-x] if x >= 0
336 //
337 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
338 // then replace result with 1 - f[-z] if x >= 0.
339 const float32x4_t vz = vabsq_f32(vx);
340
341 // Compute reduced argument n := round(-z * 64 / log(2)).
342 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
343 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
344 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
345 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
346 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
347 // very end of the algorithm.
348 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
349
350 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
351 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
352 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
353 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
354 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
355 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
356 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
357 // and thus the adjusted exponent is not lower than -126.
358 //
359 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
360 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
361
362 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
363 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
364 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
365 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
366 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
367 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
368 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
369 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
370 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
371 // Adjust exponent of the value l fetched from the table to get the final s value.
372 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
373
374 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
375 vn = vsubq_f32(vn, vmagic_bias);
376
377 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
378 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
379
380 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
381 // P1(t) = 1 + t * (-1 + t * c2)
382 float32x4_t vp = vmulq_f32(vt, vc2);
383 vp = vfmsq_f32(vt, vp, vt);
384
385 // Reconstruct the exp(-z) value:
386 // f = s * (1 + t * (-1 + t * c2))
387 // = s * (1 - t + t * (t * c2))
388 // = s - s * (t - t * (t * c2))
389 // = s - s * p
390 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
391
392 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
393 const float32x4_t vd = vaddq_f32(vy, vone);
394
395 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
396 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
397 // Thus the reciprocal of the denominator never overflows.
398 float32x4_t vr = vrecpeq_f32(vd);
399
400 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
401
402 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
403
404 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
405 float32x4_t vf = vmulq_f32(vy, vr);
406
407 // For inputs below denormal cutoff, replace output with +0.0f.
408 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
409 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
410
411 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
412 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
413 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
414
415 float32x2_t vf_lo = vget_low_f32(vf);
416 if (n & (2 * sizeof(float))) {
417 vst1_f32(y, vf_lo); y += 2;
418 vf_lo = vget_high_f32(vf);
419 }
420 if (n & (1 * sizeof(float))) {
421 vst1_lane_f32(y, vf_lo, 0);
422 }
423 }
424 }
425