• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_div_x16(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__neonfma_rr1_p5_div_x16(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
27   // The largest z for which sigmoidf(-z) is normalized.
28   // This number is also the largest z for which expf(-z) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
30   const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
31   const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
32   const float32x4_t vone = vmovq_n_f32(1.0f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
39 
40   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44     const float32x4_t vxCDEF = vld1q_f32(x); x += 4;
45 
46     // General structure of the algorithm:
47     //           / exp(x) / (1 + exp(x)) if x <= 0
48     //   f[x] :=
49     //           \ 1 - f[-x] if x >= 0
50     //
51     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
52     // then replace result with 1 - f[z] if x >= 0.
53     const float32x4_t vz0123 = vabsq_f32(vx0123);
54     const float32x4_t vz4567 = vabsq_f32(vx4567);
55     const float32x4_t vz89AB = vabsq_f32(vx89AB);
56     const float32x4_t vzCDEF = vabsq_f32(vxCDEF);
57 
58     // Compute reduced argument n := round(-z / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
63     // anyway. We fixup the result for such inputs at the very end of the algorithm.
64     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e);
65     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e);
66     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e);
67     float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e);
68 
69     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
71     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
72     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
73     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
74     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
75 
76     // Subtract the large number back to get final n := round(-z / log(2)).
77     vn0123 = vsubq_f32(vn0123, vmagic_bias);
78     vn4567 = vsubq_f32(vn4567, vmagic_bias);
79     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
80     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
81 
82     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
83     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2);
84     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2);
85     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2);
86     float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2);
87 
88     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
89     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
90     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
91     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
92     float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
93 
94     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
95     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
96     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
97     vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
98 
99     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
100     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
101     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
102     vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
103 
104     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
105     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
106     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
107     vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
108 
109     // Reconstruct the exp(-z) value:
110     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
111     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
112     //     = s + (t * s) * p
113     vt0123 = vmulq_f32(vt0123, vs0123);
114     vt4567 = vmulq_f32(vt4567, vs4567);
115     vt89AB = vmulq_f32(vt89AB, vs89AB);
116     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
117 
118     float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123);
119     float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567);
120     float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
121     float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
122 
123     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
124     float32x4_t vd0123 = vaddq_f32(ve0123, vone);
125     float32x4_t vd4567 = vaddq_f32(ve4567, vone);
126     float32x4_t vd89AB = vaddq_f32(ve89AB, vone);
127     float32x4_t vdCDEF = vaddq_f32(veCDEF, vone);
128 
129     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
130     float32x4_t vf0123 = vdivq_f32(ve0123, vd0123);
131     float32x4_t vf4567 = vdivq_f32(ve4567, vd4567);
132     float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB);
133     float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF);
134 
135     // For inputs below denormal cutoff, replace output with +0.0f.
136     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
137     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
138     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
139     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
140     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff)));
141 
142     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
143     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
144     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
145     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
146     const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f));
147 
148     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
149     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
150     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
151     vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF));
152 
153     vst1q_f32(y, vf0123); y += 4;
154     vst1q_f32(y, vf4567); y += 4;
155     vst1q_f32(y, vf89AB); y += 4;
156     vst1q_f32(y, vfCDEF); y += 4;
157   }
158   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
159     const float32x4_t vx = vld1q_f32(x); x += 4;
160 
161     // General structure of the algorithm:
162     //           / exp(x) / (1 + exp(x)) if x <= 0
163     //   f[x] :=
164     //           \ 1 - f[-x] if x >= 0
165     //
166     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
167     // then replace result with 1 - f[z] if x <= 0.
168     const float32x4_t vz = vabsq_f32(vx);
169 
170     // Compute reduced argument n := round(-z / log(2)).
171     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
172     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
173     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
174     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
175     // anyway. We fixup the result for such inputs at the very end of the algorithm.
176     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
177 
178     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
179     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
180     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
181 
182     // Subtract the large number back to get final n := round(-z / log(2)).
183     vn = vsubq_f32(vn, vmagic_bias);
184 
185     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
186     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
187 
188     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
189     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
190     vp = vfmaq_f32(vc3, vp, vt);
191     vp = vfmaq_f32(vc2, vp, vt);
192     vp = vfmaq_f32(vc1, vp, vt);
193 
194     // Reconstruct the exp(-z) value:
195     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
196     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
197     //     = s + (t * s) * p
198     vt = vmulq_f32(vt, vs);
199     float32x4_t ve = vfmaq_f32(vs, vp, vt);
200 
201     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
202     float32x4_t vd = vaddq_f32(ve, vone);
203 
204     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
205     float32x4_t vf = vdivq_f32(ve, vd);
206 
207     // For inputs below denormal cutoff, replace output with +0.0f.
208     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
209     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
210 
211     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
212     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
213     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
214 
215     vst1q_f32(y, vf); y += 4;
216   }
217   if XNN_UNLIKELY(n != 0) {
218     const float32x4_t vx = vld1q_f32(x);
219 
220     // General structure of the algorithm:
221     //           / exp(x) / (1 + exp(x)) if x <= 0
222     //   f[x] :=
223     //           \ 1 - f[-x] if x >= 0
224     //
225     // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
226     // then replace result with 1 - f[z] if x <= 0.
227     const float32x4_t vz = vabsq_f32(vx);
228 
229     // Compute reduced argument n := round(-z / log(2)).
230     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
231     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
232     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
233     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
234     // anyway. We fixup the result for such inputs at the very end of the algorithm.
235     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
236 
237     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
238     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
239     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
240 
241     // Subtract the large number back to get final n := round(-z / log(2)).
242     vn = vsubq_f32(vn, vmagic_bias);
243 
244     // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
245     float32x4_t vt = vfmaq_f32(vz, vn, vln2);
246 
247     // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
248     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
249     vp = vfmaq_f32(vc3, vp, vt);
250     vp = vfmaq_f32(vc2, vp, vt);
251     vp = vfmaq_f32(vc1, vp, vt);
252 
253     // Reconstruct the exp(-z) value:
254     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
255     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
256     //     = s + (t * s) * p
257     vt = vmulq_f32(vt, vs);
258     float32x4_t ve = vfmaq_f32(vs, vp, vt);
259 
260     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
261     float32x4_t vd = vaddq_f32(ve, vone);
262 
263     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
264     float32x4_t vf = vdivq_f32(ve, vd);
265 
266     // For inputs below denormal cutoff, replace output with +0.0f.
267     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
268     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
269 
270     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
271     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
272     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
273 
274     float32x2_t vf_lo = vget_low_f32(vf);
275     if (n & (2 * sizeof(float))) {
276       vst1_f32(y, vf_lo); y += 2;
277       vf_lo = vget_high_f32(vf);
278     }
279     if (n & (1 * sizeof(float))) {
280       vst1_lane_f32(y, vf_lo, 0);
281     }
282   }
283 }
284