• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 4 == 0
7$assert BATCH_TILE >= 4
8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
9#include <assert.h>
10
11$if BLEND:
12  #include <smmintrin.h>
13$else:
14  #include <emmintrin.h>
15
16#include <xnnpack/common.h>
17#include <xnnpack/vunary.h>
18
19
20void xnn_f32_sigmoid_ukernel__${"sse41" if BLEND else "sse2"}_p5_div_x${BATCH_TILE}(
21    size_t n,
22    const float* x,
23    float* y,
24    const void* params)
25{
26  assert(n % sizeof(float) == 0);
27
28  const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
29  // The smallest x for which sigmoidf(x) is normalized.
30  // This number is also the smallest x for which expf(x) is normalized.
31  const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
32  const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
33  // Last 7 bits are zeroes
34  const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
35  const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
36  const __m128 vone = _mm_set1_ps(1.0f);
37  const __m128 vsign_mask = _mm_set1_ps(-0.0f);
38
39  const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
40  const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
41  const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
42  const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
43  const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
44
45  $if BATCH_TILE > 4:
46    for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
47      const __m128 vx${ABC[0:4]} = _mm_loadu_ps(x);
48      $for N in range(4, BATCH_TILE, 4):
49        const __m128 vx${ABC[N:N+4]} = _mm_loadu_ps(x + ${N});
50
51      // General structure of the algorithm:
52      //           / exp(x) / (1 + exp(x)) if x <= 0
53      //   f[x] :=
54      //           \ 1 - f[-x] if x >= 0
55      //
56      // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
57      // then replace result with 1 - f[z] if x >= 0.
58      $for N in range(0, BATCH_TILE, 4):
59        const __m128 vz${ABC[N:N+4]} = _mm_or_ps(vx${ABC[N:N+4]}, vsign_mask);
60
61      // Compute reduced argument n := round(z / log(2)).
62      // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
63      // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
64      // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
65      // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
66      // the algorithm.
67      $for N in range(0, BATCH_TILE, 4):
68        __m128 vn${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vz${ABC[N:N+4]}, vlog2e), vmagic_bias);
69
70      // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71      // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
72      $for N in range(0, BATCH_TILE, 4):
73        const __m128 vs${ABC[N:N+4]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn${ABC[N:N+4]}), 23));
74
75      // Subtract the large number back to get final n := round(z / log(2)).
76      $for N in range(0, BATCH_TILE, 4):
77        vn${ABC[N:N+4]} = _mm_sub_ps(vn${ABC[N:N+4]}, vmagic_bias);
78
79      // Compute reduced argument t := z - n * log(2).
80      // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81      $for N in range(0, BATCH_TILE, 4):
82        __m128 vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_hi), vz${ABC[N:N+4]});
83
84      $for N in range(0, BATCH_TILE, 4):
85        vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_lo), vt${ABC[N:N+4]});
86
87      // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
88      $for N in range(0, BATCH_TILE, 4):
89        __m128 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vc5, vt${ABC[N:N+4]}), vc4);
90
91      $for N in range(0, BATCH_TILE, 4):
92        vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc3);
93
94      $for N in range(0, BATCH_TILE, 4):
95        vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc2);
96
97      $for N in range(0, BATCH_TILE, 4):
98        vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc1);
99
100      // Reconstruct the exp(z) value:
101      //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
102      //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
103      //     = s + (t * s) * p
104      $for N in range(0, BATCH_TILE, 4):
105        vt${ABC[N:N+4]} = _mm_mul_ps(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
106
107      $for N in range(0, BATCH_TILE, 4):
108        __m128 ve${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}), vs${ABC[N:N+4]});
109
110      // Denominator of the sigmoid fraction: 1.0 + exp(z)
111      $for N in range(0, BATCH_TILE, 4):
112        __m128 vd${ABC[N:N+4]} = _mm_add_ps(ve${ABC[N:N+4]}, vone);
113
114      // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
115      $for N in range(0, BATCH_TILE, 4):
116        __m128 vf${ABC[N:N+4]} = _mm_div_ps(ve${ABC[N:N+4]}, vd${ABC[N:N+4]});
117
118      // For inputs below denormal cutoff, replace output with +0.0f.
119      // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
120      $for N in range(0, BATCH_TILE, 4):
121        vf${ABC[N:N+4]} = _mm_andnot_ps(_mm_cmplt_ps(vz${ABC[N:N+4]}, vdenorm_cutoff), vf${ABC[N:N+4]});
122
123      // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
124      $if BLEND:
125        $for N in range(0, BATCH_TILE, 4):
126          vf${ABC[N:N+4]} = _mm_blendv_ps(_mm_sub_ps(vone, vf${ABC[N:N+4]}), vf${ABC[N:N+4]}, vx${ABC[N:N+4]});
127      $else:
128        $for N in range(0, BATCH_TILE, 4):
129          __m128 vm${ABC[N:N+4]} = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx${ABC[N:N+4]})));
130
131        $for N in range(0, BATCH_TILE, 4):
132          vf${ABC[N:N+4]} = _mm_or_ps(_mm_and_ps(vf${ABC[N:N+4]}, vm${ABC[N:N+4]}), _mm_andnot_ps(vm${ABC[N:N+4]}, _mm_sub_ps(vone, vf${ABC[N:N+4]})));
133
134      _mm_storeu_ps(y, vf${ABC[0:4]});
135      $for N in range(4, BATCH_TILE, 4):
136        _mm_storeu_ps(y + ${N}, vf${ABC[N:N+4]});
137
138      x += ${BATCH_TILE};
139      y += ${BATCH_TILE};
140    }
141  for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
142    const __m128 vx = _mm_loadu_ps(x);
143
144    // General structure of the algorithm:
145    //           / exp(x) / (1 + exp(x)) if x <= 0
146    //   f[x] :=
147    //           \ 1 - f[-x] if x >= 0
148    //
149    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
150    // then replace result with 1 - f[z] if x >= 0.
151    const __m128 vz = _mm_or_ps(vx, vsign_mask);
152
153    // Compute reduced argument n := round(z / log(2)).
154    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
155    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
156    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
157    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
158    // the algorithm.
159    __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
160
161    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
162    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
163    const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
164
165    // Subtract the large number back to get final n := round(z / log(2)).
166    vn = _mm_sub_ps(vn, vmagic_bias);
167
168    // Compute reduced argument t := z - n * log(2).
169    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
170    __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
171    vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
172
173    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
174    __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
175    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
176    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
177    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
178
179    // Reconstruct the exp(z) value:
180    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
181    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
182    //     = s + (t * s) * p
183    vt = _mm_mul_ps(vt, vs);
184    __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
185
186    // Denominator of the sigmoid fraction: 1.0 + exp(z)
187    __m128 vd = _mm_add_ps(ve, vone);
188
189    // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
190    __m128 vf = _mm_div_ps(ve, vd);
191
192    // For inputs below denormal cutoff, replace output with +0.0f.
193    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
194    vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
195
196    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
197    $if BLEND:
198      vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx);
199    $else:
200      __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
201      vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
202
203    _mm_storeu_ps(y, vf);
204
205    x += 4;
206    y += 4;
207  }
208  if XNN_UNLIKELY(n != 0) {
209    const __m128 vx = _mm_loadu_ps(x);
210
211    // General structure of the algorithm:
212    //           / exp(x) / (1 + exp(x)) if x <= 0
213    //   f[x] :=
214    //           \ 1 - f[-x] if x >= 0
215    //
216    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
217    // then replace result with 1 - f[z] if x >= 0.
218    const __m128 vz = _mm_or_ps(vx, vsign_mask);
219
220    // Compute reduced argument n := round(z / log(2)).
221    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
222    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
223    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
224    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
225    // the algorithm.
226    __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
227
228    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
229    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
230    const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
231
232    // Subtract the large number back to get final n := round(z / log(2)).
233    vn = _mm_sub_ps(vn, vmagic_bias);
234
235    // Compute reduced argument t := z - n * log(2).
236    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
237    __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
238    vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
239
240    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
241    __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
242    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
243    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
244    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
245
246    // Reconstruct the exp(z) value:
247    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
248    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
249    //     = s + (t * s) * p
250    vt = _mm_mul_ps(vt, vs);
251    __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
252
253    // Denominator of the sigmoid fraction: 1.0 + exp(z)
254    __m128 vd = _mm_add_ps(ve, vone);
255
256    // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
257    __m128 vf = _mm_div_ps(ve, vd);
258
259    // For inputs below denormal cutoff, replace output with +0.0f.
260    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
261    vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
262
263    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
264    $if BLEND:
265      vf = _mm_blendv_ps(_mm_sub_ps(vone, vf), vf, vx);
266    $else:
267      __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
268      vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
269
270    if (n & (2 * sizeof(float))) {
271      _mm_storel_pi((__m64*) y, vf);
272      vf = _mm_movehl_ps(vf, vf);
273      y += 2;
274    }
275    if (n & (1 * sizeof(float))) {
276      _mm_store_ss(y, vf);
277    }
278  }
279}
280